Journal articles on the topic 'Cortical scaffolds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cortical scaffolds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lipowiecki, Marcin, and Dermot Brabazon. "Design of Bone Scaffolds Structures for Rapid Prototyping with Increased Strength and Osteoconductivity." Advanced Materials Research 83-86 (December 2009): 914–22. http://dx.doi.org/10.4028/www.scientific.net/amr.83-86.914.
Full textQin, Jingwen, Meizhi Wang, Tianyun Zhao, et al. "Early Forebrain Neurons and Scaffold Fibers in Human Embryos." Cerebral Cortex 30, no. 3 (2019): 913–28. http://dx.doi.org/10.1093/cercor/bhz136.
Full textWang, Li Li, Xiu Feng Wang, Hong Tao Jiang, and Cheng Long Yu. "Preparation of Porous Hydroxyapatite-Zirconia Composite Scaffolds by Combination of Gel-Casting and Polymer Sponge Methods." Advanced Materials Research 105-106 (April 2010): 616–19. http://dx.doi.org/10.4028/www.scientific.net/amr.105-106.616.
Full textStuckensen, Kai, José M. Lamo-Espinosa, Emma Muiños-López, et al. "Anisotropic Cryostructured Collagen Scaffolds for Efficient Delivery of RhBMP–2 and Enhanced Bone Regeneration." Materials 12, no. 19 (2019): 3105. http://dx.doi.org/10.3390/ma12193105.
Full textGu, Ben Jiahe, Dennis Jgamadze, Guoming (Tony) Man, and Han-Chiao Isaac Chen. "4418 Optimization and Validation of a Silk Scaffold-Based Neural Tissue Construct." Journal of Clinical and Translational Science 4, s1 (2020): 13–14. http://dx.doi.org/10.1017/cts.2020.85.
Full textMahmood, Asim, Hongtao Wu, Changsheng Qu, et al. "Suppression of neurocan and enhancement of axonal density in rats after treatment of traumatic brain injury with scaffolds impregnated with bone marrow stromal cells." Journal of Neurosurgery 120, no. 5 (2014): 1147–55. http://dx.doi.org/10.3171/2013.12.jns131362.
Full textLinder, Houston R., Austin A. Glass, Delbert E. Day, and Scott A. Sell. "Manipulating Air-Gap Electrospinning to Create Aligned Polymer Nanofiber-Wrapped Glass Microfibers for Cortical Bone Tissue Engineering." Bioengineering 7, no. 4 (2020): 165. http://dx.doi.org/10.3390/bioengineering7040165.
Full textDehghan-Manshadi, Ali, Yunhui Chen, Zhiming Shi, et al. "Porous Titanium Scaffolds Fabricated by Metal Injection Moulding for Biomedical Applications." Materials 11, no. 9 (2018): 1573. http://dx.doi.org/10.3390/ma11091573.
Full textDu, Dajiang, Teruo Asaoka, Makoto Shinohara, Tomonori Kageyama, Takashi Ushida, and Katsuko Sakai Furukawa. "Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/859456.
Full textWong, Darice Y., Paul H. Krebsbach, and Scott J. Hollister. "Brain cortex regeneration affected by scaffold architectures." Journal of Neurosurgery 109, no. 4 (2008): 715–22. http://dx.doi.org/10.3171/jns/2008/109/10/0715.
Full textZiaee, Mohsen, Rebecca Hershman, Ayesha Mahmood, and Nathan B. Crane. "Fabrication of Demineralized Bone Matrix/Polycaprolactone Composites Using Large Area Projection Sintering (LAPS)." Journal of Manufacturing and Materials Processing 3, no. 2 (2019): 30. http://dx.doi.org/10.3390/jmmp3020030.
Full textQu, Changsheng, Ye Xiong, Asim Mahmood, et al. "Treatment of traumatic brain injury in mice with bone marrow stromal cell–impregnated collagen scaffolds." Journal of Neurosurgery 111, no. 4 (2009): 658–65. http://dx.doi.org/10.3171/2009.4.jns081681.
Full textLiu, YuHao. "Bio Focus: Silk-collagen scaffolds engineered to create cortical brain tissue model." MRS Bulletin 41, no. 2 (2016): 85. http://dx.doi.org/10.1557/mrs.2016.8.
Full textHwang, Do Won, Jong Bo Park, Dongchul Sung, et al. "3D graphene-cellulose nanofiber hybrid scaffolds for cortical reconstruction in brain injuries." 2D Materials 6, no. 4 (2019): 045043. http://dx.doi.org/10.1088/2053-1583/ab3889.
Full textNisbet, D. R., S. Pattanawong, N. E. Ritchie, et al. "Interaction of embryonic cortical neurons on nanofibrous scaffolds for neural tissue engineering." Journal of Neural Engineering 4, no. 2 (2007): 35–41. http://dx.doi.org/10.1088/1741-2560/4/2/004.
Full textXu, Qinwei, Lin Jin, Cheng Li, Shreyas Kuddannayai, and Yilei Zhang. "The effect of electrical stimulation on cortical cells in 3D nanofibrous scaffolds." RSC Advances 8, no. 20 (2018): 11027–35. http://dx.doi.org/10.1039/c8ra01323c.
Full textGladfelter, Amy S., Trevin R. Zyla, and Daniel J. Lew. "Genetic Interactions among Regulators of Septin Organization." Eukaryotic Cell 3, no. 4 (2004): 847–54. http://dx.doi.org/10.1128/ec.3.4.847-854.2004.
Full textSotoudeh, Amir, Gholamreza Jahanshahi, Amirali Jahanshahi, Mohammad Ashrafzadeh Takhtfooladi, Iman Shabani, and Masoud Soleimani. "Combination of poly L-lactic acid nanofiber scaffold with omentum graft for bone healing in experimental defect in tibia of rabbits." Acta Cirurgica Brasileira 27, no. 10 (2012): 694–701. http://dx.doi.org/10.1590/s0102-86502012001000005.
Full textMancuso, Elena, Naif Alharbi, Oana A. Bretcanu, et al. "Three-dimensional printing of porous load-bearing bioceramic scaffolds." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 231, no. 6 (2017): 575–85. http://dx.doi.org/10.1177/0954411916682984.
Full textCosta, Hermes S., Alexandra A. P. Mansur, Edel Figueiredo Barbosa-Stancioli, Marivalda Pereira, and Herman S. Mansur. "Hybrid Bioactive Glass-Polyvinyl Alcohol Prepared by Sol-Gel." Materials Science Forum 587-588 (June 2008): 62–66. http://dx.doi.org/10.4028/www.scientific.net/msf.587-588.62.
Full textNeto, Ana, and José Ferreira. "Synthetic and Marine-Derived Porous Scaffolds for Bone Tissue Engineering." Materials 11, no. 9 (2018): 1702. http://dx.doi.org/10.3390/ma11091702.
Full textSkop, Nolan B., Sweta Singh, Henri Antikainen, et al. "Subacute Transplantation of Native and Genetically Engineered Neural Progenitors Seeded on Microsphere Scaffolds Promote Repair and Functional Recovery After Traumatic Brain Injury." ASN Neuro 11 (January 2019): 175909141983018. http://dx.doi.org/10.1177/1759091419830186.
Full textVan der Stok, Johan, Olav P. Van der Jagt, Saber Amin Yavari, et al. "Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects." Journal of Orthopaedic Research 31, no. 5 (2012): 792–99. http://dx.doi.org/10.1002/jor.22293.
Full textChen, Cheng, Xin Dong, Kai-Heng Fang, et al. "Develop a 3D neurological disease model of human cortical glutamatergic neurons using micropillar-based scaffolds." Acta Pharmaceutica Sinica B 9, no. 3 (2019): 557–64. http://dx.doi.org/10.1016/j.apsb.2019.03.004.
Full textRomero, Raimundo, Laura Chubb, John K. Travers, Timothy R. Gonzales, Nicole P. Ehrhart, and Matt J. Kipper. "Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin." Carbohydrate Polymers 122 (May 2015): 144–51. http://dx.doi.org/10.1016/j.carbpol.2015.01.015.
Full textHaugen, Håvard Jostein, Marta Monjo, Marina Rubert, et al. "Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model." Acta Biomaterialia 9, no. 2 (2013): 5390–99. http://dx.doi.org/10.1016/j.actbio.2012.09.009.
Full textCrovace, Alberto Maria, Luca Lacitignola, Donato Monopoli Forleo, et al. "3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep." Animals 10, no. 8 (2020): 1389. http://dx.doi.org/10.3390/ani10081389.
Full textLiao, Chengzhu, Yuchao Li, and Sie Chin Tjong. "Polyetheretherketone and Its Composites for Bone Replacement and Regeneration." Polymers 12, no. 12 (2020): 2858. http://dx.doi.org/10.3390/polym12122858.
Full textMahmood, Asim, Hongtao Wu, Changsheng Qu, Ye Xiong, and Michael Chopp. "Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord." Journal of Neurosurgery 118, no. 2 (2013): 381–89. http://dx.doi.org/10.3171/2012.11.jns12753.
Full textUri, Ofir, Eyal Behrbalk, and Yoram Folman. "Local implantation of autologous adipose-derived stem cells increases femoral strength and bone density in osteoporotic rats: A randomized controlled animal study." Journal of Orthopaedic Surgery 26, no. 3 (2018): 230949901879953. http://dx.doi.org/10.1177/2309499018799534.
Full textZhong, Yinghui, and Ravi V. Bellamkonda. "Biomaterials for the central nervous system." Journal of The Royal Society Interface 5, no. 26 (2008): 957–75. http://dx.doi.org/10.1098/rsif.2008.0071.
Full textHorne, Malcolm K., David R. Nisbet, John S. Forsythe, and Clare L. Parish. "Three-Dimensional Nanofibrous Scaffolds Incorporating Immobilized BDNF Promote Proliferation and Differentiation of Cortical Neural Stem Cells." Stem Cells and Development 19, no. 6 (2010): 843–52. http://dx.doi.org/10.1089/scd.2009.0158.
Full textCrowe, J. A., A. El-Tamer, D. Nagel, et al. "Development of two-photon polymerised scaffolds for optical interrogation and neurite guidance of human iPSC-derived cortical neuronal networks." Lab on a Chip 20, no. 10 (2020): 1792–806. http://dx.doi.org/10.1039/c9lc01209e.
Full textEvans, Michael G., Arwa Al-Shakli, and Divya M. Chari. "Electrophysiological properties of neurons grown on soft polymer scaffolds reveal the potential to develop neuromimetic culture environments." Integrative Biology 11, no. 11 (2019): 395–403. http://dx.doi.org/10.1093/intbio/zyz033.
Full textPors, S. E., M. Ramløse, D. Nikiforov, et al. "Initial steps in reconstruction of the human ovary: survival of pre-antral stage follicles in a decellularized human ovarian scaffold." Human Reproduction 34, no. 8 (2019): 1523–35. http://dx.doi.org/10.1093/humrep/dez077.
Full textHe, Shu-Kun, Liang-Ju Ning, Xuan Yao, et al. "Hierarchically Demineralized Cortical Bone Combined With Stem Cell–Derived Extracellular Matrix for Regeneration of the Tendon-Bone Interface." American Journal of Sports Medicine 49, no. 5 (2021): 1323–32. http://dx.doi.org/10.1177/0363546521994511.
Full textCetinel, Oktay, Ziya Esen, and Bora Yildirim. "Fabrication, Morphology Analysis, and Mechanical Properties of Ti Foams Manufactured Using the Space Holder Method for Bone Substitute Materials." Metals 9, no. 3 (2019): 340. http://dx.doi.org/10.3390/met9030340.
Full textArumugam, Soundhar, Jayakrishna Kandasamy, Ain Umaira Md Shah, et al. "Investigations on the Mechanical Properties of Glass Fiber/Sisal Fiber/Chitosan Reinforced Hybrid Polymer Sandwich Composite Scaffolds for Bone Fracture Fixation Applications." Polymers 12, no. 7 (2020): 1501. http://dx.doi.org/10.3390/polym12071501.
Full textBastiaens, Xie, and Luttge. "Nanogroove-Enhanced Hydrogel Scaffolds for 3D Neuronal Cell Culture: An Easy Access Brain-on-Chip Model." Micromachines 10, no. 10 (2019): 638. http://dx.doi.org/10.3390/mi10100638.
Full textSomaa, Fahad A., Ting-Yi Wang, Jonathan C. Niclis, et al. "Peptide-Based Scaffolds Support Human Cortical Progenitor Graft Integration to Reduce Atrophy and Promote Functional Repair in a Model of Stroke." Cell Reports 20, no. 8 (2017): 1964–77. http://dx.doi.org/10.1016/j.celrep.2017.07.069.
Full textHolien, Toril, Marita Westhrin, Siv Helen Moen, et al. "BMP4 Gene Therapy Inhibits Myeloma Tumor Growth, but Has a Negative Impact on Bone." Blood 132, Supplement 1 (2018): 1928. http://dx.doi.org/10.1182/blood-2018-99-112429.
Full textMcCrary, Myles R., Kaleena Jesson, Zheng Z. Wei, et al. "Cortical Transplantation of Brain‐Mimetic Glycosaminoglycan Scaffolds and Neural Progenitor Cells Promotes Vascular Regeneration and Functional Recovery after Ischemic Stroke in Mice." Advanced Healthcare Materials 9, no. 5 (2020): 1900285. http://dx.doi.org/10.1002/adhm.201900285.
Full textLischer, Christophorus. "Tissue particularities and problems related to bone healing and fracture repair." Ciencias Veterinarias 37, no. 3 (2019): 13–17. http://dx.doi.org/10.15359/rcv.37-3.4.
Full textGalati, Domenico F., Stephanie Bonney, Zev Kronenberg, et al. "DisAp-dependent striated fiber elongation is required to organize ciliary arrays." Journal of Cell Biology 207, no. 6 (2014): 705–15. http://dx.doi.org/10.1083/jcb.201409123.
Full textKloeters, Oliver, Irina Berger, Henning Ryssel, Kai Megerle, Uwe Leimer, and Günter Germann. "Revitalization of cortical bone allograft by application of vascularized scaffolds seeded with osteogenic induced adipose tissue derived stem cells in a rabbit model." Archives of Orthopaedic and Trauma Surgery 131, no. 10 (2011): 1459–66. http://dx.doi.org/10.1007/s00402-011-1306-5.
Full textWolfe, J. "Cytoskeletal reorganization and plasma membrane fusion in conjugating Tetrahymena." Journal of Cell Science 73, no. 1 (1985): 69–85. http://dx.doi.org/10.1242/jcs.73.1.69.
Full textMartín-López, Eduardo, Manuel Nieto-Díaz, and Manuel Nieto-Sampedro. "Differential Adhesiveness and Neurite-promoting Activity for Neural Cells of Chitosan, Gelatin, and Poly-l-Lysine Films." Journal of Biomaterials Applications 26, no. 7 (2010): 791–809. http://dx.doi.org/10.1177/0885328210379928.
Full textvan der Stok, Johan, Huanan Wang, Saber Amin Yavari, et al. "Enhanced Bone Regeneration of Cortical Segmental Bone Defects Using Porous Titanium Scaffolds Incorporated with Colloidal Gelatin Gels for Time- and Dose-Controlled Delivery of Dual Growth Factors." Tissue Engineering Part A 19, no. 23-24 (2013): 2605–14. http://dx.doi.org/10.1089/ten.tea.2013.0181.
Full textAlabid, Ibrahim, Martin Hardt, Jafargholi Imani, et al. "The N-acyl homoserine-lactone depleted Rhizobium radiobacter mutant RrF4NM13 shows reduced growth-promoting and resistance-inducing activities in mono- and dicotyledonous plants." Journal of Plant Diseases and Protection 127, no. 6 (2020): 769–81. http://dx.doi.org/10.1007/s41348-020-00360-8.
Full textD'Abaco, Giovanna M., Cristiana Mattei, Babak Nasr, et al. "Graphene foam as a biocompatible scaffold for culturing human neurons." Royal Society Open Science 5, no. 3 (2018): 171364. http://dx.doi.org/10.1098/rsos.171364.
Full text