Academic literature on the topic 'Corrosion ; Magnesium ; Magnesium alloys'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Corrosion ; Magnesium ; Magnesium alloys.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Corrosion ; Magnesium ; Magnesium alloys"
Lv, Yang Yang, and Ling Feng Zhang. "Corrosion and Protection of Magnesium Alloys." Advanced Materials Research 1120-1121 (July 2015): 1078–82. http://dx.doi.org/10.4028/www.scientific.net/amr.1120-1121.1078.
Full textBolle, Andrea. "A Review of Magnesium/Magnesium Alloys Corrosion." Recent Patents on Corrosion Science 1, no. 2 (May 18, 2011): 72–79. http://dx.doi.org/10.2174/2210687111101010072.
Full textWei Guo, Kelvii. "A Review of Magnesium/Magnesium Alloys Corrosion." Recent Patents on Corrosion Sciencee 1, no. 1 (June 1, 2011): 72–90. http://dx.doi.org/10.2174/2210683911101010072.
Full textJian, Shun-Yi, Mei-Ling Ho, Bing-Ci Shih, Yue-Jun Wang, Li-Wen Weng, Min-Wen Wang, and Chun-Chieh Tseng. "Evaluation of the Corrosion Resistance and Cytocompatibility of a Bioactive Micro-Arc Oxidation Coating on AZ31 Mg Alloy." Coatings 9, no. 6 (June 20, 2019): 396. http://dx.doi.org/10.3390/coatings9060396.
Full textOhse, T., Harushige Tsubakino, and Atsushi Yamamoto. "Surface Modification on Magnesium Alloys by Coating with Magnesium Fluorides." Materials Science Forum 475-479 (January 2005): 505–8. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.505.
Full textTsubakino, Harushige, Atsushi Yamamoto, K. Sugahara, and Shinji Fukumoto. "Corrosion Resistance in Magnesium Alloys and Deposition Coated Magnesium Alloy." Materials Science Forum 419-422 (March 2003): 915–20. http://dx.doi.org/10.4028/www.scientific.net/msf.419-422.915.
Full textTan, Jovan, and Seeram Ramakrishna. "Applications of Magnesium and Its Alloys: A Review." Applied Sciences 11, no. 15 (July 26, 2021): 6861. http://dx.doi.org/10.3390/app11156861.
Full textTkacz, J., K. Slouková, J. Minda, J. Drábiková, S. Fintová, P. Doležal, and J. Wasserbauer. "Corrosion behavior of wrought magnesium alloys AZ31 and AZ61 in Hank’s solution." Koroze a ochrana materialu 60, no. 4 (December 1, 2016): 101–6. http://dx.doi.org/10.1515/kom-2016-0016.
Full textChmiela, Bartosz, Adrian Mościcki, and Maria Sozańska. "Application of Electron Microscopy to Investigation of Corrosion of Mg-Al Alloys in Various Electrolyte Solutions." Solid State Phenomena 231 (June 2015): 41–47. http://dx.doi.org/10.4028/www.scientific.net/ssp.231.41.
Full textXu, Jinkai, Qianqian Cai, Zhongxu Lian, Zhanjiang Yu, Wanfei Ren, and Huadong Yu. "Research Progress on Corrosion Resistance of Magnesium Alloys with Bio-inspired Water-repellent Properties: A Review." Journal of Bionic Engineering 18, no. 4 (July 2021): 735–63. http://dx.doi.org/10.1007/s42235-021-0064-5.
Full textDissertations / Theses on the topic "Corrosion ; Magnesium ; Magnesium alloys"
Grace, Richard William. "Corrosion mechanisms and corrosion inhibition of commercial purity magnesium and advanced magnesium alloys." Thesis, Swansea University, 2012. https://cronfa.swan.ac.uk/Record/cronfa43082.
Full textShi, Zhiming. "The corrosion performance of anodised magnesium alloys /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18391.pdf.
Full textChen, Xi. "Corrosion Resistance Assessment of Pretreated Magnesium Alloys." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1282837277.
Full textJia, Jimmy Xueshan. "Computer modelling of galvanic corrosion of magnesium alloys /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18932.pdf.
Full textRocha, Patrick Thierry Almeida da. "Understanding corrosion mechanisms of novel biodegradable magnesium alloys." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/21878.
Full textA biodegradação de biomateriais em ordem a conseguir uma dissolução completa de um determinado equipamento após a realização do seu propósito, tem sido visto como uma ideia atrativa pela comunidade cientifica, devido ao elevado potencial nas melhorias a qualidade de vida do paciente e devido aos custos pós operatorios que podem ser melhorados. O comportamento de biodegradação é consequência da elevada susceptibilidade à corrosão, inerente às ligas metálicas como o magnésio. Esta característica deve-se à instabilidade química causada pela inserção das ligas num ambiente agressivo às mesmas. Esta afirmação continua a ser verdadeira no caso em que ligas de mágnesio são introduzidas no corpo humano, em contacto com iões agressivos ao metal, presentes nos fluídos corporais. O trabalho de investigação proposto nesta tese, tem como temática o estudo de mágnesio puro, ligas de Mg-XGd e Mg-XGd-YMn, onde o rácio estequiométrico dos elementos é X=2,5 e Y=1. As ligas usadas não se encontram comercializadas, mas existe um forte interesse no seu uso como material biodegradável devido às boas propriedades mecânicas apresentadas pelas mesmas. No entanto as taxas de corrosão necessitam de ser modeladas de forma a viabilizar o seu uso como biomaterial, e uma melhor compreensão sobre os mecanismos de corrosão podem ajudar no design de futuras ligas. O foco deste trabalho consiste em desvendar a natureza da corrosão e devido a isso diversos fatores serão estudados, usando diferentes técnicas de caracterização i) Observar a microestrutura e os microconstituintes presentes, o seu tamanho, morfologia e composição elemental, usando para tais fins técnicas de MEV e EDS. A rugosidade e o potential Volta apresentada pelos diversos constituintes da microstrutura será levado a cabo por técnicas de MFA e SKFM. ii) Técnicas eletroquímicas, como a eletroquímca de impedância e polarização dinâmica, serão usadas de forma a perceber o comportamento do sistemas em diversos meios eletrolíticos. Tempos longos de imersão foram realizados durante medições de Impedância eletroquímica. iii) A composição quimica e o estudo de fases dos produtos de corrosão são realizados usando técnias de EDS e DRX, o que permite identificar os tipos de produtos preferencialmente formados durante o processo de corrosão. iv) Uma série de outras técnicas proporcionaram uma informação mais consistente sobre o comportamento de corrosão nas ligas de mágnesio, como a evolução do hidrogénio e a observação das secções de corte. A reproducibilidade foi estudada usando uma amostragem em diversas técnicas. Entretanto este trabalho é baseado numa comparação qualitativa que permite entender e desvendar o porquê, como e qual o tipo de corrosão que é apresentado pelos diversos sistemas em estudo. Os resultados obtidos pelas diversas técnias revelaram que os fenómenos de corrosão são dependentes do tipo de ambiente e das suas condições. A presença de níveis de impurezas superiores aos limites de tolerância, como o ferro, mostram que a taxa de corrosão é aumentada na presença dos mesmos, visto que aumenta a actividade catódica dos intermetálicos. O manganês como elemento de liga reduz esse efeito, diminuindo a respetiva taxa de corrosão. A formação de produtos de corrosão é dependente do pH do meio, e assim, a precipitação de compostos vai diferir com o eletrólito em uso. O sistema ternário e o magnésio puro demonstraram taxas de corrosão aproximadamente de 0,18 mm/a a 330h de imersão, imerso na solução de PBS. Estas taxas de corrosão podem ser adequadas para aplicações biomédicas.
Biomaterials bring valuable improvements to the biomedical field. The idea behind the biodegradation behaviour of a biomaterial which can be used as an implant in the human body has attracted the attention of the scientific community, due to various benefits which may improve quality of life of injured humans. The biodegradation behaviour of metals arises from the high susceptibility to corrosion of metallic alloys in the human body, which are in contact with aggressive ions presented by human body fluids. This especially concerns magnesium and its alloys. Magnesium alloys must comply with the requirements which are put on the biodegradable materials. Among such requirements one can name mechanical properties and controlled corrosion activity. Investigation in this work performed on several Mg samples, including a pure magnesium (HP Mg), Mg-XGd and Mg-XGd-YMn systems with variation in stoichiometry ratio of elements, X=2 and 5 and Y=1. These are non-commercial Mg alloys which may present interest due to their potential as biodegradable materials. A tailoring of the corrosion rate is required to reduce the corrosion rate of such alloys. For that, it is incredibly wise to understand the corrosion mechanisms in different electrolytes and conditions. To study the influence of factors which affects corrosion a series of characterization techniques were used. At first microstructure and microconstituents as intermetallics, their size, shape and elemental composition, were evaluated using SEM and EDS. Roughness and Volta potential of the different phases present in the microstructure were studied using AFM/SKFM technique, which allows to correlate the Volta potential with local corrosion of intermetallics and to observe dissolution and precipitation processes at the microscale. Also, electrochemical measurements, such as Electrochemical Impedance Spectroscopy (EIS), potential dynamic polarization, were conducted accessing corrosion behaviour of systems in different electrolytes during short immersion times. For electrochemical characterization, in the extended time of immersion EIS was used. To obtain the corrosion rate, it was used the hydrogen evolution method. Then corrosion products chemistry was studied using X-ray diffraction and energy dispersive spectroscopy techniques, which allow to identify the type of products formed in the different electrolytes and to correlate their formation with corrosion behaviour. Cross section analysis and identification of corrosion morphology were accessed on samples after EIS tests. Reproducibly of measurements were ensured by studying a set of replica samples. This work is based on qualitative/qualitative comparison of results which allowed a better understanding why, how and which corrosion is present in the different systems. The different techniques used revealed that corrosion is highly dependent on the environment and the conditions of measurements. The presence of high levels of impurities as iron induces high levels of corrosion by increasing the cathodic activity of intermetallic. Manganese as an alloying element reduces the effect of the impurities in corrosion. Corrosion products formation is pH dependent, and so, the precipitation of corrosion products compounds from different electrolytes may be beneficial or nonbeneficial to corrosion. The ternary system and the HP Magnesium demonstrate corrosion rates approximately 0.18 mm/year in PBS solution, which can be adequate for biomedical applications.
Williams, J. R. "Corrosion of aluminium-copper-magnesium metal matrix composites." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239852.
Full textYuan, Yudie. "Localised corrosion and stress cracking of aluminium-magnesium alloys." Thesis, University of Birmingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433422.
Full textHoffmann, Ilona. "MAGNESIUM-TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS." UKnowledge, 2014. http://uknowledge.uky.edu/cme_etds/36.
Full textPawar, Surajkumar Ganpat. "Influence of microstructure on the corrosion behaviour of magnesium alloys." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/influence-of-microstructure-on-the-corrosion-behaviour-of-magnesium-alloys(c3d71d95-3c3b-4e4d-89e1-cf60081e749d).html.
Full textJönsson, Martin. "The atmospheric corrosion of magnesium alloys : influence of microstructure and environments /." Stockholm : Kemi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4545.
Full textBooks on the topic "Corrosion ; Magnesium ; Magnesium alloys"
Song, Guang-Ling. Corrosion prevention of magnesium alloys. Oxford: Woodhead Publishing, 2013.
Find full textGhali, Edward. Corrosion Resistance of Aluminum and Magnesium Alloys. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470531778.
Full textHohenadel, Kathryn M. Corrosion of magnesium alloys in simulated body fluids. Sudbury, Ont: Laurentian University, 2005.
Find full textCorrosion resistance of aluminum and magnesium alloys: Understanding, performance, and testing. Hoboken, N.J: Wiley, 2010.
Find full textMagnesium, magnesium alloys, and magnesium composites: A guide. New York: Wiley, 2011.
Find full textDobrzański, Leszek A., George E. Totten, and Menachem Bamberger, eds. Magnesium and Its Alloys. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, [2020] | Series: Metals and alloys: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045476.
Full textConference, on Magnesium Alloys and their Applications (1998 Wolfsburg Germany). Magnesium alloys and their applications. Frankfurt: Werkstoff-Informationsgesellschaft, 1998.
Find full textBook chapters on the topic "Corrosion ; Magnesium ; Magnesium alloys"
Ghali, E. "Magnesium and Magnesium Alloys." In Uhlig's Corrosion Handbook, 809–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470872864.ch58.
Full textYamamoto, A., H. Inaoka, and H. Tsubakino. "Corrosion Behaviour in Artificially Corrosion-Oxidation Treated Mg Alloys." In Magnesium, 580–85. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch92.
Full textUnigovski, Ya, L. Riber, A. Eliezer, and E. M. Gutman. "Corrosion Stress Relaxation in Magnesium Alloys." In Magnesium, 632–37. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch100.
Full textPieper, Claudia, Uwe Köster, Helena Alves, and Isao Nakatsugawa. "Corrosion and Oxidation of Thixomolded Magnesium Alloys." In Magnesium, 586–91. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch93.
Full textYfantis, A., I. Paloumpa, D. Schmeißer, and D. Yfantis. "Corrosion Protection by Conductive Polymers for Magnesium Alloys." In Magnesium, 605–10. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch96.
Full textNykyforchyn, H. M., W. Dietzel, M. D. Klapkiv, and C. Blawert. "Corrosion Properties of Conversion Plasma Coated Magnesium Alloys." In Magnesium, 176–81. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch26.
Full textLugscheider, Erich, Maria Parco, K. U. Kainer, and N. Hort. "Thermal Spraying of Magnesium Alloys for Corrosion and Wear Protection." In Magnesium, 860–68. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch134.
Full textSenf, J., E. Broszeit, M. Gugau, and C. Berger. "Corrosion and Galvanic Corrosion of Die Casted Magnesium Alloys." In Magnesium Technology 2000, 136–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118808962.ch21.
Full textSong, Guangling, and Andrej Atrens. "Understanding the Corrosion Mechanism: A Framework for Improving the Performance of Magnesium Alloys." In Magnesium, 507–16. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch80.
Full textWei, Z. L., Q. R. Chen, X. C. Guo, L. Yang, N. X. Xiu, and Y. W. Huang. "Study on Effects of RE, Ca Addition on Stress Corrosion Cracking Behaviour of Magnesium Alloys." In Magnesium, 649–54. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch103.
Full textConference papers on the topic "Corrosion ; Magnesium ; Magnesium alloys"
Lunder, Otto, Marianne Videm, and Kemal Nisancioglu. "Corrosion Resistant Magnesium Alloys." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950428.
Full textHawke, David, and Asbjørn Olsen. "Corrosion Properties of New Magnesium Alloys." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/930751.
Full textAlbright, D. L., and C. Suman. "Understanding Corrosion in Magnesium Die Casting Alloys." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1988. http://dx.doi.org/10.4271/880510.
Full textLunder, Otto, Kemal Nisancioglu, and Rolf Steen Hansen. "Corrosion of Die Cast Magnesium-Aluminum Alloys." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/930755.
Full textZheng, Wenyue, C. Derushie, J. Lo, and R. Osborne. "Corrosion Protection of Structural Magnesium Alloys: Recent Development." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-0732.
Full textSivaraj, D., P. K. Mallick, P. Mohanty, and R. C. McCune. "Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys." In SAE 2006 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-0257.
Full textYayoglu, Yahya E., Nathan D. Gallant, Ryan Toomey, and Nathan B. Crane. "Effects of Laser Ablation Parameters to Pattern High Purity Magnesium Surfaces." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11810.
Full textLyon, P., J. F. King, and G. A. Fowler. "Developments in Magnesium Based Materials and Processes." In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-015.
Full textLi, Song, Jingshan Jiao, Lei Ming, Jixin Yin, and Xiujuan Liu. "Corrosion resistance properties of microarc oxidation coatings on magnesium alloys." In 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI 2012). IEEE, 2012. http://dx.doi.org/10.1109/carpi.2012.6356304.
Full textWinston, J. Arockia, N. Rajesh Jesudoss Hynes, and R. Sankaranarayanan. "Risk assessment of corrosion inhibitors of magnesium and its alloys." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001241.
Full textReports on the topic "Corrosion ; Magnesium ; Magnesium alloys"
Sieradzki, Karl, Ashlee Aiello, and Ian McCue. Dealloying, Microstructure and the Corrosion/Protection of Cast Magnesium Alloys. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1413450.
Full textHorstemeyer, Mark, and Santanu Chaudhuri. A SYSTEMATIC MULTISCALE MODELING AND EXPERIMENTAL APPROACH TO PROTECT GRAIN BOUNDARIES IN MAGNESIUM ALLOYS FROM CORROSION. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1238368.
Full textJones, Tyrone L., Joseph P. Labukas, Brian E. Placzankis, and Katsuyoshi Kondoh. Ballistic and Corrosion Analysis of New Military-Grade Magnesium Alloys AMX602 and ZAXE1711 For Armor Applications. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada562406.
Full textSchwam, David. Casting Porosity-Free Grain Refined Magnesium Alloys. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1097772.
Full textCatalano, James E., and Laszlo J. Kecskes. A Generic Metallographic Preparation Method for Magnesium Alloys. Fort Belvoir, VA: Defense Technical Information Center, May 2013. http://dx.doi.org/10.21236/ada585245.
Full textKozol, Joseph, and Edwin Tankins. Aircraft Carrier Exposure Tests of Cast Magnesium Alloys. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada268260.
Full textGuthrie, S. E., G. J. Thomas, N. Y. C. Yang, and W. Bauer. The development of lightweight hydride alloys based on magnesium. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/477620.
Full textLabukas, Joseph P., Noelle F. Landers, Lindsey M. Blohm, Victor Rodriguez-Santiago, and Thomas Parker. Corrosion-Mitigating, Bondable, Fluorinated Barrier Coating for Anodized Magnesium. Fort Belvoir, VA: Defense Technical Information Center, May 2016. http://dx.doi.org/10.21236/ad1008652.
Full textLuo, Alan A., Ji-Cheng Zhao, Adrienne Riggi, and William Joost. High-Throughput Study of Diffusion and Phase Transformation Kinetics of Magnesium-Based Systems for Automotive Cast Magnesium Alloys. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1395879.
Full textJones, Tyrone, and Katsuyoshi Kondoh. Initial Evaluation of Advanced Powder Metallurgy Magnesium Alloys for Armor Development. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada500566.
Full text