Academic literature on the topic 'Cortex entorhinal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cortex entorhinal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cortex entorhinal"

1

Witter, Menno. "Entorhinal cortex." Scholarpedia 6, no. 10 (2011): 4380. http://dx.doi.org/10.4249/scholarpedia.4380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caruana, Douglas A., and C. Andrew Chapman. "Stimulation of the Parasubiculum Modulates Entorhinal Cortex Responses to Piriform Cortex Inputs In Vivo." Journal of Neurophysiology 92, no. 2 (August 2004): 1226–35. http://dx.doi.org/10.1152/jn.00038.2004.

Full text
Abstract:
Although a major output of the hippocampal formation is from the subiculum to the deep layers of the entorhinal cortex, the parasubiculum projects to the superficial layers of the entorhinal cortex and may therefore modulate how the entorhinal cortex responds to sensory inputs from other cortical regions. Recordings at multiple depths in the entorhinal cortex were first used to characterize field potentials evoked by stimulation of the parasubiculum in urethan-anesthetized rats. Current source density analysis showed that a prominent surface-negative field potential component is generated by synaptic activation in layer II. The surface-negative field potential was also observed in rats with chronically implanted electrodes. The response was maintained during short stimulation trains of ≤125 Hz, suggesting that it is generated by activation of monosynaptic inputs to the entorhinal cortex. The piriform cortex also projects to layer II of the entorhinal cortex, and interactions between parasubicular and piriform cortex inputs were investigated using double-site stimulation tests. Simultaneous activation of parasubicular and piriform cortex inputs with high-intensity pulses resulted in smaller synaptic potentials than were expected on the basis of summing the individual responses, consistent with the termination of both pathways onto a common population of neurons. Paired-pulse tests were then used to assess the effect of parasubicular stimulation on responses to piriform cortex stimulation. Responses of the entorhinal cortex to piriform cortex inputs were inhibited when the parasubiculum was stimulated 5 ms earlier and were enhanced when the parasubiculum was stimulated 20–150 ms earlier. These results indicate that excitatory inputs to the entorhinal cortex from the parasubiculum may enhance the propagation of neuronal activation patterns into the hippocampal circuit by increasing the responsiveness of the entorhinal cortex to appropriately timed inputs.
APA, Harvard, Vancouver, ISO, and other styles
3

van der Linden, Solange, Ferruccio Panzica, and Marco de Curtis. "Carbachol Induces Fast Oscillations in the Medial but not in the Lateral Entorhinal Cortex of the Isolated Guinea Pig Brain." Journal of Neurophysiology 82, no. 5 (November 1, 1999): 2441–50. http://dx.doi.org/10.1152/jn.1999.82.5.2441.

Full text
Abstract:
Fast oscillations at 25–80 Hz (gamma activity) have been proposed to play a role in attention-related mechanisms and synaptic plasticity in cortical structures. Recently, it has been demonstrated that the preservation of the entorhinal cortex is necessary to maintain gamma oscillations in the hippocampus. Because gamma activity can be reproduced in vitro by cholinergic activation, this study examined the characteristics of gamma oscillations induced by arterial perfusion or local intracortical injections of carbachol in the entorhinal cortex of the in vitro isolated guinea pig brain preparation. Shortly after carbachol administration, fast oscillatory activity at 25.2–28.2 Hz was observed in the medial but not in the lateral entorhinal cortex. Such activity was transiently associated with oscillations in the theta range that showed a variable pattern of distribution in the entorhinal cortex. No oscillatory activity was observed when carbachol was injected in the lateral entorhinal cortex. Gamma activity in the medial entorhinal cortex showed a phase reversal at 200–400 μm, had maximal amplitude at 400–500 μm depth, and was abolished by arterial perfusion of atropine (5 μM). Local carbachol application in the medial entorhinal cortex induced gamma oscillations in the hippocampus, whereas no oscillations were observed in the amygdala and in the piriform, periamygdaloid, and perirhinal cortices ipsilateral and contralateral to the carbachol injection. Hippocampal oscillations had higher frequency than the gamma activity recorded in the entorhinal cortex, suggesting the presence of independent generators in the two structures. The selective ability of the medial but not the lateral entorhinal cortex to generate gamma activity in response to cholinergic activation suggests a differential mode of signal processing in entorhinal cortex subregions.
APA, Harvard, Vancouver, ISO, and other styles
4

Biella, Gerardo, Paolo Spaiardi, Mauro Toselli, Marco de Curtis, and Vadym Gnatkovsky. "Functional Interactions Within the Parahippocampal Region Revealed by Voltage-Sensitive Dye Imaging in the Isolated Guinea Pig Brain." Journal of Neurophysiology 103, no. 2 (February 2010): 725–32. http://dx.doi.org/10.1152/jn.00722.2009.

Full text
Abstract:
The massive transfer of information from the neocortex to the entorhinal cortex (and vice versa) is hindered by a powerful inhibitory control generated in the perirhinal cortex. In vivo and in vitro experiments performed in rodents and cats support this conclusion, further extended in the present study to the analysis of the interaction between the entorhinal cortex and other parahippocampal areas, such as the postrhinal and the retrosplenial cortices. The experiments were performed in the in vitro isolated guinea pig brain by a combined approach based on electrophysiological recordings and fast imaging of optical signals generated by voltage-sensitive dyes applied to the entire brain by arterial perfusion. Local stimuli delivered in different portions of the perirhinal, postrhinal, and retrosplenial cortex evoked local responses that did not propagate to the entorhinal cortex. Neither high- and low-frequency-patterned stimulation nor paired associative stimuli facilitated the propagation of activity to the entorhinal region. Similar stimulations performed during cholinergic neuromodulation with carbachol were also ineffective in overcoming the inhibitory network that controls propagation to the entorhinal cortex. The pharmacological inactivation of GABAergic transmission by local application of bicuculline (1 mM) in area 36 of the perirhinal cortex facilitated the longitudinal (rostrocaudal) propagation of activity into the perirhinal/postrhinal cortices but did not cause propagation into the entorhinal cortex. Bicuculline injection in both area 35 and medial entorhinal cortex released the inhibitory control and allowed the propagation of the neural activity to the entorhinal cortex. These results demonstrate that, as for the perirhinal-entorhinal reciprocal interactions, also the connections between the postrhinal/retrosplenial cortices and the entorhinal region are subject to a powerful inhibitory control.
APA, Harvard, Vancouver, ISO, and other styles
5

Kajiwara, Riichi, Ichiro Takashima, Yuka Mimura, Menno P. Witter, and Toshio Iijima. "Amygdala Input Promotes Spread of Excitatory Neural Activity From Perirhinal Cortex to the Entorhinal–Hippocampal Circuit." Journal of Neurophysiology 89, no. 4 (April 1, 2003): 2176–84. http://dx.doi.org/10.1152/jn.01033.2002.

Full text
Abstract:
A number of sensory modalities most likely converge in the rat perirhinal cortex. The perirhinal cortex also interconnects with the amygdala, which plays an important role in various motivational and emotional behaviors. The neural pathway from the perirhinal cortex to the entorhinal cortex is considered one of the main paths into the entorhinal–hippocampal network, which has a crucial role in memory processes. To investigate the potential associative function of the perirhinal cortex with respect to sensory and motivational stimuli and the influence of the association on the perirhinal–entorhinal–hippocampal neurocircuit, we prepared rat brain slices including the perirhinal cortex, entorhinal cortex, hippocampal formation, and amygdala. We used an optical imaging technique with a voltage-sensitive dye to analyze 1) the spatial and functional distribution of inputs from the lateral nucleus of the amygdala to the perirhinal cortex; 2) the spread of neural activity in the perirhinal cortex after layers II/III stimulation, which mimics sensory input to the perirhinal cortex; and 3) the effect of associative inputs to the perirhinal cortex from both the lateral amygdaloid nucleus and layers II/III of the perirhinal cortex on the perirhinal–entorhinal–hippocampal neurocircuit. Following stimulation in the superficial layers of the perirhinal cortex, electrical activity only propagated into the entorhinal cortex when sufficient activation occurred in the deep layers of perirhinal area 35. We observed that single stimulation of either the perirhinal cortex or amygdala did not result in sufficient neural activation of the deep layers of areas 35 to provoke activity propagation into the entorhinal cortex. However, the deep layers of area 35 were depolarized much more strongly when the two stimuli were applied simultaneously, resulting in spreading activation in the entorhinal cortex. Our observations suggest that a functional neural basis for the association of higher-order sensory inputs and emotion-related inputs exists in the perirhinal cortex and that transfer of sensory information to the entorhinal–hippocampal circuitry might be affected by the association of that information with incoming information from the amygdala.
APA, Harvard, Vancouver, ISO, and other styles
6

Coutureau, Etienne, and Georges Di Scala. "Entorhinal cortex and cognition." Progress in Neuro-Psychopharmacology and Biological Psychiatry 33, no. 5 (August 2009): 753–61. http://dx.doi.org/10.1016/j.pnpbp.2009.03.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Biella, Gerardo, and Marco de Curtis. "Olfactory Inputs Activate the Medial Entorhinal Cortex Via the Hippocampus." Journal of Neurophysiology 83, no. 4 (April 1, 2000): 1924–31. http://dx.doi.org/10.1152/jn.2000.83.4.1924.

Full text
Abstract:
The lateral and medial regions of the entorhinal cortex differ substantially in terms of connectivity and pattern of activation. With regard to olfactory input, a detailed and extensive physiological map of the olfactory projection to the entorhinal cortex is missing, even if anatomic studies suggest that the olfactory afferents are confined to the lateral and rostral entorhinal region. We studied the contribution of the medial and lateral entorhinal areas to olfactory processing by analyzing the responses induced by lateral olfactory tract stimulation in different entorhinal subfields of the in vitro isolated guinea pig brain. The pattern of synaptic activation of the medial and lateral entorhinal regions was reconstructed either by performing simultaneous multisite recordings or by applying current source density analysis on field potential laminar profiles obtained with 16-channel silicon probes. Current source density analysis demonstrated the existence of a direct monosynaptic olfactory input into the superficial 300 μm of the most rostral part of the lateral entorhinal cortex exclusively, whereas disynaptic sinks mediated by associative fibers arising from the piriform cortex were observed at 100–350 μm depth in the entire lateral aspect of the cortex. No local field responses were recorded in the medial entorhinal region unless a large population spike was generated in the hippocampus (dentate gyrus and CA1 region) by a stimulus 3–5× the intensity necessary to obtain a maximal monosynaptic response in the piriform cortex. In these conditions, a late sink was recorded at a depth of 600-1000 μm in the medial entorhinal area (layers III–V) 10.6 ± 0.9 (SD) msec after a population spike was simultaneously recorded in CA1. Diffuse activation of the medial entorhinal region was also obtained by repetitive low-intensity stimulation of the lateral olfactory tract at 2–8 Hz. Higher or lower stimulation frequencies did not induce hippocampal-medial entorhinal cortex activation. These results suggest that the medial and the lateral entorhinal regions have substantially different roles in processing olfactory sensory inputs.
APA, Harvard, Vancouver, ISO, and other styles
8

Bevilaqua, Lia R. M., Janine I. Rossato, Juliana S. Bonini, Jociane C. Myskiw, Julia R. Clarke, Siomara Monteiro, Ramón H. Lima, Jorge H. Medina, Martín Cammarota, and Iván Izquierdo. "The Role of the Entorhinal Cortex in Extinction: Influences of Aging." Neural Plasticity 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/595282.

Full text
Abstract:
The entorhinal cortex is perhaps the area of the brain in which neurofibrillary tangles and amyloid plaques are first detectable in old age with or without mild cognitive impairment, and very particularly in Alzheimer's disease. It plays a key role in memory formation, retrieval, and extinction, as part of circuits that include the hippocampus, the amygdaloid nucleus, and several regions of the neocortex, in particular of the prefrontal cortex. Lesions or biochemical impairments of the entorhinal cortex hinder extinction. Microinfusion experiments have shown that glutamate NMDA receptors, calcium and calmodulin-dependent protein kinase II, and protein synthesis in the entorhinal cortex are involved in and required for extinction. Aging also hinders extinction; it is possible that its effect may be in part mediated by the entorhinal cortex.
APA, Harvard, Vancouver, ISO, and other styles
9

Jacob, Pierre-Yves, Tiffany Van Cauter, Bruno Poucet, Francesca Sargolini, and Etienne Save. "Medial entorhinal cortex lesions induce degradation of CA1 place cell firing stability when self-motion information is used." Brain and Neuroscience Advances 4 (January 2020): 239821282095300. http://dx.doi.org/10.1177/2398212820953004.

Full text
Abstract:
The entorhinal–hippocampus network plays a central role in navigation and episodic memory formation. To investigate these interactions, we examined the effect of medial entorhinal cortex lesions on hippocampal place cell activity. Since the medial entorhinal cortex is suggested to play a role in the processing of self-motion information, we hypothesised that such processing would be necessary for maintaining stable place fields in the absence of environmental cues. Place cells were recorded as medial entorhinal cortex–lesioned rats explored a circular arena during five 16-min sessions comprising a baseline session with all sensory inputs available followed by four sessions during which environmental (i.e. visual, olfactory, tactile) cues were progressively reduced to the point that animals could rely exclusively on self-motion cues to maintain stable place fields. We found that place field stability and a number of place cell firing properties were affected by medial entorhinal cortex lesions in the baseline session. When rats were forced to rely exclusively on self-motion cues, within-session place field stability was dramatically decreased in medial entorhinal cortex rats relative to SHAM rats. These results support a major role of the medial entorhinal cortex in processing self-motion cues, with this information being conveyed to the hippocampus to help anchor and maintain a stable spatial representation during movement.
APA, Harvard, Vancouver, ISO, and other styles
10

Sparks, Daniel W., and C. Andrew Chapman. "Heterosynaptic modulation of evoked synaptic potentials in layer II of the entorhinal cortex by activation of the parasubiculum." Journal of Neurophysiology 116, no. 2 (August 1, 2016): 658–70. http://dx.doi.org/10.1152/jn.00095.2016.

Full text
Abstract:
The superficial layers of the entorhinal cortex receive sensory and associational cortical inputs and provide the hippocampus with the majority of its cortical sensory input. The parasubiculum, which receives input from multiple hippocampal subfields, sends its single major output projection to layer II of the entorhinal cortex, suggesting that it may modulate processing of synaptic inputs to the entorhinal cortex. Indeed, stimulation of the parasubiculum can enhance entorhinal responses to synaptic input from the piriform cortex in vivo. Theta EEG activity contributes to spatial and mnemonic processes in this region, and the current study assessed how stimulation of the parasubiculum with either single pulses or short, five-pulse, theta-frequency trains may modulate synaptic responses in layer II entorhinal stellate neurons evoked by stimulation of layer I afferents in vitro. Parasubicular stimulation pulses or trains suppressed responses to layer I stimulation at intervals of 5 ms, and parasubicular stimulation trains facilitated layer I responses at a train-pulse interval of 25 ms. This suggests that firing of parasubicular neurons during theta activity may heterosynaptically enhance incoming sensory inputs to the entorhinal cortex. Bath application of the hyperpolarization-activated cation current (Ih) blocker ZD7288 enhanced the facilitation effect, suggesting that cholinergic inhibition of Ih may contribute. In addition, repetitive pairing of parasubicular trains and layer I stimulation induced a lasting depression of entorhinal responses to layer I stimulation. These findings provide evidence that theta activity in the parasubiculum may promote heterosynaptic modulation effects that may alter sensory processing in the entorhinal cortex.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cortex entorhinal"

1

Killian, Nathaniel J. "Bioelectrical dynamics of the entorhinal cortex." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52148.

Full text
Abstract:
The entorhinal cortex (EC) in the medial temporal lobe plays a critical role in memory formation and is implicated in several neurological diseases including temporal lobe epilepsy and Alzheimer’s disease. Despite the known importance of this brain region, little is known about the normal bioelectrical activity patterns of the EC in awake, behaving primates. In order to develop effective therapies for diseases affecting the EC, we must first understand its normal properties. To contribute to our understanding of the EC, I monitored the activity of individual neurons and populations of neurons in the EC of rhesus macaque monkeys during free-viewing of photographs using electrophysiological techniques. The results of these experiments help to explain how primates can form memories of, and navigate through, the visual world. These experiments revealed neurons in the EC that represent visual space with triangular grid receptive fields and other neurons that prefer to fire near image borders. These properties are similar to those previously described in the rodent EC, but here the neuronal responses relate to viewing of remote space as opposed to representing the physical location of the animal. The representation of visual space may be aided by another EC neuron type that was discovered, free-viewing saccade direction cells, neurons that signaled the direction of upcoming saccades. Such a signal could be used by other cells to prepare to fire according to the future gaze location. Many of these spatially-responsive neurons also represented memory for images, suggesting that they may be useful for associating items with their locations. I also examined the neuronal circuitry of recognition memory for visual stimuli in the EC, and I found that population synchronization within the gamma-band (30-140 Hz) in superficial layers of the EC was modulated by stimulus novelty, while the strength of memory formation modulated gamma-band synchronization in the deep layers and in layer III. Furthermore, the strength of connectivity in the gamma-band between different layers was correlated with the strength of memory formation, with deep to superficial power transfer being correlated with stronger memory formation and superficial to deep transfer correlated with weaker memory formation. These findings support several previous investigations of hippocampal-entorhinal connectivity in the rodent and advance our understanding of the functional circuitry of the medial temporal lobe memory system. Finally, I explored the design of a device that could be used to investigate properties of brain tissue in vitro, potentially aiding in the development of treatments for disorders of the EC and other brain structures. We designed, fabricated, and validated a novel device for long-term maintenance of thick brain slices and 3-dimensional dissociated cell cultures on a perforated multi-electrode array. To date, most electrical recordings of thick tissue preparations have been performed by manually inserting electrode arrays. This work demonstrates a simple and effective solution to this problem by building a culture perfusion chamber around a planar perforated multi-electrode array. By making use of interstitial perfusion, the device maintained the thickness of tissue constructs and improved cellular survival as demonstrated by increased firing rates of perfused slices and 3-D cultures, compared to unperfused controls. To the best of our knowledge, this is the first thick tissue culture device to combine forced interstitial perfusion for long-term tissue maintenance and an integrated multi-electrode array for electrical recording and stimulation.
APA, Harvard, Vancouver, ISO, and other styles
2

Stensola, Tor. "Population codes in medial entorhinal cortex." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for nevromedisin, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25419.

Full text
Abstract:
Populasjonskoder i mediale entorhinal korteks Hjernebarken utfører kontinuerlig et velde av kompliserte funksjoner, hvis mekanismer vi kan tjene mye på å forstå. Nevrovitenskap er et relativt nytt fag, men med utrolig moment. Mye vites i dag om enkle nevroners egenskaper, men nevral komputering foregår i store trekk i interaksjonene mellom celler. Men på dette planet er det mange hindere som må overkommes; teknologisk nyvinning og konseptuell modning har ført til at nevrovitenskap gjennom de senere år har kunnet tilnærme seg spørsmal som fanger mekanismer på systemnivå. Hippokampus, som inneholder stedsselektive celler, utgjør et eksperimentelt system som tillater spørsmål om visse kjernemekanismer, slik som hukommelsesfunskjon og intern representasjonsdynamikk, uten streng ekpserimentell kontroll på innkommende og utgående signaler slik man baserer seg på i for eksempel sansenevrovitenskap. I hippokampusforskning er dyrets naturlige adferd en enorm ressurs. På grunn av den sterke tilknytningen til rom kan man ved å korrelere nevral aktivitet til dyrets adferd etablere svært robuste forhold mellom nevronenes aktivitet og funksjon på adferdnivå. Dette har ført til at hippokampusforskning har blitt en foregangsfront på innsamling av store datasett i dyr under normal adferd, samt tolkning av denne i adferdskontekst. Et stort skritt mot å forstå hvordan stedsselektiviteten i hippokampus oppstår og brukes kom med funnet av gitterceller, celler som er aktive i et gittermønster som dekker hele miljøet. Vi vet mye om disse cellenes oppførsel på enkeltcellenivå, men på grunn av teknisk krevende innspillingsteknikk har det vært vanskelig å spille inn nok celler til å forstå hvordan disse kombinerer til en populasjonskode for rom. Denne hindringen har vi nå overkommet, og i første arbeid brukte vi nye teknikker for å spille inn store antall gitterceller innen dyr og viser at gittercellekartet er organisert i moduler, hver med sin egen kartgeometri. Vi viser hvordan disse modulene er fordelt i vevet, og utviklet nye analyser for å beskive modulenes egenskaper. Vi viser at gitterkart i forskjellige moduler inad i dyr ikke bare kan innta forskjellig geometriske former, men også utføre separate operasjoner samtidig på samme eksperimentelle manipulering. Dette er første bevis på slik uavhengig funksjon i gitterkartet, og foreslår hvordan stedsceller kan generere høykapasitetslagring av representasjoner for forskjellige miljø. I andre arbeid beskriver vi hvordan en annen funksjonelt definert cellegruppe i entorhinal korteks fungerer på populasjonsnivå, denne gangen for celler som koder retning til dyret i forhold til miljøet. Vi viser at denne populasjonen har en topografisk fordeling langs samme akse i vevet som gitterceller utviser topografi, men at denne er kontinuerlig i motsetning til gitterkartets modulære fordeling. I siste arbeid viser vi at miljøets geometri bestemmer hvordan gitterkartet ankres til det eksterne rom. Vi beskriver en universal ankringsstrategi som er optimal for å skape størst mulig forskjell mellom populasjonskoder for områder langs rommets grenser. Dette brukes kanskje til å forhindre sanseforvirring av gitterkartet i miljø med geometrisk ambiguøse segmenter. Avhandlingen legger frem første beskrivelser av nevrale mekanismer på populasjonsnivå i entorhinal korteks, og gir flere innsikter i generell organisering av nettverkene som er involvert i stedssans og hukommelse
Current systems neuroscience has unprecedented momentum, in terms of both technological and conceptual development. It is crucial to study systems mechanisms and their associated functions with behavior in mind. Hippocampal and parahippocampal cortices has proved a highly suitable experimental system because the high level functions that are performed here, including episodic memory formation, are accessible through the clear readout of spatial behavior. Grid cells in medial entorhinal cortex (MEC) have been proposed to account for the spatial selectivity in downstream hippocampal place cells. Until now, however, entorhinal grid cells have only been studied on single cell– or small local ensemble level. The main reason for population studies lagging behind that of hippocampus is the technical difficulties associated with entorhinal implantation and recording. Here we have overcome some of the main technical hurdles, and recorded unprecedented number of cells from distinct functional classes in MEC. We show in Paper 1 that the entorhinal grid map is organized into sub-maps–or modules–that contain grid cells sharing numerous features including spatial pattern scale, orientation, deformation and temporal modulation. We also demonstrate that grid modules in the same system can operate independently on the same input, raising the possibility that hippocampal capacity for encoding distinct spatial representations is enabled by the grid input. We further show in Paper 2 that also head direction cells in entorhinal cortex distribute according to a functional topography along the dorsoventral axis. The head direction system, however, was not modular in contrast to the grid system. Finally, Paper 3 details a common grid anchoring strategy shared across animals and environments. The grid pattern displayed a striking tendency to align to the cardinal axes of the environment, but systematically offset 7.5°. Through simulations, we show that this constitutes an optimal orientation of the grid to maximally decorrelate population encoding of environment border segments, providing a possible link to border-selective cells in the mechanisms that embeds internal representation of space into external frames of reference. These findings have implications for our understanding of entorhinal and hippocampal computations and add several new venues for further investigation.
APA, Harvard, Vancouver, ISO, and other styles
3

Ray, Saikat. "Functional architecture of the medial entorhinal cortex." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17595.

Full text
Abstract:
Schicht 2 des mediale entorhinale Kortex (MEK) beinhaltet die größte Anzahl von Gitterzellen, welche durch ein hexagonales Aktivitätsmuster während räumlicher Exploration gekennzeichnet sind. In dieser Arbeit wurde gezeigt, dass spezielle Pyramidenzellen, die das Protein Calbindin exprimieren, in einem hexagonalen Gitter im Gehirn der Ratte angeordnet sind und cholinerg innerviert werden. Es ist bekannt, dass die cholinerge Innervation wichtig für die Aktivität von Gitterzellen ist. Weiterhin ergaben neuronale Ableitungen und Methoden zur Identifikaktion einzelner Neurone in frei verhaltenden Ratten, dass Calbindin-positive Pyramidenzellen (Calbindin+) eine große Anzahl von Gitterzellen beinhalten. Reelin-positive Sternzellen (Reelin+) im MEK, zeigten keine anatomische Periodizität und ihre Aktivität orientierte sich an den Begrenzungen der Umgebung. Eine weitere Studie untersucht die Architektur des MEK in verschiedenen Säugetieren, die von der Etrusker Spitzmaus, bis hin zum Menschen ~100 Millionen Jahre evolutionäre Vielfalt und ~20,000 fache Variation der Gehirngröße umfassen. Alle Arten zeigten jeweils eine periodische Anhäufung der Calbindin+ Zellen, was deren evolutive Bedeutung unterstreicht. Eine Studie zur Ontogenese der Calbindin Anhäufungen ergab, dass die periodische Struktur der Calbindin+ Zellen, sowie die verstreute Anordnung der Reelin+ Sternzellen schon zum Zeitpunkt der Geburt erkennbar war. Weitere Ergebnisse zeigen, dass Calbindin+ Zellen strukturell später ausreifen als Reelin+ Sternzellen - passend zu der Erkenntnis, dass Gitterzellen funktionell später reifen als Grenzzellen. Eine Untersuchung des Parasubiculums ergab, dass Verbindungen zum MEK präferiert in die Calbindin Anhäufungen in Schicht 2 projizieren. Zusammenfassend beschreibt diese Doktorarbeit eine Dichotomie von Struktur und Funktion in Schicht 2 des MEK, welche fundamental für das Verständnis von Gedächtnisbildung und deren zugrundeliegenden Mikroschaltkreisen ist.
The medial entorhinal cortex (MEC) is an important hub in the memory circuit in the brain. This thesis comprises of a group of studies which explores the architecture and microcircuits of the MEC. Layer 2 of MEC is home to grid cells, neurons which exhibit a hexagonal firing pattern during exploration of an open environment. The first study found that a group of pyramidal cells in layer 2 of the MEC, expressing the protein calbindin, were clustered in the rat brain. These patches were physically arranged in a hexagonal grid in the MEC and received preferential cholinergic-inputs which are known to be important for grid-cell activity. A combination of identified single-cell and extracellular recordings in freely behaving rats revealed that grid cells were mostly calbindin-positive pyramidal cells. Reelin-positive stellate cells in MEC were scattered throughout layer 2 and contributed mainly to the border cell population– neurons which fire at the borders of an environment. The next study explored the architecture of the MEC across evolution. Five mammalian species, spanning ~100 million years of evolutionary diversity and ~20,000 fold variation in brain size exhibited a conserved periodic layout of calbindin-patches in the MEC, underscoring their importance. An investigation of the ontogeny of the MEC in rats revealed that the periodic structure of the calbindin-patches and scattered layout of reelin-positive stellate cells was present around birth. Further, calbindin-positive pyramidal cells matured later in comparison to reelin-positive stellate cells mirroring the difference in functional maturation profiles of grid and border cells respectively. Inputs from the parasubiculum, selectively targeted calbindin-patches in the MEC indicating its role in shaping grid-cell function. In summary, the thesis uncovered a structure-function dichotomy of neurons in layer 2 of the MEC which is a fundamental aspect of understanding the microcircuits involved in memory formation.
APA, Harvard, Vancouver, ISO, and other styles
4

Tang, Qiusong. "Structure function relationships in medial entorhinal cortex." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17163.

Full text
Abstract:
In dieser Arbeit werden Struktur-Funktionsbeziehungen in der medialen entorhinalen Hirnrinde untersucht. Schicht 2 Neurone im medialen entorhinalen Cortex unterteilen sich in calbindin-positive Pyramidenzellen und calbindin-negative Sternzellen. Calbindin-positive Pyramidenzellen bündeln ihre apikalen Dendriten zusammen und formen Zellhaufen, die in einem hexagolen arrangiert sind. Das Gitter von calbindin-positiven Pyramidenzellhaufen ist an Schicht 1 Axonen und dem Parasubiculum ausgerichtet und wird durch cholinerge Eingänge innerviert. Calbindin-positive Pyramidenzellen zeigen stark theta-modulierte Aktivität. Sternzellen sind vertreut in der Schicht 2 angeordnet und zeigen nur schwach theta-modulierte Aktivität, ein Befund, der gegen eine Rolle von zell-intrinsischen Oszillationen in der Entstehung von Theta-Modulation spricht. In der Arbeit wurden Methoden entwickelt, um durch die juxtazelluläre Färbung und Identifikation von Zellen, die räumlichen Feuermuster von Schicht 2 Sternzellen und Pyramidenzellen zu bestimmen. Insbesondere wird gezeigt, dass die zeitlichen Feuermuster von Sternzellen und Pyramidenzellen so unterschiedlich sind, dass auch Daten von nichtidentifizierten extrazellulär abgeleiteten Zellen Sternzellen und Pyramidenzellen zugeordnet werden können. Die Ergebnisse zeigen, dass Gitterzell (engl. grid cell) Feuermuster relativ selten sind und in der Regel in Pyramidenzellen beobachtet werden. Grenzzell (engl. border cell) Feuermuster sind dagegen meistens in Sternzellen zu beobachten. Weiterhin wurde die Anatomie und Physiologie des Parasubiculums untersucht. Die Ergebnisse deuten auf die Existenz eines hexagonalen ‘Gitterzell-gitters’ in der entorhinalen Hirnrinde hin und sprechen für starke Struktur-Funktionsbeziehungen in diesem Teil der Hirnrinde.
Little is known about how medial entorhinal cortical microcircuits contribute to spatial navigation. Layer 2 principal neurons of medial entorhinal cortex divide into calbindin-positive pyramidal cells and dentate-gyrus-projecting calbindin-negative stellate cells. Calbindin-positive pyramidal cells bundled dendrites together and formed patches arranged in a hexagonal grid aligned to layer 1 axons, parasubiculum and cholinergic inputs. Calbindin-positive pyramidal cells were strongly theta modulated. Calbindin-negative stellate cells were distributed across layer 2 but avoided centers of calbindin-positive pyramidal patches, and were weakly theta modulated. We developed techniques for anatomical identification of single neurons recorded in trained rats engaged in exploratory behavior. Furthermore, we assigned unidentified juxtacellular and extracellular recordings based on spike phase locking to field potential theta. In layer 2 of medial entorhinal cortex, weakly hexagonal spatial discharges and head direction selectivity were observed in both cell types. Clear grid discharges were predominantly pyramidal cells. Border cells were mainly stellate neurons. Thus, weakly theta locked border responses occurred in stellate cells, whose dendrites sample large input territories, whereas strongly theta-locked grid discharges occurred in pyramidal cells, which sample small input territories in patches organized in a hexagonal ‘grid-cell-grid’. In addition, we investigated anatomical structures and neuronal discharge patterns of the parasubiculum. The parasubiculum is a primary target of medial septal inputs and parasubicular output preferentially targeted patches of calbindin-positive pyramidal cells in layer 2 of medial entorhinal cortex. Parasubicular cells were strongly theta modulated and carried mostly head-direction and border information, and might contribute to shape theta-rhythmicity and the (dorsoventral) integration of information across entorhinal grid scales.
APA, Harvard, Vancouver, ISO, and other styles
5

Wågen, Rine Sørlie. "Functional Dissection of Local Medial Entorhinal Cortex Subcircuit." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for nevromedisin, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25537.

Full text
Abstract:
The superficial layers of the medial entorhinal cortex(MEC) contain serval functionally specialized spatial cell types. suck a grid cells, head direction cells, border cells and cells with conjunctive properties. It is currently not know how the firing patterns of these vell populations map onto the architecture og the MEC circuit. Results from recent work suggest that there are two largely non-overlapping neuronal populations within superficial layers of MEC with different prosjecting targets. One of them target the hippocampus while the other prosjects extrahippocampally. It has been shown that all funtional MEC cell types prosject to the hippocampus, and a large part of these cells were grid cells. Based on these observations we wanted to investigate if there is a firrerence in fruntional cell distribution of MEC cells projecting to the contralateral MEC and cells prosjecting to hippocampus. Retrogradely transportable recombinant adeno-associated virus expressing Flag-tagged channelrhodopsin-2(ChR2), was injected in left MEC of 6 rats. This introduced optogenetic control over MEC neurons with direct årosjection to the contralateral MEC. Combining optogenetic and electrophysiological in vivo recordings, allowed identification of functional cell types with direct prosjection to the contralateral MEC, as these cells showed minimal response latencies to laser stimulations in the medial entorhinal cortex. We found border cells, head direction cells, non-spatial cells and interneurons with direct projection to the MEC, but no grid cells. This distrubution is in contrasts with the one found to project to the hippocampus, where grid cells are the predominant spatial cell type. More data are requred to determine if the sparsity of respnsive grid cells reflects limited sampling, or if the contralaterally--projecting cell population has distinct functional properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Berndtsson, Christin H. "The Specificity of Output from Medial Entorhinal Cortex." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for nevromedisin, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25538.

Full text
Abstract:
The hippocampal formation(HF) and the parahippocampal region (PHR) have been implicated in learning and memory functions. These regions and their subregions form a highly interconnected and complex microcircuitry, where the entorhinal cortex consitutes the nodal point between the hippocampal formation and the cortex. The entorhinal cortex conssists of ywo functionally distinct subregions. It had been suggested that this diffrence in functional output results from differences in microcircuitry, and input and output characteristics whithin the regions. Therefore, in order to understand the function of the entorhinal cortex and how it contributes to the rest of the HF-PHR network, it is necessary to understand the microcircuity whitin the region. This study investigates the specificity of output from cell populations located in superficial layers of the medial entorhinal cortex. Fluorescent retrograde traces were injected into dorsal dentate gyrus(DG)and the dorsal medial enthorhinal cortex(MEC). Additional immunohistochemistry was performed in order to investigate the chemical markers for the retrogradely labelled cell populations. Labelled cells and possible colocalization of markers were analysedwith fluorescent microscopy. The results indicate the presence of a least three separate cell populations in superficial layers of MEC with different projection patterns and chemical markers. It remains to be seen how the cell populations described here relate to the functionally defined cell populations found in MEC.
APA, Harvard, Vancouver, ISO, and other styles
7

Reifenstein, Eric. "Principles of local computation in the entorhinal cortex." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17625.

Full text
Abstract:
Lebewesen sind jeden Tag Sequenzen von Ereignissen ausgesetzt, die sie sich merken wollen. Es ist jedoch ein allgemeines Problem, dass sich die Zeitskalen des Verhaltens und der Induzierung von neuronalem Lernen um mehrere Größenordnungen unterscheiden. Eine mögliche Lösung könnte "Phasenpräzession" sein - das graduelle Verschieben von Aktionspotential-Phasen relativ zur Theta-Oszillation im lokalen Feldpotential. Phasenpräzession ermöglicht es, Verhaltens-Sequenzen zeitlich zu komprimieren, herunter bis auf die Zeitskala von synaptischer Plastizität. In dieser Arbeit untersuche ich das Phasenpräzessions-Phänomen im medialen entorhinalen Kortex der Ratte. Ich entdecke, dass entorhinale Gitterzellen auf der für das Verhalten relevanten Einzellaufebene Phasenpräzession zeigen und dass die Phasenpräzession in Einzelläufen stärker ist als in zusammengefassten Daten vieler Läufe. Die Analyse von Einzelläufen zeigt zudem, dass Phasenpräzession (i) in Zellen aus allen Schichten des entorhinalen Kortex existiert und (ii) von den komplexen Bewegungsmustern der Ratten in zweidimensionalen Umgebungen abhängt. Zum Abschluss zeige ich, dass Phasenpräzession zelltyp-spezifisch ist: Sternzellen in Schicht II des medialen entorhinalen Kortex weisen klare Phasenpräzession auf, wohingegen Pyramidenzellen in der selben Schicht dies nicht tun. Diese Ergebnisse haben weitreichende Implikationen sowohl für das Lokalisieren des Ursprungs als auch für die m"oglichen Mechanismen von Phasenpräzession.
Every day, animals are exposed to sequences of events that are worth recalling. It is a common problem, however, that the time scale of behavior and the time scale for the induction of neuronal learning differ by multiple orders of magnitude. One possible solution could be a phenomenon called "phase precession" - the gradual shift of spike phases with respect to the theta oscillation in the local field potential. Phase precession allows for the temporal compression of behavioral sequences of events to the time scale of synaptic plasticity. In this thesis, I investigate the phase-precession phenomenon in the medial entorhinal cortex of the rat. I find that entorhinal grid cells show phase precession at the behaviorally relevant single-trial level and that phase precession is stronger in single trials than in pooled-trial data. Single-trial analysis further revealed that phase precession (i) exists in cells across all layers of medial entorhinal cortex and (ii) is altered by the complex movement patterns of rats in two-dimensional environments. Finally, I show that phase precession is cell-type specific: stellate cells in layer II of the medial entorhinal cortex exhibit clear phase precession whereas pyramidal cells in the same layer do not. These results have broad implications for pinpointing the origin and possible mechanisms of phase precession.
APA, Harvard, Vancouver, ISO, and other styles
8

Schmidt-Helmstaedter, Helene. "Large-scale circuit reconstruction in medial entorhinal cortex." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19197.

Full text
Abstract:
Es ist noch weitgehend ungeklärt, mittels welcher Mechanismen die elektrische Aktivität von Nervenzellpopulationen des Gehirns Verhalten ermöglicht. Die Orientierung im Raum ist eine Fähigkeit des Gehirns, für die im Säugetier der mediale entorhinale Teil der Großhirnrinde als entscheidende Struktur identifiziert wurde. Hier wurden Nervenzellen gefunden, die die Umgebung des Individuums in einer gitterartigen Anordnung repräsentieren. Die neuronalen Schaltkreise, welche diese geordnete Nervenzellaktivität im medialen entorhinalen Kortex (MEK) ermöglichen, sind noch wenig verstanden. Die vorliegende Dissertation hat eine Klärung der zellulären Architektur und der neuronalen Schaltkreise in der zweiten Schicht des MEK der Ratte zum Ziel. Zunächst werden die Beiträge zur Entdeckung der hexagonal angeordneten zellulären Anhäufungen in Schicht 2 des MEK sowie zur Beschreibung der Dichotomie der Haupt-Nervenzelltypen dargestellt. Im zweiten Teil wird erstmalig eine konnektomische Analyse des MEK beschrieben. Die detaillierte Untersuchung der Architektur einzelner exzitatorischer Axone ergab das überraschende Ergebnis der präzisen Sortierung von Synapsen entlang axonaler Pfade. Die neuronalen Schaltkreise, in denen diese Neurone eingebettet sind, zeigten eine starke zeitliche Bevorzugung der hemmenden Neurone. Die hier erhobenen Daten tragen zu einem detaillierteren Verständnis der neuronalen Schaltkreise im MEK bei. Sie enthalten die erste Beschreibung überraschend präziser axonaler synaptischer Ordnung im zerebralen Kortex der Säugetiere. Diese Schaltkreisarchitektur lässt einen Effekt auf die Weiterleitung synchroner elektrischer Populationsaktivität im MEK vermuten. In zukünftigen Studien muss insbesondere geklärt werden, ob es sich bei den hier berichteten Ergebnissen um eine Besonderheit des MEK oder ein generelles Verschaltungsprinzip der Hirnrinde des Säugetiers handelt.
The mechanisms by which the electrical activity of ensembles of neurons in the brain give rise to an individual’s behavior are still largely unknown. Navigation in space is one important capacity of the brain, for which the medial entorhinal cortex (MEC) is a pivotal structure in mammals. At the cellular level, neurons that represent the surrounding space in a grid-like fashion have been identified in MEC. These so-called grid cells are located predominantly in layer 2 (L2) of MEC. The detailed neuronal circuits underlying this unique activity pattern are still poorly understood. This thesis comprises studies contributing to a mechanistic description of the synaptic architecture in rat MEC L2. First, this thesis describes the discovery of hexagonally arranged cell clusters and anatomical data on the dichotomy of the two principle cell types in L2 of the MEC. Then, the first connectomic study of the MEC is reported. An analysis of the axonal architecture of excitatory neurons revealed synaptic positional sorting along axons, integrated into precise microcircuits. These microcircuits were found to involve interneurons with a surprising degree of axonal specialization for effective and fast inhibition. Together, these results contribute to a detailed understanding of the circuitry in MEC. They provide the first description of highly precise synaptic arrangements along axons in the cerebral cortex of mammals. The functional implications of these anatomical features were explored using numerical simulations, suggesting effects on the propagation of synchronous activity in L2 of the MEC. These findings motivate future investigations to clarify the contribution of precise synaptic architecture to computations underlying spatial navigation. Further studies are required to understand whether the reported synaptic specializations are specific for the MEC or represent a general wiring principle in the mammalian cortex.
APA, Harvard, Vancouver, ISO, and other styles
9

Ridler, Thomas. "Entorhinal cortex dysfunction in rodent models of dementia." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/30575.

Full text
Abstract:
As both the major input and output of the hippocampal formation, the entorhinal cortex (EC) occupies a pivotal position in the medial temporal lobe. The discovery of grid cells in the medial entorhinal cortex (mEC) has led to this region being widely implicated in spatial information processing. Importantly, the EC is also the first area affected by dementia pathology, with neurons appearing particularly susceptible to degeneration. Despite this, little is known about how pathology affects the functional output of mEC neurons, either in their ability to coordinate firing to produce network oscillations, or to represent information regarding the external environment. This thesis will use electrophysiological techniques to examine how dementia pathology contributes to the breakdown of mEC neuronal networks using the rTg4510 mouse model of tauopathy. The first 2 results chapters will show how the anatomical organisation along the dorso-ventral axis of the mEC has profound influence on the network activity that can be observed both in brain slices and awake-behaving mice. It will further show how deficits in network activity in rTg4510 mice occur differentially across this axis, with dorsal mEC appearing more vulnerable to changes in oscillatory function than ventral. The third results chapter will begin to explore the relationship between global network activity and the external environment, showing that rTg4510 mice display clear deficits in the relationship between oscillation properties and locomotor activity. Finally, the underlying basis for these changes will be examined, through the recording of single-unit activity in these mice. It will show a decreased tendency for mEC neurons to display firing rates modulated by running speed, as well as an almost complete breakdown of grid cell periodicity after periods of tau overexpression. Understanding how dementia pathology produces changes to neuronal function and ultimately cognition is key for understanding and treating the disease. This thesis will therefore provide novel insights into the dysfunction of the EC during dementia pathology.
APA, Harvard, Vancouver, ISO, and other styles
10

Heys, James Gerard. "Cellular mechanisms underlying spatial processing in medial entorhinal cortex." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12780.

Full text
Abstract:
Thesis (Ph.D.)--Boston University PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
Functional brain recordings from several mammalian species including rodents, bats and humans demonstrate that neurons in the medial entorhinal cortex (mEC) represent space in a similar way. Single neurons in mEC, termed 'grid cells' (GCs), fire at regular repeating spatial intervals as the animal moves throughout the environment. In rodents, models GCs have been inspired by research that suggests a relationship between theta rhythmic electrophysiology in mEC and GC firing behavior. The h current time constant and frequency of membrane potential resonance (MPR) changes systematically along the dorsal to ventral axis of mEC, which correlates with systematic gradations in the spacing of the GC firing fields along the same anatomical axis. Despite significant efforts, the mechanism generating this periodic spatial representation remains an open question and the work presented in this thesis is directed towards answering this question One major class of models that have been put forth to explain the grid pattern use interference between oscillations that are frequency modulated as a function of the animal's heading direction and running speed. Parts one and two of this thesis demonstrate how cholinergic modulation of MPR frequency could account for the expansion of grid field spacing that occurs during exploration of a novel environment. The result from these experiments demonstrate that activation of muscarinic acetylcholin receptors produces a decrease in the h current amplitude which causes a decrease in the MPR frequency. Recently unit recordings have shown that GC firing pattern may exist in the mEC of the bat in the absence of these characteristic theta-rhythmic physiological mechanisms. The third section of the thesis details experiments in bat brain slices that were conducted to investigate the cellular physiology of principal neurons in layer II of mEC in the bat and directly test or intrinsic cellular mechanisms that could generate theta in mEC of the bat. Together this work reveals that significant h current is present in rodents and bats. However, the time course of the h current may differ between species such that theta band membrane potential resonance is present in the rodents but is not produced in bat neurons in mEC.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Cortex entorhinal"

1

Bertram, Edward H. Temporal Lobe Epilepsy. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0038.

Full text
Abstract:
Temporal lobe epilepsy, as discussed in this chapter, is a focal epilepsy that involves primarily the limbic structures of the medial temporal lobe (amygdala, hippocampus, and entorhinal cortex). In recent years animal models have been developed that mirror the pathology and pathophysiology of this disease. This chapter reviews the human condition, the structural and physiological changes that support the development of seizures. The neural circuitry of seizure initiation will be reviewed with a goal of creating a framework for developing more effective treatments for this disease.
APA, Harvard, Vancouver, ISO, and other styles
2

Erdem, Uğur Murat, Nicholas Roy, John J. Leonard, and Michael E. Hasselmo. Spatial and episodic memory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0029.

Full text
Abstract:
The neuroscience of spatial memory is one of the most promising areas for developing biomimetic solutions to complex engineering challenges. Grid cells are neurons recorded in the medial entorhinal cortex that fire when rats are in an array of locations in the environment falling on the vertices of tightly packed equilateral triangles. Grid cells suggest an exciting new approach for enhancing robot simultaneous localization and mapping (SLAM) in changing environments and could provide a common map for situational awareness between human and robotic teammates. Current models of grid cells are well suited to robotics, as they utilize input from self-motion and sensory flow similar to inertial sensors and visual odometry in robots. Computational models, supported by in vivo neural activity data, demonstrate how grid cell representations could provide a substrate for goal-directed behavior using hierarchical forward planning that finds novel shortcut trajectories in changing environments.
APA, Harvard, Vancouver, ISO, and other styles
3

Sulphide Silver Pattern and Cytoarchitectonics of Parahippocampal Areas in the Rat: Special Reference to the Subdivision of Area Entorhinalis and its Demarcation from the Pyriform Cortex. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cortex entorhinal"

1

Rivière, Pamela D. "Entorhinal Cortex." In Encyclopedia of Animal Cognition and Behavior, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47829-6_1302-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fransén, Erik. "Entorhinal Cortex Cells." In Hippocampal Microcircuits, 375–98. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0996-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gupta, Kishan, and Michael E. Hasselmo. "Modulatory Influences on the Hippocampus and Entorhinal Cortex." In Space,Time and Memory in the Hippocampal Formation, 153–89. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1292-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Derdikman, Dori, and Edvard I. Moser. "Spatial Maps in the Entorhinal Cortex and Adjacent Structures." In Space,Time and Memory in the Hippocampal Formation, 107–25. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1292-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deshmukh, Sachin S. "Spatial and Nonspatial Representations in the Lateral Entorhinal Cortex." In Space,Time and Memory in the Hippocampal Formation, 127–52. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1292-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Insausti, Ricardo. "The Rat Entorhinal Cortex. Limited Cortical Input, Extended Cortical Output." In The Mammalian Cochlear Nuclei, 457–66. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2932-3_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stensola, Tor, and Edvard I. Moser. "Grid Cells and Spatial Maps in Entorhinal Cortex and Hippocampus." In Research and Perspectives in Neurosciences, 59–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28802-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Finch, David M. "Hippocampal, Subicular, and Entorhinal Afferents and Synaptic Integration in Rodent Cingulate Cortex." In Neurobiology of Cingulate Cortex and Limbic Thalamus, 224–48. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4899-6704-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khanna, Sanjay. "Nociceptive Processing in the Hippocampus and Entorhinal Cortex, Neurophysiology and Pharmacology." In Encyclopedia of Pain, 2198–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_2761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kwidzinski, E., L. K. Mutlu, A. D. Kovac, J. Bunse, J. Goldmann, J. Mahlo, O. Aktas, et al. "Self-tolerance in the immune privileged CNS: lessons from the entorhinal cortex lesion model." In Advances in Research on Neurodegeneration, 29–49. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-0643-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cortex entorhinal"

1

Yu, Naigong, Lin Wang, and Huanzhao Chen. "The computational model of entorhinal cortex." In 2013 IEEE International Conference on Information and Automation (ICIA). IEEE, 2013. http://dx.doi.org/10.1109/icinfa.2013.6720274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

White, J. A., T. J. Kispersky, and F. R. Fernandez. "Mechanisms of coherent activity in hippocampus and entorhinal cortex." In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5334591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leandrou, S., I. Mamais, S. Petroudi, P. A. Kyriacou, Constantino Carlos Reyes-Aldasoro, and C. S. Pattichis. "Hippocampal and entorhinal cortex volume changes in Alzheimer's disease patients and mild cognitive impairment subjects." In 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE, 2018. http://dx.doi.org/10.1109/bhi.2018.8333412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baram, Alon, Timothy Muller, Hamed Nili, Mona Garvert, and Tim Behrens. "The relational structure of a reinforcement learning task is represented and generalised in the entorhinal cortex." In 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1193-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morales, George J., Eion J. Ramcharan, Nithya Sundararaman, Salvatore D. Morgera, and Robert P. Vertes. "Analysis of the Actions of Nucleus Reuniens and the Entorhinal Cortex on EEG and Evoked Population Behavior of the Hippocampus." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4352831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Naigong, Hejie Yu, Lin Wang, Yishen Liao, and Chunlei Yin. "A Model of Information Circulation and Transmission Network of Grid Cells in Entorhinal Cortex and Place Cells in the Hippocampus of Rat." In 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, 2020. http://dx.doi.org/10.1109/itaic49862.2020.9338829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography