To see the other types of publications on this topic, follow the link: Corrosion protection; Offshore structures.

Dissertations / Theses on the topic 'Corrosion protection; Offshore structures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'Corrosion protection; Offshore structures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Alamdari, Mikayil. "Corrosion protection and monitoring of off-shore structures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
Oil and gas platforms are confronting a problem of ageing as there are many platforms that were constructed over 40 years ago. Every year, the offshore sector incurs considerable losses due to corrosion. On average, oil and gas companies use 6% of their annual income to fight against corrosion. This all in a short-term has a negative impact on the marine environment and in a long-term endeavour toward sustainable energy encountering difficulties. This thesis presents a novel corrosion inspection method by the implementation of the deep neural network and fuzzy logic models. Fuzzy logic is a suitable mathematical tool for the task since it is capable of handling imprecise information from the real world. The benefit of this approach lies in its ability to include personal experiences and acceptable deterministic models in the calculations. This approach can thus help to reduce the dependence upon the precise data, allow modelling even when a phenomenon is incompletely understood, and lessen the difficulties arising due to the complex computation required by more traditional methods. Moreover, image processing based on algorithms can do the automated inspection of external corrosion phenomena. A complete automated system for corrosion detection in pipelines comprises of a drone to flying over these pipelines and capturing photos and/or videos, and an image based on an algorithm to process these visual data and detect corrosion. The proposed deep learning approach effectively wards off the need for manual inspection and other non-vision based non-destructive evaluation techniques for pipeline corrosion which are cost-ineffective and interrupts the functioning of pipelines. Increased production frequently comes with an unknown cost of the increased rate of material degradation and threatening corrosion failures. Therefore, essential topics as corrosion data management and risk assessment are covered.
APA, Harvard, Vancouver, ISO, and other styles
2

Murray, Brian A. "Hydrodynamic loading due to appurtenances on jacket structures." Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Olowe, Adedayo Christianah. "Corrosion assessment and cathodic protection design parameters for steel structures in deep and ultra deep offshore waters." Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201965.

Full text
Abstract:
Carbon steel finds much application for use in industries including civil; manufacturing; oil and gas; as well as, renewable energy. Common examples for usage of steel include water pipelines; oil pipelines; bridges; etc. The main advantages of steel over other engineering materials are its strength and affordability. However, steel undergoes corrosion which is a degradation mechanism that occurs as a result of the electrochemical interaction between steel and its environment. There are two main options to control corrosion, aside from material selection techniques, namely, the use of protective coating systems to isolate the steel from the environment; or the use of cathodic protection. Cathodic protection involves the use of galvanic anodes or impressed current system to prevent steel corrosion. Currently the oil and gas industry accounts for the major share of consumption of galvanic anodes for the protection of steel in engineering applications. Recent incursions into deep water depths by the Oil and Gas industry in the last decade or so has brought to the fore the need to understand better the performance of steel at deep and ultra deep water depths; as well as to develop an understanding of how cathodic protection works at these water depths. So far, the bulk of industry experience lies in shallow waters and current international cathodic protection design guidelines are based on data collated at these shallow water depths. It is the objective of this research work to assess the corrosion properties of steel with deep seawater parameters and determine design current density requirements for effective cathodic protection of steel at deep and ultra deep water depths offshore.
APA, Harvard, Vancouver, ISO, and other styles
4

Alhamalawi, Mazen. "Offshore Wind Power Foundations' Corrosion Protection Strategy : Anlysis remotely controlled corrosion protection system and comparison to traditional corrosion protection of offshore wind foundation." Thesis, Linnéuniversitetet, Sjöfartshögskolan (SJÖ), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103460.

Full text
Abstract:
När en metall är omgärdad av en elektrolyt, så som havsvatten, kommer det att byggas upp en naturlig potential. Det sker en elektronvandring mellan materialet och havsvattnet och ju större potentialskillnad desto större sannolikhet att metallen kommer korrodera. Korrosion är en stor och viktig fråga för offshorekonstruktioner och byggnader.  För att uppnå en konstruktions designade livslängd kan åtgärder vidtas med hänsyn till kapitalkostnader och drift- och underhållskostnader.  Denna studie syftar till att jämföra ekonomiska för- och nackdelar hos de två korrosionsskyddssystemen Galvanic Anode Corrosion Protection (GACP) och Impressed Current Cathodic Protection (ICCP) på havsbaserade vindkraftsfundament. Det förstnämnda systemet använder offeranoder och det sistnämnda är ett katodiskt korrosionsskydd med hjälp av påtryckt ström.  Studien bestod av flera steg av litteraturstudier där teori om korrosion och korrosionssystem användes för att till slut kunna jämföra valda korrosionsskyddssystem.  Resultatet visar att GACP har fler fördelar och färre nackdelar än ICCP och skulle därmed vara mer ekonomiskt fördelaktig i marina miljöer. GACP ger också önskad effekt direkt vid installation och behöver inte någon strömkälla, ICCP är mer komplicerat och är inte effektivt förrän hela systemet är monterat och i drift. Dessutom behöver ICCP extra strömkälla samt kablage.
When a metal is surrounded by an electrolyte, such as seawater, a natural potential will be built up. An electron migration between the material and the seawater will happen and the greater the potential difference, the greater the probability that the metal will corrode. Corrosion is an important issue when it comes to offshore structures. In order to achieve a structure designed lifetime, measures can then be taken with regard to capital costs and operating and maintenance costs. This study aims to compare the economic advantages and disadvantages of the two, Galvanic Anode Corrosion Protection (GACP) and Impressed Current Cathodic Protection (ICCP), corrosion protection systems on offshore wind power foundations. The first mentioned system uses sacrificial anodes and the second is a cathodic corrosion protection by an applied current. The study consisted of several stages of literature studies where theory of corrosion and corrosion systems was used to finally be able to make a comparison between selected corrosion protection systems. The result shows that GACP has more advantages and fewer disadvantages than ICCP and would thus be more economical. GACP, for example, is efficient during installation and does not need an additional power source, but ICCP is more complicated and not efficient until complete assembly of the entire system and requires additional power source and cables. Right now, there is no design standard available with detailed requirements and advice has been given as for galvanic anodes systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Adedipe, Oyewole. "Integrity of offshore structures." Thesis, Cranfield University, 2015. http://dspace.lib.cranfield.ac.uk/handle/1826/9692.

Full text
Abstract:
Corrosion and fatigue have been dominant degradation mechanisms in offshore structures, with the combination of the two, known as corrosion fatigue, having amplified effects in structures in the harsh marine environments. Newer types of structure are now being developed for use in highly dynamic, harsh marine environments, particularly for renewable energy applications. However, they have significantly different structural details and design requirements compared to oil and gas structures, due to the magnitude and frequency of operational and environmental loadings acting on the support structures. Therefore, the extent of corrosion assisted fatigue crack growth in these structures needs to be better understood. In this research, fatigue crack growth in S355J2+N steel used for offshore wind monopile fabrications was investigated in air and free corrosion conditions. Tests were conducted on parent, HAZ and weld materials at cyclic load frequencies similar to what is experienced by offshore wind monopile support structures. The seawater used for testing was prepared according to ASTM D1141 specifications and was circulated past the specimens through a purpose designed and built corrosion rig at a rate of 3 l/min, at a temperature of 8-100C and at a pH of 7.78-8.1. A new crack propagation method accompanied by constant amplitude loading was used. Crack growth rates in parent, HAZ and weld materials were significantly accelerated under free corrosion conditions, at all the stress ratios used compared to in air environment. However, in free corrosion conditions, crack growth rates in the parent, HAZ and weld materials were similar, particularly at a lower stress ratio. The results are explained with respect to the interaction of the loading condition, environment and the rate of material removal by corrosion in the weldments. A new model was developed to account for mean stress effects on crack growth rates in air and in seawater, and was found to correlate well with experimental data as well as with the other mean stress models tested.
APA, Harvard, Vancouver, ISO, and other styles
6

Oleiwi, H. M. "Using cathodic protection to control corrosion of reinforced concrete structures." Thesis, University of Salford, 2018. http://usir.salford.ac.uk/47895/.

Full text
Abstract:
Cathodic protection (CP) has been increasingly used on reinforced concrete structures to protect steel reinforcement from corrosion. However, due to the complexity of environmental conditions, the specifications in national and international standards are still open to discussion in engineering practices for their accurate suitability. To some extent, the design aspects are still based on practical experience. It implies a great deal of estimations and assumptions. The research conducted in the thesis aims to address some of these challenges. To obtain reliable experimental results, the present study at first investigated the influence of experimental methods on the measurement of concrete electrical resistivity. It studied the effect of alternative current (AC) frequency, electrode materials and electrode configuration. Based on the results, an optimised method was decided for all the series of the experimental tests in this study. The CP study consists of two major works. The first one was to investigate the chloride contaminated concrete exposed to atmospheric condition. Impressed constant current method was adopted for the operation of CP. A series of electrical and electrochemical measurements were conducted for concrete resistivity, corrosion potential, corrosion rate, degree of polarization, instant-off potential and four-hour potential decay. An evaluation on the current adopted criterion in standards has been carried out on the experimental results. The second work was to investigate the corrosion of rebar in concrete specimens submerged (fully and partially) in salty water. For such more corrosive environment, a comparison between the impressed CP operation using constant current and that using constant potential has been conducted. The experiments evaluated the effects of the two major environmental factors, i.e. water and chloride contents, on reinforced concrete durability. The work provided a deep understanding on the electrochemical behaviour of the reinforced concrete system and effectiveness of CP implementation under severe conditions. The research work has an important contribution to fundamental science of corrosion and reinforced concrete deterioration, and the technology and practical application of CP for reinforced concrete structures. The main results of this work indicate the important influence of the frequency and electrode configuration on the electrical resistance measurement. For the reliability of electrical resistivity measurement, a high frequency of 10,000 Hz and an internal carbon fibre electrode method are recommended. Regarding the CP for the chloride contaminated reinforced concrete exposed to the atmosphere, it is suggested that adopting an instant-off potential of -500 mV with respect to Ag/AgCl/0.5KCl reference electrode can provide sufficient protection for the reinforced concrete of up to 0.59 % total chloride by weight of concrete, or concrete resistivity is greater than 6.7 kΩ.cm. Furthermore, it was found that the 100 mV depolarization criterion for the evaluation of CP performance gives an overestimated protection. A depolarization of 50 mV is therefore proposed. In terms of the submerged specimens, the results showed that the water content and chloride content should be explicitly related to the corrosion state rather than through a single parameter of the concrete resistivity for the complicated situations because the water content will affect the oxygen transportation in concrete, and the oxygen availability at the rebar surface will play an important role in the corrosion process, and this is unassessable by concrete resistivity. Moreover, 4 or 24 hours for the 100 mV depolarisation criterion in standards is not applicable for CP assessment where concrete structures are fully submerged due to the low availability of oxygen. On the other hand, the depolarization criterion can be used if the specimens are partially submerged, but different parameters affect the depolarization value such as the magnitude of the applied protection current or potential, chloride concentration, oxygen availability and time of depolarization.
APA, Harvard, Vancouver, ISO, and other styles
7

Batt, C. "Optimising cathodic protection requirements for high strength steels in the marine environment." Thesis, Cranfield University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Myers, Peter. "Corrosion fatigue and fracture mechanics of weldable high strength jack up steels." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Walsh, Michael Thomas. "Corrosion of Steel in Submerged Concrete Structures." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/6048.

Full text
Abstract:
This investigation determined that severe corrosion of steel can occur in the submerged portions of reinforced concrete structures in marine environments. Field studies of decommissioned pilings from actual bridges revealed multiple instances of strong corrosion localization, showing appreciable local loss of steel cross-section. Quantitative understanding of the phenomenon and its causes was developed and articulated in the form of a predictive model. The predictive model output was consistent with both the corrosion rate estimates and the extent of corrosion localization observed in the field observations. The most likely explanation for the observed phenomena that emerged from the understanding and modeling is that cathodic reaction rates under oxygen diffusional limitation that are negligible in cases of uniform corrosion can nevertheless support substantial corrosion rates if the corrosion becomes localized. A dynamic evolution form of the model was created based on the proposition that much of the steel in the submerged concrete zone remained in the passive condition given cathodic prevention that resulted from favorable macrocell coupling with regions of the steel that had experienced corrosion first. The model output also matched observations from the field, supporting the plausibility of the proposed scenario. The modeling also projected that corrosion in the submerged zone could be virtually eliminated via the use of sacrificial anode cathodic protection; the rate of corrosion damage progression in the low elevation zone above water could also be significantly reduced. Continuation work should be conducted to define an alternative to the prevalent limit-state i.e., visible external cracks and spalls, for submerged reinforced concrete structures. Work should also be conducted to determine the possible structural consequences of this form of corrosion and to assess the technical feasibility and cost/benefit aspects of incorporating protective anodes in new pile construction.
APA, Harvard, Vancouver, ISO, and other styles
10

Christodoulou, Christian. "Repair and corrosion management of reinforced concrete structures." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13577.

Full text
Abstract:
The durability of concrete structures is affected by a number of factors such as environmental exposure, electrochemical reactions, mechanical loading, impact damage and others. Of all of these, corrosion of the reinforcement is probably the main cause for the deterioration of steel reinforced concrete (RC) structures. Corrosion management is becoming increasingly necessary as a result of the growing number of ageing infrastructure assets (e.g. bridges, tunnels etc.) and the increased requirement for unplanned maintenance in order to keep these structures operational throughout their design life (and commonly, beyond). The main RC repair, refurbishment and rehabilitation approaches generally employed can be broadly categorised under a) conventional, b) surface treatments, c) electrochemical treatments and d) design solutions. The overarching aim of this research was to identify the key corrosion management techniques and undertake empirical investigations focused on full-scale RC structures to investigate their long-term performance. To achieve this, individual research packages were identified from the above broad five approaches for repair, replacement and rehabilitation. These were 1) Patch repairs and incipient anodes, 2) Impressed Current Cathodic Protection, 3) Galvanic Cathodic Protection and 4) Hydrophobic treatments. The selection of the above research packages was based on past and present use by the construction industry to repair, refurbish and rehabilitate RC structures. Their contributions may be broadly categorised as i) Investigations on how specific treatments and materials perform, ii) Investigations on the effectiveness of existing methods of measurements and developing alternatives, iii) Changes to the existing theory of corrosion initiation and arrest and iv) Changes to management framework strategies. The key findings from each research package can be summarised as follows: Macrocell activity appears to be a consequence rather than a cause of incipient anode formation in repaired concrete structures, as has previously been presented; ICCP has persistent protective effects even after interruption of the protective current; Discrete galvanic anodes installed in the parent concrete surrounding the patch repair are a feasible alternative to galvanic anodes embedded within the patch repairs of RC structures; Silanes may have a residual hydrophobic effect even after 20 years of service.
APA, Harvard, Vancouver, ISO, and other styles
11

Itoh, Yoshito, Yasuo Kitane, and Xiao Chen. "Mechanical Properties of Fillet Weld Joints by Underwater Wet Welding in Repairing Corrosion-Damaged Offshore Steel Structures." 土木学会, 2010. http://hdl.handle.net/2237/18845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Das, S. C. "Zinc rich paint as anode system for cathodic protection (CP) of reinforced concrete structures and development of corrosion/CP monitoring probes." Thesis, Coventry University, 2012. http://curve.coventry.ac.uk/open/items/5f6b4228-1557-4cf8-bebd-97b5b70bb594/1.

Full text
Abstract:
Since mid-80‟s cathodic protection (CP) has been recognised as the „‟only technique known to stop corrosion regardless of the levels of chloride contamination in concrete‟‟ (FHWA, 1982) and is proved to be the most cost effective means to extend the useful life of the structure. Cathodic protection is an electrochemical technique to stop/mitigate corrosion by supplying „current‟ from an external source in order to suppress the „internally generated‟ current flow due to corrosion processes. The „external‟ current source could be obtained simply by coupling the steel to another electrochemically more active metal, e.g. zinc; alternatively the „external‟ current may be derived from a mains operated low voltage DC power source, viz. transformer/rectifier unit. These two different approaches to supply „external‟ current to stop corrosion are generically termed as: „Sacrificial Anode Cathodic Protection (SACP)‟ system and „Impressed Current Cathodic Protection (ICCP)‟ system, respectively. Both approaches have proved to be feasible, but the impressed current CP system offers greater flexibility with regard to its ability to provide the necessary current in situations where concrete resistivity is relatively high and variable. The sacrificial anode system is most effective if the concrete resistivity is very low or the anode is placed in a very low resistivity environment such as soil with low resistivity, as the inherent driving voltage is low e.g. the potential difference between zinc and corroding steel in concrete is limited to approximately 0.7 volts. Other contra-distinction between the two approaches are that the design life of the sacrificial anode systems are usually range between 10 -15 years; on the other hand the design life of the ICCP systems could be well in excess of 60+ years ( depending on the type of anode system). Page 2 Following the successful application of first CP system, based on impressed current CP (ICCP), on a bridge deck in California, USA 1973, the technology has advanced significantly, particularly the anode systems (which is the main arbiter of a CP system) to deliver the protection current efficiently providing adequate protection (i.e. meeting the criteria recommended in BS EN ISO 12696: 2012 and other International Standards). Most of the CP installations worldwide are operating in ICCP mode. However, due to the escalating cost of anode systems and associated external power supply as well as monitoring/control units for ICCP installation has led researchers to actively pursue different means of developing low cost anode systems. Researchers have mainly focused on sacrificial anode CP (SACP) systems, as SACP does not require an external power supply and control units, but the drawback to this anode system is that it has a shorter life span (usually 10 -15 years compared to 60+ years for ICCP anodes). This work describes the development of an ICCP anode system design utilising commercially available zinc rich paint (ZRP) as a primary anode material offering an innovative but considerably low cost alternative to currently used materials for ICCP anode systems. It also describes the development of a simple and low cost „multifunctional‟ probe for monitoring the performance of the installed CP system, among other functions, such as LPR measurements, macrocell corrosion current measurement, E-log I tests for assessing the current requirements for CP design. For these functions both laboratory investigations and field trial on real life structure were employed.
APA, Harvard, Vancouver, ISO, and other styles
13

Laya, Enrique J. "Système de surveillance pour la détection du dommage de fatigue cumulée dans les structures offshore en acier." Châtenay-Malabry, Ecole centrale de Paris, 1987. http://www.theses.fr/1987ECAP0048.

Full text
Abstract:
Pour vérifier le comportement des liaisons tubulaires soudées, étude d'un système de mesure en temps réel des déformations sur la section nominale des tubes arrivant aux noeuds ; technologiquement le système est conçu à partir des matériels existants.
APA, Harvard, Vancouver, ISO, and other styles
14

Orellan, Herrera Juan-Carlos. "Efficacité et effets secondaires des techniques électrochimiques de maintenance des structures en béton armé." Toulouse 3, 2002. http://www.theses.fr/2002TOU30220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Scarfe, Bradley Edward. "Oceanographic Considerations for the Management and Protection of Surfing Breaks." The University of Waikato, 2008. http://hdl.handle.net/10289/2668.

Full text
Abstract:
Although the physical characteristics of surfing breaks are well described in the literature, there is little specific research on surfing and coastal management. Such research is required because coastal engineering has had significant impacts to surfing breaks, both positive and negative. Strategic planning and environmental impact assessment methods, a central tenet of integrated coastal zone management (ICZM), are recommended by this thesis to maximise surfing amenities. The research reported here identifies key oceanographic considerations required for ICZM around surfing breaks including: surfing wave parameters; surfing break components; relationship between surfer skill, surfing manoeuvre type and wave parameters; wind effects on waves; currents; geomorphic surfing break categorisation; beach-state and morphology; and offshore wave transformations. Key coastal activities that can have impacts to surfing breaks are identified. Environmental data types to consider during coastal studies around surfing breaks are presented and geographic information systems (GIS) are used to manage and interpret such information. To monitor surfing breaks, a shallow water multibeam echo sounding system was utilised and a RTK GPS water level correction and hydrographic GIS methodology developed. Including surfing in coastal management requires coastal engineering solutions that incorporate surfing. As an example, the efficacy of the artificial surfing reef (ASR) at Mount Maunganui, New Zealand, was evaluated. GIS, multibeam echo soundings, oceanographic measurements, photography, and wave modelling were all applied to monitor sea floor morphology around the reef. Results showed that the beach-state has more cellular circulation since the reef was installed, and a groin effect on the offshore bar was caused by the structure within the monitoring period, trapping sediment updrift and eroding sediment downdrift. No identifiable shoreline salient was observed. Landward of the reef, a scour hole ~3 times the surface area of the reef has formed. The current literature on ASRs has primarily focused on reef shape and its role in creating surfing waves. However, this study suggests that impacts to the offshore bar, beach-state, scour hole and surf zone hydrodynamics should all be included in future surfing reef designs. More real world reef studies, including ongoing monitoring of existing surfing reefs are required to validate theoretical concepts in the published literature.
APA, Harvard, Vancouver, ISO, and other styles
16

CHEN, Xiao. "DESIGN METHOD TO REPAIR CORROSION-DAMAGED OFFSHORE STEEL STRUCTURES UNDER WATER." Thesis, 2011. http://hdl.handle.net/2237/16452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Santos, Paulo Sérgio Soares dos. "Development of a low-cost interrogation system platform for corrosion sensors in offshore metallic structures." Dissertação, 2018. https://hdl.handle.net/10216/118768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Santos, Paulo Sérgio Soares dos. "Development of a low-cost interrogation system platform for corrosion sensors in offshore metallic structures." Master's thesis, 2018. https://hdl.handle.net/10216/118768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Guibert, Arnaud. "Diagnostic de corrosion et prédiction de signature électromagnétique de structures sous-marines sous protection cathodique." Phd thesis, 2009. http://tel.archives-ouvertes.fr/tel-00440258.

Full text
Abstract:
La lutte contre la corrosion des structures sous-marines et des navires nécessite l'utilisation d'une protection cathodique adaptée. Cette protection induit alors une circulation de courant électrique dans l'eau de mer et donc la présence d'un champ électromagnétique, détectable par des capteurs. La première idée de ce travail est, à partir de la connaissance de la géométrie et de la physique d'une structure, de prédire le champ électromagnétique généré. La seconde idée est de développer une méthode inverse de diagnostic de corrosion à partir de la mesure de grandeurs électromagnétiques dans l'eau, pour retrouver les zones abîmées. Ainsi, à partir d'une série de mesures dans l'eau, un diagnostic de corrosion est possible et l'extrapolation de la signature électromagnétique à des profondeurs plus lointaines est réalisable. Cette méthode est enfin vérifiée expérimentalement sur quelques cas simples et sur une maquette de navire complexe.
APA, Harvard, Vancouver, ISO, and other styles
20

Chan, Phyllis. "A contribution to a practical approach to corrosion protection and coating maintenance of steel bridge structures." Thesis, 2005. http://hdl.handle.net/2429/16314.

Full text
Abstract:
This report summarizes the state-of-the-art practices in corrosion protection coating maintenance in British Columbia and worldwide. Details regarding maintenance policies, maintenance strategies, and maintenance materials are outlined. A computer-based decision making tool used to minimize the cost of coating maintenance for steel bridges is presented in this report. Variations of the model, adapted for specific use, are presented. A maintenance approach with the lowest equivalent uniform annual cost is recommended for each analysis using the model. The analysis may be performed for one bridge structure using deterministic or probabilistic input values or for all bridge structures of a certain inventory using deterministic input values. The variation of the model allowing analysis of the entire bridge inventory will provide an estimation of the annual budgetary requirements for the coating maintenance in a region and will facilitate the prioritization of these coating maintenance projects. From preliminary analyses using the Steel Bridge Coating Maintenance Evaluation Model, it is observed that the most cost efficient approach to coating maintenance is touch-up painting. However, the coating condition of the bridge must be kept high in order for this maintenance strategy to be applicable. Therefore, it might be necessary to temporarily increase the coating maintenance budget in order to improve the average condition. This will allow for a lower annual maintenance cost in the future, resulting in reduction of the total costs over the life-time of the bridges.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography