Academic literature on the topic 'Cortex moteur primaire M1'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cortex moteur primaire M1.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cortex moteur primaire M1"

1

Pailler, M., F. Schneider, I. Faillenot, F. G. Barral, L. Mazzola, F. Vassal, and C. Boutet. "L’IRM fonctionnelle au repos permet-elle la localisation du cortex moteur primaire ?" Revue Neurologique 170 (April 2014): A30. http://dx.doi.org/10.1016/j.neurol.2014.01.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caux-Dedeystère, Alexandre, François Cassim, Philippe Derambure, and Hervé Devanne. "Modulation tâche-dépendante des réseaux intrinsèques du cortex moteur primaire chez l’Homme." Neurophysiologie Clinique/Clinical Neurophysiology 46, no. 2 (April 2016): 97. http://dx.doi.org/10.1016/j.neucli.2016.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Poindessous-Jazat, Frédérique. "La rTMS du cortex moteur primaire pour lutter contre les douleurs neuropathiques rebelles." Oxymag 31, no. 160 (May 2018): 8–11. http://dx.doi.org/10.1016/j.oxy.2018.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pailler, M., F. Schneider, I. Faillenot, F. G. Barral, C. Nuti, C. Vassal, and C. Boutet. "Évaluation de l’IRM fonctionnelle au repos en condition clinique pour la localisation du cortex moteur primaire." Journal of Neuroradiology 41, no. 1 (March 2014): 5–6. http://dx.doi.org/10.1016/j.neurad.2014.01.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lemogne, C. "Présent et avenir des troubles somatoformes." European Psychiatry 30, S2 (November 2015): S40—S41. http://dx.doi.org/10.1016/j.eurpsy.2015.09.115.

Full text
Abstract:
Dans le DSM-IV, les « troubles somatoformes » étaient définis négativement par la présence de symptômes somatiques « médicalement inexpliqués ». Cette appellation a disparu du DSM-V au profit des somatic symptoms and related disorders. Les troubles somatisation, douloureux, somatoforme indifférencié et l’hypocondrie, lorsqu’elle est associée à des symptômes somatiques, sont regroupés sous l’appellation unique de somatic symptom disorder. Ce trouble est désormais défini positivement par la présence de pensées, émotions ou comportements « excessifs ou inappropriés », à l’origine d’un retentissement fonctionnel ou d’une souffrance subjective et accompagnant des symptômes somatiques ayant, ou non, une cause somatique identifiée. Les raisons de ce changement sont le recouvrement diagnostique des anciennes catégories, leur non-utilisation par les somaticiens, le risque de stigmatisation et le caractère intenable d’une conception dualiste des rapports corps-esprit. La notion de symptômes « médicalement inexpliqués » demeure néanmoins centrale dans la conversion, renommée « trouble neurologique fonctionnel ». Plusieurs études d’imagerie cérébrales fonctionnelles portant sur un petit nombre de patients présentant un déficit moteur unilatéral ont tenté d’élucider la physiopathologie de ce trouble. Certains résultats semblent reproductibles : hyperactivation et hypo-activation controlatérales respectivement des cortex cingulaire antérieur et moteur primaire. Ces résultats ont servi de rationnel à l’utilisation thérapeutique de la stimulation magnétique transcrânienne. L’hypocondrie sans symptômes somatiques devient dans le DSM-V « l’anxiété pour la santé », caractérisée par la crainte excessive d’avoir ou de développer une maladie. La prise en charge est souvent difficile et peut renforcer les symptômes si elle est inappropriée. Plusieurs études ont montré l’efficacité des thérapies cognitives et comportementales, basées sur la restructuration cognitive et l’extinction des comportements d’évitement, ainsi que des thérapies basées sur la pleine conscience. Compte tenu du lien fréquent entre pensées intrusives et souvenirs douloureux, la valeur ajoutée d’une thérapie des schémas est vraisemblable.
APA, Harvard, Vancouver, ISO, and other styles
6

Sattler, V., B. Acket, A. Gerdelat-Mas, N. Raposo, J. F. Albucher, C. Thalamas, I. Loubinoux, F. Chollet, and M. Simonetta-Moreau. "Effet sur la récupération motrice post-AVC, en phase aiguë, de sessions répétées de tDCS anodale du cortex moteur primaire couplée à une stimulation électrique périphérique répétitive." Annals of Physical and Rehabilitation Medicine 55 (October 2012): e3. http://dx.doi.org/10.1016/j.rehab.2012.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pellaprat, Jean, Angelique Gerdelat-Mas, Marion Simonetta-Moreau, Estelle Dellapina, Claire Thalamas, Fabienne Ory-Magne, and Christine Brefel-Courbon. "Effet de la stimulation magnétique transcrânienne répétitive (rTMS) haute fréquence, appliquée sur le cortex moteur primaire, sur le seuil de perception nociceptif chez le patient parkinsonien : étude physiopathologique." Revue Neurologique 168 (April 2012): A110—A111. http://dx.doi.org/10.1016/j.neurol.2012.01.282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rey, C., A. Rico, P. Asquinazi, S. Attarian, J. Pelletier, J. P. Ranjeva, and B. Audoin. "Effet de la stimulation magnétique transcrânienne répétitive (SMTR) appliquée sur le cortex moteur primaire, sur la spasticité des membres inférieurs (MI) et la plasticité cérébrale chez des patients présentant une sclérose en plaques (SEP)." Revue Neurologique 169 (April 2013): A113—A114. http://dx.doi.org/10.1016/j.neurol.2013.01.272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Candau, Joel. "Altricialité." Anthropen, 2018. http://dx.doi.org/10.17184/eac.anthropen.087.

Full text
Abstract:
Deux faits signent la nature profonde de l’être humain : (i) un cerveau d’une grande plasticité et (ii) la puissance impérieuse de la culture qui se manifeste non seulement par la diversité et l’intensité de son expression, mais aussi par la forte influence qu’elle exerce rétroactivement sur le développement de notre architecture cérébrale – qui l’a rendue possible. Cette plasticité développementale, résumée dans l’idée que « nous héritons notre cerveau ; nous acquérons notre esprit » (we inherit our brains ; we acquire our minds)(Goldschmidt 2000), relève d’un processus plus général appelé « altricialité » par les éthologues. Le terme est dérivé de l’anglais altricial, mot qui vient lui-même du latin altrix : « celle qui nourrit », « nourrice » (Gaffiot 1934). Dans son acception première, l’altricialité signifie qu’une espèce n’est pas immédiatement compétente à la naissance, contrairement aux espèces dites précoces. C’est le cas, par exemple, de la plupart des passereaux qui naissent les yeux fermés et dont la survie dépend entièrement de l’aide apportée par leur entourage. Il en va de même pour notre espèce. Dans le cas des nouveau-nés humains, toutefois, s’ajoute à l’altricialité primaire une altricialité secondaire. On désigne ainsi le fait que notre cerveau n’est pleinement compétent (sur les plans cognitif, émotionnel, sensoriel et moteur) que tardivement. La force et la durée de la croissance cérébrale post-natale caractérisent cette altricialité secondaire. Du point de vue de la force, le chimpanzé Pan troglodytes, espèce animale qui nous est phylogénétiquement la plus proche, a un coefficient de croissance cérébrale de 2,5 entre la naissance et l’âge adulte, contre 3,3 chez les humains (DeSilva et Lesnik 2008). Du point de vue de la durée, on a longtemps cru que la maturité du cerveau humain coïncidait avec la puberté, mais on sait aujourd’hui que la période de surproduction et d’élimination des épines dendritiques sur les neurones pyramidaux du cortex préfrontal court jusqu’à la trentaine (Petanjeket al. 2011). Outre des contraintes obstétriques, cette maturation prolongée est probablement due aux coûts métaboliques élevés du développement cérébral (Goyal et al. 2014), un processus de co-évolution ayant favorisé l’étalement dans le temps de la dépense énergétique (Kuzawa et al. 2014). Cette forte altricialité cérébrale est propre aux êtres humains, le contrôle génétique qui s’exerce sur l’organisation somatopique de notre cortex, sur la connectique cérébrale et sur les aires d’association étant plus faible que chez le chimpanzé commun. Par exemple, deux frères chimpanzés auront des sillons cérébraux davantage similaires que deux frères humains, parce que le cerveau des premiers est moins réceptif aux influences environnementales que celui des membres de notre espèce (Gómez-Robles et al. 2015). Cette spécificité du cerveau humain est tout aussi importante que son quotient d’encéphalisation (6,9 fois plus élevé que celui d’un autre mammifère du même poids, et 2,6 fois supérieur à celui d’un chimpanzé), le nombre élevé de ses neurones (86 milliards contre 28 milliards chez le chimpanzé), la complexité de sa connectique (environ 1014 synapses), les changements néoténiques lors de l’expression des gènes (Somel et al. 2009) et son architecture complexe. Chez le nouveau-né humain, la neurogenèse est achevée, excepté dans la zone sous-ventriculaire – connectée aux bulbes olfactifs – et la zone sous-granulaire, qui part du gyrus denté de l’hippocampe (Eriksson et al. 1998). Toutefois, si tous les neurones sont déjà présents, le cerveau néonatal représente moins de 30% de sa taille adulte. Immédiatement après la naissance, sa croissance se poursuit au même taux qu’au stade fœtal pour atteindre 50% de la taille adulte vers 1 an et 95% vers 10 ans. Cette croissance concerne essentiellement les connexions des neurones entre eux (synaptogenèse, mais aussi élagage de cette interconnectivité ou synaptose) et la myélinisation néocorticale. À chaque minute de la vie du bébé, rappelle Jean-Pierre Changeux (2002), « plus de deux millions de synapses se mettent en place ! » Au total, 50% de ces connexions se font après la naissance (Changeux 2003). Cette spécificité d’Homo sapiens a une portée anthropologique capitale. Elle expose si fortement les êtres humains aux influences de leur environnement qu’ils deviennent naturellement des êtres hyper-sociaux et hyper-culturels, ce qu’avait pressenti Malinowski (1922 : 79-80) quand il soutenait que nos « états mentaux sont façonnés d’une certaine manière » par les « institutions au sein desquelles ils se développent ». Le développement du cerveau dans la longue durée permet une « imprégnation » progressive du tissu cérébral par l’environnement physique et social (Changeux 1983), en particulier lors des phases de socialisation primaire et secondaire. L’être humain a ainsi des «dispositions épigénétiques à l’empreinte culturelle » (Changeux 2002). Les effets sociaux et les incidences évolutionnaires (Kuzawa et Bragg 2012) d’une telle aptitude sont immenses. L’entourage doit non seulement aider les nouveau-nés, mais aussi accompagner les enfants jusqu’à leur développement complet, l’immaturité du cerveau des adolescents étant à l’origine de leur caractère souvent impulsif. Cet accompagnement de l’enfant se traduit par des changements dans la structure sociale, au sein de la famille et de la société tout entière, notamment sous la forme d’institutions d’apprentissage social et culturel. Les êtres humains sont ainsi contraints de coopérer, d’abord à l’intérieur de leur groupe familial et d’appartenance, puis sous des formes plus ouvertes (voir Coopération). Née de processus évolutifs anciens d’au moins 200 000 ans (Neubaueret al. 2018), l’altricialité secondaire nous donne un avantage adaptatif : contrairement à d’autres espèces, nos comportements ne sont pas « mis sur des rails » à la naissance, ce qui les rend flexibles face à des environnements changeants, favorisant ainsi la diversité phénotypique et culturelle. Cette plasticité cérébrale peut produire le meilleur. Par exemple, 15 mois seulement d’éducation musicale avant l’âge de 7 ans peuvent renforcer les connexions entre les deux hémisphères cérébraux (Schlaug et al. 1995) et induire d’autres changements structuraux dans les régions assurant des fonctions motrices, auditives et visuo-spatiales (Hyde et al. 2009). Une formation musicale précoce prévient aussi la perte d’audition (White-Schwoch et al. 2013) et améliore la perception de la parole (Du et Zatorre 2017). Cependant, comme cela est souvent le cas en évolution, il y a un prix à payer pour cet avantage considérable qu’est l’altricialité secondaire. Il a pour contrepartie un appétit vorace en énergie de notre cerveau (Pontzer et al. 2016). Il nous rend plus vulnérables, non seulement jusqu’à l’adolescence mais tout au long de la vie où, suppose-t-on, des anomalies des reconfigurations neuronales contribuent au développement de certaines pathologies neurologiques (Greenhill et al. 2015). Enfin, un risque associé au « recyclage culturel des cartes corticales » (Dehaene et Cohen 2007) est rarement noté : si ce recyclage peut produire le meilleur, il peut aussi produire le pire, selon la nature de la matrice culturelle dans laquelle les individus sont pris (Candau 2017). Par exemple, le choix social et culturel consistant à développer des industries polluantes peut provoquer des maladies neurodégénératives et divers désordres mentaux (Underwood 2017), notamment chez les enfants (Bennett et al. 2016), phénomène qui est accentué quand il est associé à l’adversité sociale précoce (Stein et al. 2016). Toujours dans le registre économique, la mise en œuvre de politiques qui appauvrissent des populations peut affecter le développement intellectuel des enfants (Luby et al. 2013), un message clé du World Development Report 2015 étant que la pauvreté est une « taxe cognitive ». Un dernier exemple : Voigtländer et Voth (2015) ont montré que les Allemands nés dans les années 1920 et 1930 manifestent un degré d’antisémitisme deux à trois fois plus élevé que leurs compatriotes nés avant ou après cette période. Bien plus souvent que d’autres Allemands, ils se représentent les Juifs comme « une population qui a trop d’influence dans le monde » ou « qui est responsable de sa propre persécution ». Ceci est la conséquence de l’endoctrinement nazi qu’ils ont subi durant toute leur enfance, notamment à l’école, en pleine période d’altricialité secondaire. En résumé, l’altricialité secondaire est au fondement (i) de l’aptitude naturelle de notre cerveau à devenir une représentation du monde et (ii) d’une focalisation culturelle de cette représentation, sous l’influence de la diversité des matrices culturelles, cela pour le meilleur comme pour le pire. Cette hyperplasticité du cerveau pendant la période altricielle laisse la place à une plasticité plus modérée à l’âge adulte puis décroît à l’approche du grand âge, mais elle ne disparaît jamais complètement. Par conséquent, loin de voir dans les données neurobiologiques des contraintes qui auraient pour seule caractéristique de déterminer les limites de la variabilité culturelle – limitation qui est incontestable – il faut les considérer également comme la possibilité de cette variabilité.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cortex moteur primaire M1"

1

Rivara, Claire-Bénédicte. "Les cellules de Betz du cortex moteur primaire : analyse stéréologique et fonctionnelle /." Genève : Ed. Médecine et hygiène, 2003. http://www.unige.ch/cyberdocuments/theses2003/RivaraC-B/these.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Al-Toubi, Aamir Khamis Khalfan. "The role of the primary motor cortex (M1) in volitional and reflexive pharyngeal swallowing." Thesis, University of Canterbury. Department of Communication Disorders, 2013. http://hdl.handle.net/10092/8087.

Full text
Abstract:
Background and aims: The primary motor cortex (M1) controls voluntary motor behaviours. M1 has been identified to play a major role in the execution of voluntary corticospinal tasks as well as self-initiated corticobulbar tasks. However, the involvement of M1 in more complex corticubulbar tasks, such as swallowing, is not yet fully understood. Swallowing is quite different from other voluntary motor tasks as it has both voluntary and reflexive components. The degree of M1 involvement in the pharyngeal, or more reflexive, component of swallowing is unclear. Studies investigating the role of M1 in swallowing have yielded contradictory findings regarding the specific functional contribution of M1 to swallowing. Therefore, further investigation is warranted to clarify the role of M1 in pharyngeal swallowing. Discrete saliva or water swallowing has been utilized in most studies investigating neurophysiology of swallowing in health and disease. However, individuals most frequently complete multiple, consecutive swallows during the ingestion of liquid. Biomechanical differences between discrete and continuous water swallows have been identified using videofluoroscopic swallowing study (VFSS). However, no studies have investigated the pharyngeal pressure differences between these two swallowing tasks. Additional insights into task differences may be revealed through evaluation of pharyngeal pressure utilizing pharyngeal manometry. This research programme sought to clarify the role of M1 in reflexively and volitionally initiated pharyngeal swallowing. In order to understand M1 involvement in the execution of swallowing, comparative tasks that require known dependence on M1 were also included in this research programme. This research programme addressed the biomechanical changes in motor behaviours as a result of neural disruption during the performance of a number of motor tasks. This neural disruption was intrinsically generated through application of dual task (DT) paradigm and extrinsically generated using single pulse transcranial magnetic stimulation (TMS). A secondary aim of this research programme was to identify the differences in pharyngeal pressure generation between discrete and continuous swallowing. Methods: Twenty-four right handed participants (12 males, average age= 24.4, SD= 6.3) were recruited to this research programme. A number of motor tasks that vary in complexity were tested. These tasks included: volitional swallowing, reflexive swallowing, eyebrow movement, jaw movement and finger tapping with right, left, or bilateral index fingers. Participants performed multiple trials of several tasks in each study. Repetitions of tasks during a single session may affect performance due to factors such as fatigue or practice. A baseline study was undertaken to determine within-participant variability of measures across repeated trials. Following the baseline study, the role of M1 in pharyngeal swallowing was investigated in two main studies in counter balanced order. The role of M1 in pharyngeal swallowing was evaluated by investigating swallowing parameters during neural disruption using a DT paradigm. Participants performed tasks in isolation (baseline) and with interference that consisted of pairing swallowing with comparative task that activates M1 (fingers tapping and eyebrow movement tasks). In the other study, single pulse TMS was utilized to create an electrophysiological disruption to the areas of M1 associated with muscular representation of a number of motor behaviours (swallowing tasks, jaw movement and fingers tapping tasks). Stimulation was provided to both hemispheres in random order to evaluate laterality effects. Swallowing parameters and the performance of the other motor tasks were evaluated when performed with and without electrophysiological disruption. Differences in pharyngeal pressure generation between discrete and continuous swallowing were investigated using pharyngeal manometry. Pharyngeal pressures were recorded at three locations: upper pharynx, mid-pharynx and upper esophageal sphincter (UES) during four swallowing types: discrete saliva swallowing, discrete 10 ml swallowing, volitional continuous swallowing, and reflexive continuous swallowing. The research paradigm used in this research programme identified the effect of experimental conditions on the rate and regularity of task performance. In addition, pharyngeal manometry was utilised to measure the effect of experimental conditions on the pattern of the pharyngeal pressure generation during swallowing. Within subject differences from baseline were identified by means of Repeated Measures Analyses of Variance (RM-ANOVA). Results: Initial analysis of the data revealed that repetition of tasks within a session did not affect the rate and regularity of voluntary corticospinal tasks, voluntary corticiobulbar tasks nor swallowing tasks. In addition, repeating the swallowing tasks during a session did not affect pharyngeal pressure as measured by pharyngeal manometry. When motor tasks were performed concurrently in the DT paradigm, rate and regularity of eyebrow movements were significantly decreased when paired with swallowing tasks, whereas rate and regularity of swallowing were significantly decreased when paired with left finger tapping, but not right finger tapping. However, there was no significant effect of any task on the pattern of pharyngeal pressure generation. Extrinsically generated disruption using TMS significantly reduced rate and regularity of finger tapping tasks and regularity of jaw movement and swallowing tasks. In addition, interruption of pharyngeal M1 during the volitional swallowing task produced significant increase in the duration but not the amplitude of the pharyngeal pressure. Pharyngeal pressure generation differed between swallowing types and boluses types, in that saliva swallowing produced longer pharyngeal pressure duration and lower nadir pressure than water swallows. Discrete water bolus swallowing produced longer UES opening compared to both saliva swallowing or continuous water swallowing. Conclusion: The results of this research programme provided valuable methodological information regarding the effect of trials on task performance as well as identifying pharyngeal pressure differences between discrete and continuous swallowing. In addition to the methodological contribution, this research programme expanded on previous knowledge of neural control of swallowing, in that it extended the findings regarding potential role of M1 in pharyngeal swallowing. Given the absent effect of task repetition on the performance of corticospinal and corticobulbar motor tasks, it is speculated that outcomes of research investigating the effect of experimental manipulation on motor tasks performance is due to the experimental tasks, rather than natural variance in the data. The effect of swallowing on the rate and regularity of eyebrow movement, when performed concurrently using DT paradigm, suggest bilateral functional overlapping to a significant degree between neural substrates that control swallowing and orofacial muscles. These results offer partial support of bilateral representation of swallowing in the cortex. In addition, results further revealed potential involvement of right M1 in the regulation of pharyngeal swallowing as evidenced by a disruptive effect of left finger tapping on the rate and regularity of swallowing. The results from the hemispheric TMS disruption study support the active involvement M1 in the execution of voluntary corticospinal and corticobulbar motor tasks. In addition, the current findings extended previous knowledge of neural control of pharyngeal swallowing by documenting the effect of neural disruption on the regularity and pharyngeal pressure measures during volitional and reflexive swallowing. The current programme documented potential role of M1 in the control of pharyngeal swallowing possibly by modulating the motor plan at the swallowing CPG in the brainstem. This project is the first to document pharyngeal pressure differences between discrete and continuous swallowing. These findings contribute valuable information to the swallowing literature as limited number of studies investigated the biomechanical differences between discrete and continuous liquid ingestion. This knowledge will assist clinicians and researchers in identifying the pharyngeal pressure differences between normal and abnormal swallowing in different swallowing types and ultimately guide their rehabilitation decisions. Data from this research programme will add to the existing knowledge of neurophysiology of swallowing, thereby facilitating understanding of swallowing pathophysiology which is crucial for appropriate management of swallowing disorders.
APA, Harvard, Vancouver, ISO, and other styles
3

Caux-Dedeystère, Alexandre. "Modulation tâche-dépendante des mécanismes inhibiteurs et désinhibiteurs du cortex moteur primaire chez l’homme." Thesis, Lille 2, 2016. http://www.theses.fr/2016LIL2S015/document.

Full text
Abstract:
Les mouvements sont le résultat de contractions musculaires dont l’organisation spatio-temporelle est régie par des structures cérébrales et médullaires. Etudier les circuits qui les sous-tendent est une étape indispensable pour renforcer nos connaissances des mécanismes à l’origine de la commande des mouvements volontaires et pour mieux comprendre la pathophysiologie des mouvements anormaux. Les muscles squelettiques sont innervés par les motoneurones alpha de la moelle épinière qui à leur out sont influencés par des neurones des aires corticales motrices. Cette voie descendante constitue la voie corticomotoneuronale (CM) et est responsable de l’exécution des mouvements volontaires. Le cortex moteur primaire est considéré comme une structure clé, au cœur du système, permettant l’intégration complexe de nombreuses influences multi-régions pour conduire aux comportements moteurs adéquats. Les interactions qui existent entre les différents groupes de neurones au sein de M1 influent en dernier lieu sur la sortie motrice. De la balance complexe entre ces influences inhibitrices et excitatrices, locales ou à distance va dépendre l’état d’excitabilité des cellules CM contrôlant les différents muscles. L'objectif de ce travail de thèse était d'étudier comment évoluent certains de ces mécanismes excitateurs ou inhibiteurs du cortex moteur primaire lorsque la commande motrice volontaire d’un muscle de l’index est modifiée. Nous avons étudié le rôle de ces mécanismes dans les changements d’excitabilité de la voie CM qui accompagnent la contraction tonique volontaire du muscle premier interosseus dorsalis (FDI) en comparant une tâche simple mais peu naturelle : l’abduction de l'index, une tâche naturelle plus complexe: la pince pouce-index et la condition de repos musculaire. Nous avons également étudié l’effet de la commande motrice sur l’interaction entre deux de ces mécanismes inhibiteurs l’un à longue latence, la LICI, l’autre à courte latence, la SICI. Enfin nous avons souhaité évaluer le décours temporel de ces mécanismes dans un cadre pathologique tâche-dépendant: la crampe de l’écrivain. Pour cela, nous avons utilisé la technique d’electromyographie de surface pour enregistrer les potentiels moteurs évoqués par la Stimulation Magnétique Transcrânienne. Nous avons mis en évidence une modulation tâche-dépendante de la LICI. Par rapport à la tâche d’abduction simple, la LICI s’estompait plus tôt lors de la tâche de pince pouce-index, traduisant une désinhibition plus précoce lors d’un mouvement plus complexe. Nous avons observé, et ce pour la première fois dans la littérature, une phase de facilitation nette qui suivait cette désinhibition, et qui était absente lorsque le muscle était au repos. Ces résultats sont également visibles dans un muscle voisin du FDI, non engagé dans la tâche; cela suggère que les mécanismes à l’origine de la facilitation sont impliqués dans l’activité volontaire sans spécificité topographique. L’interaction entre la LICI et la SICI n’a pas été modifiée par la tâche effectuée, laissant penser qu’elle n’est pas impliquée dans les changements d’excitabilité tâche-dépendants. Enfin, il apparaît que la désinhibition est retardée chez les sujets dystoniques quand le muscle est engagé dans un mouvement complexe de pince pouce-index mais pas dans une tâche simple d’abduction de l’index en comparaison à des sujets contrôles. Ces résultats illustrent le fait que lors d’un mouvement plus complexe, l’efficacité des circuits inhibiteurs du cortex moteur primaire est modifiée, ce qui permet de réguler l’activité des cellules CM, afin d’adapter la commande motrice au mouvement souhaité. Le fait que cette désinhibition soit retardée dans une tâche complexe (proche de la tâche affectée) mais pas dans une tâche simple chez les patients atteints d’une crampe de l’écrivain suggère que les mécanismes à l’origine de la désinhibition pourraient participer aux troubles moteurs qui caractérisent la maladie
Movements are evoked by muscles contractions whose spatial organization is mediated by both spinal and cortical components. It is important to investigate the underlying circuitry of movements to extend our knowledge on how voluntary movement are controlled and to better understand the pathophysiology of movements disorders. The spinal alpha motoneurons innervating distal muscles are controlled at least in parts by corticomotoneuronal neurons located in the motor cortical areas. Among them, the primary motor cortex is considered as a key structure, performing a complex integration of multi-regional influences leading to appropriate motor behaviors. Axons from corticomotoneuronal (CM) cells of the primary motor cortex reach the spinal cord via descending motor pathway. CM neurons are influenced by local or distant, inhibitory and excitatory components which determine the balance of excitability. The aim of this thesis was to explore changes of some of the excitatory and inhibitory mechanisms of motor cortex as a function of the task being performed. We assessed the time course of Long-interval Intracortical Inhibition (LICI), Late Cortical Disinhibition (LCD) and Long interval Intracortical Facilitation (LICF), which are mechanisms that potentially act to modulate the output of CM controlling the first dorsal interosseus (FDI) muscle. We compared three conditions : index finger abduction (a simple but not natural task), precision grip between index and thumb ( amore natural and complex task), and rest. We also evaluated the effect of task on interaction between LICI and Short Interval Intracortical Inhibition (SICI). Finally, we assessed the time course of LICI in patients suffering from writer’s cramp. For this purpose, we used surface electromyography to record motor potentials evoked by Transcranial Magnetic Stimulation.We showed a task-dependent change in late inhibitory and disinhibitory components. Compared with abduction task, the LICI induced during precision grip was shorter, suggesting an early disinhibition in more complex task. The disinhibition was followed by a period of facilitation only during the active tasks, i.e. facilitation was not observed when all muscles were at restat rest. However, long interval intracortical facilitation can be observed in a muscle at rest not engaged in an active task if a neighboring muscle is activated. It is therefore likely that mechanisms underlying facilitation are associated with voluntary contraction albeit with lack of topographic specificity. Interaction between LICI and SICI was not modified between tasks, suggesting that it was not involved in task-dependent changes of cortical excitability. Lastly, disinhibition was shown to be delayed in dystonic patients when the FDI was actively engaged in a precision grip but not in index abduction, compared with control subjects. An explanation might be that mechanisms underlying disinhibition are impaired in thumb-index precision grip (a task similar to that inducing unwanted contractions in writer’s cramp). Task-specidic disruption of LICI and late cortical disinhibition may therefore be at least in part responsible for pathophysiology of dystonia. It is likely that during complex task, the efficacy of LICI, and more generally of motor cortex inhibitory mechanisms, is modified to allow adaptation of CM neurons activity to the functional requirements of the motor task being performed
APA, Harvard, Vancouver, ISO, and other styles
4

Gauvreau, Claudie. "La TMS pairée associative du cortex moteur primaire et du lobule pariétal inférieur : une évaluation avec l’IRM fonctionnelle." Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10648.

Full text
Abstract:
Les méthodes non-invasives de neuro-imagerie et de neurostimulation peuvent être combinées pour mieux comprendre les connexions dans le cerveau. Pour la première fois, une étude combine de façon séquentielle l’IRM fonctionnelle (fMRI) et un protocole de TMS associative pairée cortico-corticale (TMS-PAScc) sur le cortex moteur primaire (M1) et sur le lobule pariétal inférieur (LPI) dans l’hémisphère gauche. La TMS module-t-elle le couplage neurovasculaire et permet-elle de renforcer une connexion fonctionnelle qui soit détectable à la fMRI à l’état de repos (RS-fMRI)? 10 sujets droitiers et en santé font une session de TMS-PAScc LPI-M1 de courte durée (180 paires d’impulsions, fréquence de stimulation à 0.02 Hz). Les mêmes sujets font 2 sessions de la RS-fMRI, avant et après le protocole PAScc. Les résultats montrent que la corrélation du signal BOLD entre les régions LPI-M1 avant et après la PAScc ne change pas de façon significative (avant-PAS=0.10±0.07 et après-PAS=0.09±0.07, p=0.64), tout comme l’amplitude des potentiels évoqués moteurs (PEM) des impulsions pairées LPI-M1 ne change pas de façon significative du début de la PAScc à 25 minutes après la PAScc (PASdébut=0.71±0.46mV, PASpost25min=0.72±0.89mV, p=0.338). Toutefois, les PEM des impulsions pairées LPI-M1 sont réduites par rapport aux PEM des impulsions simples M1, avant la PAScc et après la PAScc (PEM simples_pré et PASdébut, réduction de 0.32mV, p=0.05; PEM simples_post et PASpost25min, réduction de 0.39mV p=0.008), illustrant la présence d’un lien fonctionnel de nature inhibitrice entre LPI et M1. Toutefois, l’amplitude de cette inhibition n’est pas modulée de façon significative par la TMS-PAScc (ratio mesures pairées/mesures simples préPAS=0.9 et ratio postPAS=0.6, p=0.257). Dans l’ensemble, la TMS-PAScc ne montre pas d’effet soutenu sur la connectivité cérébrale telle que mesurée par la RS-fMRI et la TMS et ce, bien que le LPI montre un lien inhibiteur sur M1 de façon aigue. Plusieurs hypothèses peuvent expliquer cette absence d’effet soutenu, notamment, il est possible que l’altération de la connectivité ne soit visible que lorsque le réseau LPI-M1 est activement sollicité, comme durant l’exécution d’une tâche motrice. Il est aussi possible que le nombre de pairages soit insuffisant pour induire des changements mesurables, mais que la connectivité fonctionnelle suite à des sessions répétées de protocole PAScc pourrait modifier le couplage neurovasculaire et la plasticité cérébrale.
Abstract : Noninvasive neuroimagery and neurostimulation methods can be combined to further the understanding of the human brain connections. For the first time, resting state functional MRI (RS-fMRI) and paired associative cortico-cortical TMS (TMS-PAScc) of the motor cortex (M1) and the cortex of the inferior parietal lobule (LPI) of the left hemisphere are combined in a serial manner. Is TMS able to modify the neurovascular coupling as to facilitate LPI-M1 functional connectivity and change the fMRI BOLD signal? 10 right-handed and healthy subjects did a LPI-M1 TMS-PAScc session of short duration (180 paired pulses at 0.02 Hz, 15 min total). The same subjects underwent 2 fMRI sessions, before and after TMS-PAScc LPI-M1. Results show that the BOLD signal correlation between LPI-M1 does not change significantly before and after PAS (prePAS=0.10±0.07 et postPAS=0.09±0.07, p=0.64). TMS measures of motor evoked potentials (PEM) were taken before and after PAS LPI-M1. The paired pulse PEM measures did not change significantly from the start of PAScc to 25 minutes postPAS (PASstart=0.71 ± 0.46 mV, PASpost25min=0.72±0.89 mV, p=0.338). Paired PEM measures are statistically reduced from PAS PEM single measures, before and afterPAS (sPEM_pre et PASstart, significant 0.32mV reduction, p=0.05; PEMs_post et PASpost25min, 0.39mV reduction, p=0.008). PAScc did not show any significant neuroplasticity effect after 20 minutes because paired pulses did not change before and after PAScc. The PEM reduction of paired pulses is most likely related to the inhibiting effect of the conditioning stimulus of LPI on the test stimulus of M1 at 8ms. This inhibition is an effect limited to the measure itself and does not increase significantly with time (pairedpulse/singlepulsemeasures prePASratio=0.9 and postPASratio=0.6, p=0.257). TMSPAScc did not show a sustained effect on cerebral connectivity as measured by RS-fMRI although stimulation of LPI showed an acute inhibiting effect on M1 during paired measures. LPI-M1 TMS-PAScc did not show sustained connectivity and it could be because no task was involved in our study to actively solicit both cerebral regions during PAS. It is also possible that the number of paired stimulation was not enough to bring a change of connectivity and that PAS needs to be repeated on different days to eventually have a sustainable effect.
APA, Harvard, Vancouver, ISO, and other styles
5

Vacherot, François. "Les anomalies d'excitabilité du cortex moteur primaire et leurs relations avec les troubles locomoteurs dans la maladie de Parkinson." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX22075/document.

Full text
Abstract:
Les travaux réalisés lors de cette thèse ont porté sur le cortex moteur et les troubles de la marche de patients atteints de la maladie de Parkinson (MP). L’atteinte fonctionnelle des aires motrices corticales dans la MP et leur implication dans la physiopathologie des désordres moteurs a surtout été établie à partir de données issues des aires corticales des membres supérieurs. L’analyse électrophysiologique par stimulation magnétique transcranienne réalisée dans ces travaux de thèse a exploré les aires motrices corticales des membres inférieurs et révélé des troubles d’excitabilité différents de ceux classiquement décrits dans les aires corticales des membres supérieurs. En effet, il ressort principalement de l’étude sur le membre inférieur une diminution de la facilitation intracorticale (FIC) alors que la littérature décrit essentiellement pour les aires motrices corticales des membres supérieurs une altération des mécanismes inhibiteurs intracorticaux. Les anomalies corticales mises en évidence sont corrélées avec les paramètres locomoteurs affectés par la maladie, longueur d’enjambée et vitesse de marche. L’analyse des patients avec et sans traitement a permis de montrer que la supplémentation dopaminergique agit à la fois au niveau cortical et locomoteur normalisant partiellement les déficits observés. Les anomalies de FIC des aires corticales motrices des membres inférieurs paraissent donc être impliquées dans la physiopathologie des troubles de la marche dans la MP et pourraient de ce fait constituer un paramètre d’évaluation et un objectif thérapeutique de choix. L’utilisation de la stimulation magnétique transcranienne répétitive couplée à la neuronavigation permettrait d’explorer cette dernière piste
This thesis aims to study the relationships between motor cortex impairment and locomotor disorders in Parkinsonian patients (PP). Most of the previous studies have focused on the upper limb cortical areas showing the existence of an imbalance in cortical excitability, which mainly evolves towards a state of impaired intracortical inhibition. However, just a few studies have been devoted so far to the exact cortical abnormalities responsible for Parkinsonians’ gait disorders. The transcranial magnetic stimulation (TMS) studies presented here demonstrate that the excitability abnormalities occurring in PP differ between the cortical areas associated with the lower and upper limbs, since defective intracortical facilitation (ICF) processes were mainly detected in the lower limbs cortical areas. Furthermore, these specific excitability abnormalities identified seem to be involve in the genesis of the hypokinetic locomotor component since correlations were established between the ICF level and the shortened stride length (and by correlates, with the reduced velocity). Patients were assessed with and without dopaminergic substitution treatment (DST). We found that DST modified significantly both the cortical excitability abnormalities and the defective locomotor parameters. Impaired facilitatory processes in lower limbs cortical areas may be involved in the pathophysiology of gait disorders in PD. This hypothesis should be addressed in an experiment coupling repetitive TMS and neuronavigation
APA, Harvard, Vancouver, ISO, and other styles
6

Wamain, Yannick. "Quel est le rôle fonctionnel du cortex moteur primaire dans la perception visuelle de traces graphiques ? : études comportementale et neurophysiologique." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1647/.

Full text
Abstract:
Depuis la fin des années 80, un grand nombre d'études comportementales ont démontré que nos représentations motrices participent à la perception visuelle du mouvement biologique ou de son résultat. Suite à la découverte des neurones miroir, un autre champ de recherche a révélé que la perception des stimuli impliquant un mouvement, active des régions corticales motrices telles que le cortex moteur primaire (M1). Bien que le rapprochement entre ces deux types de littérature soit facile et permette de spéculer sur un rôle direct de M1 dans la perception visuelle de stimuli impliquant un mouvement, cette relation causale mérite d'être directement testée. Afin d'étudier le rôle fonctionnel de M1 dans la perception visuelle, nous avons utilisé un paradigme de tâche duelle (motrice et perceptive) dans le but de manipuler directement le niveau d'activation de M1. Les conséquences de cette manipulation sur la perception visuelle de traces graphiques ont été mesurées sur le plan comportemental (Etudes 1 et 2) et neurophysiologique (Etudes 3 et 4). Les études comportementales révèlent que la sensibilité de discrimination durant l'observation visuelle de traces graphiques évolue en fonction de deux paramètres : les propres préférences motrices du participant dans la production de traces graphiques, mais également en fonction de la " disponibilité " de M1 lors de la tâche perceptive. Les études neurophysiologiques, quant à elles, ont réussi à mettre en évidence que M1 de l'observateur serait d'autant plus activé durant la perception visuelle d'une lettre, que cette dernière lui est familière sur le plan moteur. De plus, à travers cette notion de familiarité motrice, nos résultats ont révélé que M1 influence effectivement le traitement visuel des lettres. Cette influence se produit dès 300 ms après la présentation visuelle. L'ensemble de ces résultats fournissent des arguments en faveur de l'implication de M1 dans le traitement visuel de formes graphiques
Since 80's, lots of behavioral studies demonstrated that motor representation participate to visual perception of biological motion or of its results. In the same time, with the discovery of mirror neuron system, another research field revealed that stimuli perception implying motion activate motor cortical region like primary motor cortex (M1). Although the combination between these two literatures is simple and allows us to speculate on the direct role of M1 on visual perception of motion implied stimuli, this relationship remain to be directly tested. To investigate the functional role of M1 in visual perception, we used a dual-task paradigm (perceptual and motor task) in order to manipulate the level of activation of M1. Consequences of this manipulation on visual perception of graphic traces were measured both at behavioral (studies 1 and 2) and neurophysiological levels (studies 3 and 4). Behavioral studies revealed that during the visual discrimination task of graphic traces, the discrimination sensitivity evolved as function of two parameters: participants own motor preferences in production of graphic traces, but also M1 "availability" during perceptual task. Neurophysiological studies manage to highlight that the level of M1 activity during visual observation of letter is related to the motor familiarity of the letter observed. Moreover, thanks to the motor familiarity concept, we revealed that the M1 activity impacts visual processing of letter. This impact occurs around at 300 ms after letter presentation. Together, these results give strong evidence of the involvement of M1 in visual processing of graphic traces
APA, Harvard, Vancouver, ISO, and other styles
7

Bhatt, Mrudul B. "Computational modelling of laminar dynamics in human primary motor cortex (M1) : a dynamic causal modelling study of the healthy and post-stroke brain." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10042817/.

Full text
Abstract:
Background: Oscillatory activity in the beta range, in human primary motor cortex (M1), shows interesting dynamics that are tied to behaviour and change systematically in disease. To investigate the pathophysiology underlying these changes, we must first understand how changes in beta activity are caused in healthy subjects. We used the Dynamic Causal Modelling framework to develop a microcircuit model to explain mesoscopic dynamics in motor cortex. This model was applied to explain differences in measured oscillatory characteristics between healthy controls and stroke patients. The model was tested for robustness of use in EEG, and applied to pharmacological datasets to investigate differences in effective connectivity at the mesoscopic level under different pharmacological conditions. Aims: To investigate the laminar interaction underpinning beta-oscillatory dynamics in humans, in vivo, non-invasively. To this apply methodology to stroke patients to elucidate any differences at the mesoscopic level between these two key groups. To investigate whether such a technique was clinically feasible with more readily available research tools such as EEG. To investigate mesoscopic motor cortical dynamics under pharmacological influence, in humans, in vivo. Data acquisition and analysis: Most data acquisition was performed using a 275 CTF MEG scanner, with some data acquisition being performed using a standard 32 lead EEG headset. These data were taken and subject to rigorous analysis, that utilised dynamic causal modelling, Bayesian model comparison, as well as several signal processing and head modelling procedures that is outlined in detail in chapter 2. All analysis was done using the SPM 12 suite designed for neuroimaging analysis in MATLAB. Conclusions: We were able to develop a canonical microcircuit model for M1, and show it had significantly more model evidence than previous CMC models in explaining data from motor cortex. We applied this model to healthy controls to show the laminar interactions underpinning beta-oscillations in humans, in vivo. We were then able to apply this model and characterise laminar differences between healthy controls and stroke patients, as well as propose a novel mechanism for the origins of movement related beta desynchronization. We were able to show that our technique remained robust when applied to more clinically appropriate EEG. We were able to show significant differences in effective connectivity in different pharmacological states, that corresponded to differences observed in measured oscillatory data between groups who were given tiagabine and controls.
APA, Harvard, Vancouver, ISO, and other styles
8

Degardin, Adrian. "Etude de l'intégration sensori motrice dans la maladie de Parkinson et modulation par la stimulation thêta burst intermittente du cortex moteur primaire." Phd thesis, Université du Droit et de la Santé - Lille II, 2011. http://tel.archives-ouvertes.fr/tel-00635249.

Full text
Abstract:
L'intégration sensori motrice (ISM) est le processus par lequel les afférences sensitives sont intégrées par le système nerveux central et utilisées pour assister l'exécution des programmes moteurs. Plusieurs données suggèrent que celle-ci est anormale dans la maladie de Parkinson et serait impliquée dans la pathophysiologie de l'akinésie. En effet, la discrimination cutanée, l'acuité tactile spatiale, la kinesthésie ont été décrites déficientes dans cette maladie. Sa sensibilité aux traitements dopaminergiques est controversée. L'objectif de notre travail a été de tacher de mettre en évidence cette ISM anormale dans la maladie de Parkinson grâce à 2 techniques neurophysiologiques. Il s'agissait pour la 1e de la synchronisation liée à l'évènement des rythmes bêta (SLE bêta) qui permet d'étudier la désactivation corticale à la fin d'un mouvement actif mais aussi l'intégration corticale des afférences somesthésiques notamment lors des mouvements passifs et de la stimulation électrique des nerfs périphériques. La 2nde était l'étude de la modulation de l'excitabilité du cortex moteur primaire (évalué par la stimulation magnétique transcrânienne (TMS)) par des afférences somesthésiques générées par la stimulation électrique du nerf médian. Le but était de mettre en évidence des anomalies dans la modulation de l'excitabilité du cortex moteur primaire dans les intervalles inhibiteurs courts et longs (SAI et LAI) et/ou facilitateur (AIF). L'effet des traitements dopaminergiques a été évalué dans les deux cas par un enregistrement des patients après un sevrage thérapeutique. De nombreux protocoles de stimulation magnétique transcrânienne répétitive du cortex moteur que ce soit à basse ou haute fréquence, ont montré une efficacité sur l'akinésie. Il semblerait que les séances à fréquence plus rapides soient plus efficaces. Nous avons testé une nouvelle technique excitatrice à haute fréquence dite theta burst intermittente (ITBS) en regard du cortex moteur primaire chez des patients parkinsoniens et évalué l'effet sur l'akinésie. Nous avons par ailleurs étudié l'effet de cette stimulation sur l'ISM évaluée en conditionnant la TMS par une stimulation électrique du nerf médian. Notre 1e partie de l'étude a mis en évidence un effondrement de la SLE bêta dans la maladie de Parkinson après un mouvement actif, passif et une stimulation électrique du nerf médian. La levodopa a amélioré seulement la SLE bêta lors du mouvement actif. Nous avons pu ainsi confirmer l'atteinte de la SLE bêta active dans la maladie de Parkinson en lien avec un déficit de désactivation corticale en fin de mouvement mais aussi mettre en évidence une atteinte de la SLE bêta sensitive témoin d'un déficit du traitement cortical des afférences proprioceptives. La SLE bêta active a été améliorée par la levodopa alors que la SLE sensitive n'a pas été modifiée ce qui montre la dopa sensibilité de la désactivation corticale et le caractère non dopa sensible de l'ISM. Notre 2e partie n'a pas mis en évidence de différence significative dans la modulation de l'excitabilité du cortex moteur primaire par la stimulation électrique du nerf médian entre des patients parkinsoniens en début de maladie ni à un stade plus avancé par rapport à des témoins appariés par l'âge. En revanche la prise de levodopa a été associée à une aggravation de la LAI ce qui suggère aussi l'absence d'amélioration de l'ISM dans la maladie de Parkinson voire son aggravation par le traitement dopaminergique. Nous avons par contre montré que la modulation de l'excitabilité du cortex moteur primaire déclinait avec le vieillissement normal pour ce qui concerne les intervalles longs inhibiteurs (LAI) et facilitateurs (AIF) grâce à une comparaison d'une population de sujets contrôles jeunes et âgés sains. La session unique d'ITBS appliquée sur le cortex moteur primaire des patients parkinsoniens a permis d'améliorer transitoirement l'akinésie et la rigidité du membre supérieur controlatéral. Cette amélioration a été mise en évidence surtout chez les patients sous leur traitement habituel par levodopa mais aussi de manière moins nette chez les patients de novo ou ayant été sevré de leur traitement dopaminergique usuel. Nous avons par ailleurs observé une nette amélioration de l'AIF chez les patients sous levodopa uniquement ce qui suggère que l'ITBS du cortex moteur permettrait d'améliorer l'akinésie chez les patients parkinsoniens sous levodopa par une amélioration de l'ISM.
APA, Harvard, Vancouver, ISO, and other styles
9

Gagné, Martin. "Organisation fonctionnelle du cortex moteur primaire liée au contrôle dynamique d'une synergie musculaire interarticulaire : études TMS du modèle de la pince pouce/index avec mouvements du poignet." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/25028/25028.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dal, Maso Fabien. "Implication du cortex moteur primaire dans la régulation de la coactivation musculaire. Etude de la modulation des oscillations corticales et des interactions cortico-musculaires." Phd thesis, Université Paul Sabatier - Toulouse III, 2012. http://tel.archives-ouvertes.fr/tel-00911700.

Full text
Abstract:
La coactivation est un phénomène musculaire fondamental pour la stabilisation et la protection des articulations lors de contractions volontaires et joue un rôle essentiel dans le contrôle du mouvement. De nombreuses études ont montré que des mécanismes supraspinaux et spinaux contribuent à la régulation de la coactivation musculaire, mais l'implication du cortex moteur primaire (M1) est encore mal connue. Les modulations des oscillations corticales et des interactions cortico-musculaires ont été étudiées lors de contractions isométriques à différents niveaux de forces chez des participants présentant différents niveaux de coactivation musculaire en raison de leur spécialité sportive (entraînement en force (ST) vs. en endurance (ED)). Chez les ST, une moindre coactivation musculaire est associée à une plus grande activation du M1, ce qui pourrait s'expliquer par le contrôle d'un plus grand nombre de muscles, notamment des muscles antagonistes. Grâce à une méthode novatrice pour analyser les interactions cortico-musculaires, nous montrons qu'il existe un couplage entre le M1 est les muscles antagonistes chez l'ensemble des participants et dans toutes les directions de contraction. Cependant, la magnitude des interactions cortico-musculaires avec les muscles antagonistes est plus faible qu'avec les muscles agonistes, ce qui pourrait s'expliquer par une plus grande implication des mécanismes spinaux dans la régulation de la coactivation musculaire. L'estimation des moments musculaires agoniste et antagoniste à l'aide d'un modèle biomécanique EMG-assisté ouvre la perspective d'étudier directement les corrélats cérébraux des moments musculaires. Dans leur ensemble, nos résultats, obtenus à l'aide d'une approche combinant biomécanique et neurosciences, ont mis en évidence l'implication directe du M1 dans la régulation de la coactivation musculaire lors de contractions isométriques volontaires.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography