To see the other types of publications on this topic, follow the link: Cost-sensitive classification.

Dissertations / Theses on the topic 'Cost-sensitive classification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 dissertations / theses for your research on the topic 'Cost-sensitive classification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Dachraoui, Asma. "Cost-Sensitive Early classification of Time Series." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLA002/document.

Full text
Abstract:
Dans de nombreux domaines dans lesquels les mesures ou les données sont disponibles séquentiellement, il est important de savoir décider le plus tôt possible, même si c’est à partir d’informations encore incomplètes. C’est le cas par exemple en milieu hospitalier où l’apprentissage de règles de décision peut se faire à partir de cas complètement documentés, mais où, devant un nouveau patient, il peut être crucial de prendre une dé- cision très rapidement. Dans ce type de contextes, un compromis doit être optimisé entre la possibilité d’arriver à une meilleure décision en attendant des mesures supplé- mentaires, et le coût croissant associé à chaque nouvelle mesure. Nous considérons dans cette thèse un nouveau cadre général de classification précoce de séries temporelles où le coût d’attente avant de prendre une décision est explicitement pris en compte lors de l’optimisation du compromis entre la qualité et la précocité de prédictions. Nous proposons donc un critère formel qui exprime ce compromis, ainsi que deux approches différentes pour le résoudre. Ces approches sont intéressantes et apportent deux propriétés désirables pour décider en ligne : (i) elles estiment en ligne l’instant optimal dans le futur où une minimisation du critère peut être prévue. Elles vont donc au-delà des approches classiques qui décident d’une façon myope, à chaque instant, d’émettre une prédiction ou d’attendre plus d’information, (ii) ces approches sont adaptatives car elles prennent en compte les propriétés de la série temporelle en entrée pour estimer l’instant optimal pour la classifier. Des expériences extensives sur des données contrôlées et sur des données réelles montrent l’intérêt de ces approches pour fournir des prédictions précoces, fiables, adaptatives et non myopes, ce qui est indispensable dans de nombreuses applications
Early classification of time series is becoming increasingly a valuable task for assisting in decision making process in many application domains. In this setting, information can be gained by waiting for more evidences to arrive, thus helping to make better decisions that incur lower misclassification costs, but, meanwhile, the cost associated with delaying the decision generally increases, rendering the decision less attractive. Making early predictions provided that are accurate requires then to solve an optimization problem combining two types of competing costs. This thesis introduces a new general framework for time series early classification problem. Unlike classical approaches that implicitly assume that misclassification errors are cost equally and the cost of delaying the decision is constant over time, we cast the the problem as a costsensitive online decision making problem when delaying the decision is costly. We then propose a new formal criterion, along with two approaches that estimate the optimal decision time for a new incoming yet incomplete time series. In particular, they capture the evolutions of typical complete time series in the training set thanks to a segmentation technique that forms meaningful groups, and leverage these complete information to estimate the costs for all future time steps where data points still missing. These approaches are interesting in two ways: (i) they estimate, online, the earliest time in the future where a minimization of the criterion can be expected. They thus go beyond the classical approaches that myopically decide at each time step whether to make a decision or to postpone the call one more time step, and (ii) they are adaptive, in that the properties of the incoming time series are taken into account to decide when is the optimal time to output a prediction. Results of extensive experiments on synthetic and real data sets show that both approaches successfully meet the behaviors expected from early classification systems
APA, Harvard, Vancouver, ISO, and other styles
2

MARQUES, DANIEL DOS SANTOS. "A DECISION TREE LEARNER FOR COST-SENSITIVE BINARY CLASSIFICATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28239@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Problemas de classificação foram amplamente estudados na literatura de aprendizado de máquina, gerando aplicações em diversas áreas. No entanto, em diversos cenários, custos por erro de classificação podem variar bastante, o que motiva o estudo de técnicas de classificação sensível ao custo. Nesse trabalho, discutimos o uso de árvores de decisão para o problema mais geral de Aprendizado Sensível ao Custo do Exemplo (ASCE), onde os custos dos erros de classificação variam com o exemplo. Uma das grandes vantagens das árvores de decisão é que são fáceis de interpretar, o que é uma propriedade altamente desejável em diversas aplicações. Propomos um novo método de seleção de atributos para construir árvores de decisão para o problema ASCE e discutimos como este pode ser implementado de forma eficiente. Por fim, comparamos o nosso método com dois outros algoritmos de árvore de decisão propostos recentemente na literatura, em 3 bases de dados públicas.
Classification problems have been widely studied in the machine learning literature, generating applications in several areas. However, in a number of scenarios, misclassification costs can vary substantially, which motivates the study of Cost-Sensitive Learning techniques. In the present work, we discuss the use of decision trees on the more general Example-Dependent Cost-Sensitive Problem (EDCSP), where misclassification costs vary with each example. One of the main advantages of decision trees is that they are easy to interpret, which is a highly desirable property in a number of applications. We propose a new attribute selection method for constructing decision trees for the EDCSP and discuss how it can be efficiently implemented. Finally, we compare our new method with two other decision tree algorithms recently proposed in the literature, in 3 publicly available datasets.
APA, Harvard, Vancouver, ISO, and other styles
3

Bakshi, Arjun. "Methodology For Generating High-Confidence Cost-Sensitive Rules For Classification." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1377868085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kamath, Vidya P. "Enhancing Gene Expression Signatures in Cancer Prediction Models: Understanding and Managing Classification Complexity." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3653.

Full text
Abstract:
Cancer can develop through a series of genetic events in combination with external influential factors that alter the progression of the disease. Gene expression studies are designed to provide an enhanced understanding of the progression of cancer and to develop clinically relevant biomarkers of disease, prognosis and response to treatment. One of the main aims of microarray gene expression analyses is to develop signatures that are highly predictive of specific biological states, such as the molecular stage of cancer. This dissertation analyzes the classification complexity inherent in gene expression studies, proposing both techniques for measuring complexity and algorithms for reducing this complexity. Classifier algorithms that generate predictive signatures of cancer models must generalize to independent datasets for successful translation to clinical practice. The predictive performance of classifier models is shown to be dependent on the inherent complexity of the gene expression data. Three specific quantitative measures of classification complexity are proposed and one measure ( f) is shown to correlate highly (R 2=0.82) with classifier accuracy in experimental data. Three quantization methods are proposed to enhance contrast in gene expression data and reduce classification complexity. The accuracy for cancer prognosis prediction is shown to improve using quantization in two datasets studied: from 67% to 90% in lung cancer and from 56% to 68% in colorectal cancer. A corresponding reduction in classification complexity is also observed. A random subspace based multivariable feature selection approach using costsensitive analysis is proposed to model the underlying heterogeneous cancer biology and address complexity due to multiple molecular pathways and unbalanced distribution of samples into classes. The technique is shown to be more accurate than the univariate ttest method. The classifier accuracy improves from 56% to 68% for colorectal cancer prognosis prediction.  A published gene expression signature to predict radiosensitivity of tumor cells is augmented with clinical indicators to enhance modeling of the data and represent the underlying biology more closely. Statistical tests and experiments indicate that the improvement in the model fit is a result of modeling the underlying biology rather than statistical over-fitting of the data, thereby accommodating classification complexity through the use of additional variables.
APA, Harvard, Vancouver, ISO, and other styles
5

Julock, Gregory Alan. "The Effectiveness of a Random Forests Model in Detecting Network-Based Buffer Overflow Attacks." NSUWorks, 2013. http://nsuworks.nova.edu/gscis_etd/190.

Full text
Abstract:
Buffer Overflows are a common type of network intrusion attack that continue to plague the networked community. Unfortunately, this type of attack is not well detected with current data mining algorithms. This research investigated the use of Random Forests, an ensemble technique that creates multiple decision trees, and then votes for the best tree. The research Investigated Random Forests' effectiveness in detecting buffer overflows compared to other data mining methods such as CART and Naïve Bayes. Random Forests was used for variable reduction, cost sensitive classification was applied, and each method's detection performance compared and reported along with the receive operator characteristics. The experiment was able to show that Random Forests outperformed CART and Naïve Bayes in classification performance. Using a technique to obtain Buffer Overflow most important variables, Random Forests was also able to improve upon its Buffer Overflow classification performance.
APA, Harvard, Vancouver, ISO, and other styles
6

Makki, Sara. "An Efficient Classification Model for Analyzing Skewed Data to Detect Frauds in the Financial Sector." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1339/document.

Full text
Abstract:
Différents types de risques existent dans le domaine financier, tels que le financement du terrorisme, le blanchiment d’argent, la fraude de cartes de crédit, la fraude d’assurance, les risques de crédit, etc. Tout type de fraude peut entraîner des conséquences catastrophiques pour des entités telles que les banques ou les compagnies d’assurances. Ces risques financiers sont généralement détectés à l'aide des algorithmes de classification. Dans les problèmes de classification, la distribution asymétrique des classes, également connue sous le nom de déséquilibre de classe (class imbalance), est un défi très commun pour la détection des fraudes. Des approches spéciales d'exploration de données sont utilisées avec les algorithmes de classification traditionnels pour résoudre ce problème. Le problème de classes déséquilibrées se produit lorsque l'une des classes dans les données a beaucoup plus d'observations que l’autre classe. Ce problème est plus vulnérable lorsque l'on considère dans le contexte des données massives (Big Data). Les données qui sont utilisées pour construire les modèles contiennent une très petite partie de groupe minoritaire qu’on considère positifs par rapport à la classe majoritaire connue sous le nom de négatifs. Dans la plupart des cas, il est plus délicat et crucial de classer correctement le groupe minoritaire plutôt que l'autre groupe, comme la détection de la fraude, le diagnostic d’une maladie, etc. Dans ces exemples, la fraude et la maladie sont les groupes minoritaires et il est plus délicat de détecter un cas de fraude en raison de ses conséquences dangereuses qu'une situation normale. Ces proportions de classes dans les données rendent très difficile à l'algorithme d'apprentissage automatique d'apprendre les caractéristiques et les modèles du groupe minoritaire. Ces algorithmes seront biaisés vers le groupe majoritaire en raison de leurs nombreux exemples dans l'ensemble de données et apprendront à les classer beaucoup plus rapidement que l'autre groupe. Dans ce travail, nous avons développé deux approches : Une première approche ou classifieur unique basée sur les k plus proches voisins et utilise le cosinus comme mesure de similarité (Cost Sensitive Cosine Similarity K-Nearest Neighbors : CoSKNN) et une deuxième approche ou approche hybride qui combine plusieurs classifieurs uniques et fondu sur l'algorithme k-modes (K-modes Imbalanced Classification Hybrid Approach : K-MICHA). Dans l'algorithme CoSKNN, notre objectif était de résoudre le problème du déséquilibre en utilisant la mesure de cosinus et en introduisant un score sensible au coût pour la classification basée sur l'algorithme de KNN. Nous avons mené une expérience de validation comparative au cours de laquelle nous avons prouvé l'efficacité de CoSKNN en termes de taux de classification correcte et de détection des fraudes. D’autre part, K-MICHA a pour objectif de regrouper des points de données similaires en termes des résultats de classifieurs. Ensuite, calculez les probabilités de fraude dans les groupes obtenus afin de les utiliser pour détecter les fraudes de nouvelles observations. Cette approche peut être utilisée pour détecter tout type de fraude financière, lorsque des données étiquetées sont disponibles. La méthode K-MICHA est appliquée dans 3 cas : données concernant la fraude par carte de crédit, paiement mobile et assurance automobile. Dans les trois études de cas, nous comparons K-MICHA au stacking en utilisant le vote, le vote pondéré, la régression logistique et l’algorithme CART. Nous avons également comparé avec Adaboost et la forêt aléatoire. Nous prouvons l'efficacité de K-MICHA sur la base de ces expériences. Nous avons également appliqué K-MICHA dans un cadre Big Data en utilisant H2O et R. Nous avons pu traiter et analyser des ensembles de données plus volumineux en très peu de temps
There are different types of risks in financial domain such as, terrorist financing, money laundering, credit card fraudulence and insurance fraudulence that may result in catastrophic consequences for entities such as banks or insurance companies. These financial risks are usually detected using classification algorithms. In classification problems, the skewed distribution of classes also known as class imbalance, is a very common challenge in financial fraud detection, where special data mining approaches are used along with the traditional classification algorithms to tackle this issue. Imbalance class problem occurs when one of the classes have more instances than another class. This problem is more vulnerable when we consider big data context. The datasets that are used to build and train the models contain an extremely small portion of minority group also known as positives in comparison to the majority class known as negatives. In most of the cases, it’s more delicate and crucial to correctly classify the minority group rather than the other group, like fraud detection, disease diagnosis, etc. In these examples, the fraud and the disease are the minority groups and it’s more delicate to detect a fraud record because of its dangerous consequences, than a normal one. These class data proportions make it very difficult to the machine learning classifier to learn the characteristics and patterns of the minority group. These classifiers will be biased towards the majority group because of their many examples in the dataset and will learn to classify them much faster than the other group. After conducting a thorough study to investigate the challenges faced in the class imbalance cases, we found that we still can’t reach an acceptable sensitivity (i.e. good classification of minority group) without a significant decrease of accuracy. This leads to another challenge which is the choice of performance measures used to evaluate models. In these cases, this choice is not straightforward, the accuracy or sensitivity alone are misleading. We use other measures like precision-recall curve or F1 - score to evaluate this trade-off between accuracy and sensitivity. Our objective is to build an imbalanced classification model that considers the extreme class imbalance and the false alarms, in a big data framework. We developed two approaches: A Cost-Sensitive Cosine Similarity K-Nearest Neighbor (CoSKNN) as a single classifier, and a K-modes Imbalance Classification Hybrid Approach (K-MICHA) as an ensemble learning methodology. In CoSKNN, our aim was to tackle the imbalance problem by using cosine similarity as a distance metric and by introducing a cost sensitive score for the classification using the KNN algorithm. We conducted a comparative validation experiment where we prove the effectiveness of CoSKNN in terms of accuracy and fraud detection. On the other hand, the aim of K-MICHA is to cluster similar data points in terms of the classifiers outputs. Then, calculating the fraud probabilities in the obtained clusters in order to use them for detecting frauds of new transactions. This approach can be used to the detection of any type of financial fraud, where labelled data are available. At the end, we applied K-MICHA to a credit card, mobile payment and auto insurance fraud data sets. In all three case studies, we compare K-MICHA with stacking using voting, weighted voting, logistic regression and CART. We also compared with Adaboost and random forest. We prove the efficiency of K-MICHA based on these experiments
APA, Harvard, Vancouver, ISO, and other styles
7

Charnay, Clément. "Enhancing supervised learning with complex aggregate features and context sensitivity." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD025/document.

Full text
Abstract:
Dans cette thèse, nous étudions l'adaptation de modèles en apprentissage supervisé. Nous adaptons des algorithmes d'apprentissage existants à une représentation relationnelle. Puis, nous adaptons des modèles de prédiction aux changements de contexte.En représentation relationnelle, les données sont modélisées par plusieurs entités liées par des relations. Nous tirons parti de ces relations avec des agrégats complexes. Nous proposons des heuristiques d'optimisation stochastique pour inclure des agrégats complexes dans des arbres de décisions relationnels et des forêts, et les évaluons sur des jeux de données réelles.Nous adaptons des modèles de prédiction à deux types de changements de contexte. Nous proposons une optimisation de seuils sur des modèles à scores pour s'adapter à un changement de coûts. Puis, nous utilisons des transformations affines pour adapter les attributs numériques à un changement de distribution. Enfin, nous étendons ces transformations aux agrégats complexes
In this thesis, we study model adaptation in supervised learning. Firstly, we adapt existing learning algorithms to the relational representation of data. Secondly, we adapt learned prediction models to context change.In the relational setting, data is modeled by multiples entities linked with relationships. We handle these relationships using complex aggregate features. We propose stochastic optimization heuristics to include complex aggregates in relational decision trees and Random Forests, and assess their predictive performance on real-world datasets.We adapt prediction models to two kinds of context change. Firstly, we propose an algorithm to tune thresholds on pairwise scoring models to adapt to a change of misclassification costs. Secondly, we reframe numerical attributes with affine transformations to adapt to a change of attribute distribution between a learning and a deployment context. Finally, we extend these transformations to complex aggregates
APA, Harvard, Vancouver, ISO, and other styles
8

Lo, Hung-Yi, and 駱宏毅. "Cost-Sensitive Multi-Label Classification with Applications." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/61015886145358618517.

Full text
Abstract:
博士
國立臺灣大學
資訊工程學研究所
101
We study a generalization of the traditional multi-label classification, which we refer to as cost-sensitive multi-label classification (CSML). In this problem, the misclassification cost can be different for each instance-label pair. For solving the problem, we propose two novel and general strategies based on the problem transformation technique. The proposed strategies transform the CSML problem to several cost-sensitive single-label classification problems. In addition, we propose a basis expansion model for CSML, which we call the Generalized k-Labelsets Ensemble (GLE). In the basis expansion model, a basis function is a label powerset classifier trained on a random k-labelset. The expansion coefficients are learned by minimizing the cost-weighted global error between the prediction and the ground truth. GLE can also be used for traditional multi-label classification. Experimental results on both multi-label classification and cost-sensitive multi-label classification demonstrate that our method has better performance than other methods. Cost-sensitive classification is based on the assumption that the cost is given according to the application. “Where does cost come from?” is an important practical issue. We study two real-world prediction tasks and link their data distribution to the cost information. The two tasks are medical image classification and social tag prediction. In medical image classification, we observe a patient-imbalanced phenomenon that has seriously hurt the generalization ability of the image classifier. We design several patient-balanced learning algorithms based on cost-sensitive binary classification. The success of our patient-balanced learning methods has been proved by winning KDD Cup 2008. For social tag prediction, we propose to treat the tag counts as the mis-classification costs and model the social tagging problem as a cost-sensitive multi-label classification problem. The experimental results in audio tag annotation and retrieval demonstrate that the CSML approaches outperform our winning method in Music Information Retrieval Evaluation eXchange (MIREX) 2009 in terms of both cost-sensitive and cost-less evaluation metrics. The results on social bookmark prediction also demonstrate that our proposed method has better performance than other methods.
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Yanmin. "Cost-Sensitive Boosting for Classification of Imbalanced Data." Thesis, 2007. http://hdl.handle.net/10012/3000.

Full text
Abstract:
The classification of data with imbalanced class distributions has posed a significant drawback in the performance attainable by most well-developed classification systems, which assume relatively balanced class distributions. This problem is especially crucial in many application domains, such as medical diagnosis, fraud detection, network intrusion, etc., which are of great importance in machine learning and data mining. This thesis explores meta-techniques which are applicable to most classifier learning algorithms, with the aim to advance the classification of imbalanced data. Boosting is a powerful meta-technique to learn an ensemble of weak models with a promise of improving the classification accuracy. AdaBoost has been taken as the most successful boosting algorithm. This thesis starts with applying AdaBoost to an associative classifier for both learning time reduction and accuracy improvement. However, the promise of accuracy improvement is trivial in the context of the class imbalance problem, where accuracy is less meaningful. The insight gained from a comprehensive analysis on the boosting strategy of AdaBoost leads to the investigation of cost-sensitive boosting algorithms, which are developed by introducing cost items into the learning framework of AdaBoost. The cost items are used to denote the uneven identification importance among classes, such that the boosting strategies can intentionally bias the learning towards classes associated with higher identification importance and eventually improve the identification performance on them. Given an application domain, cost values with respect to different types of samples are usually unavailable for applying the proposed cost-sensitive boosting algorithms. To set up the effective cost values, empirical methods are used for bi-class applications and heuristic searching of the Genetic Algorithm is employed for multi-class applications. This thesis also covers the implementation of the proposed cost-sensitive boosting algorithms. It ends with a discussion on the experimental results of classification of real-world imbalanced data. Compared with existing algorithms, the new algorithms this thesis presents are superior in achieving better measurements regarding the learning objectives.
APA, Harvard, Vancouver, ISO, and other styles
10

Tu, Han-Hsing, and 涂漢興. "Regression approaches for multi-class cost-sensitive classification." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/79841686006299558588.

Full text
Abstract:
碩士
國立臺灣大學
資訊工程學研究所
97
Cost-sensitive classification is an important research problem in recent years. It allows machine learning algorithms to use the additional cost information to make more strategic decisions. Studies on binary cost-sensitive classification have led to promising results in theories, algorithms, and applications. The multi-class counterpart is also needed in many real-world applications, but is more difficult to analyze. This thesis focuses on multi-class cost-sensitive classification. Existing methods for multi-class cost-sensitive classification usually transform the cost information into example importance (weight). This thesis offers a different viewpoint of the problem, and proposes a novel method. We directly estimate the cost value corresponding to each prediction using regression, and outputs the label that comes with the smallest estimated cost. We improve the method by analyzing the errors made during the decision. Then, we propose a different regression loss function that tightly connects with the errors. The new loss function leads to a solid theoretical guarantee of error transformation. We design a concrete algorithm for the loss function with the support vector machines. The algorithm can be viewed as a theoretically justified extension the popular one-versus-all support vector machine. Experiments using real-world data sets with arbitrary cost values demonstrate the usefulness of our proposed methods, and validate that the cost information should be appropriately used instead of dropped.
APA, Harvard, Vancouver, ISO, and other styles
11

Huang, Kuan-Hao, and 黃冠豪. "Cost-sensitive Label Embedding for Multi-label Classification." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/05626650270566576330.

Full text
Abstract:
碩士
國立臺灣大學
資訊工程學研究所
104
Label embedding (LE) is an important family of multi-label classification algorithms that digest the label information jointly for better performance. Different real-world applications evaluate performance by different cost functions of interest. Current LE algorithms often aim to optimize one specific cost function, but they can suffer from bad performance with respect to other cost functions. In this paper, we resolve the performance issue by proposing a novel cost-sensitive LE algorithm that takes the cost function of interest into account. The proposed algorithm, cost-sensitive label embedding with multidimensional scaling (CLEMS), approximates the cost information with the distances of the embedded vectors using the classic multidimensional scaling approach for manifold learning. CLEMS is able to deal with both symmetric and asymmetric cost functions, and effectively makes cost-sensitive decisions by nearest-neighbor decoding within the embedded vectors. Theoretical results justify that CLEMS achieves the cost-sensitivity and extensive experimental results demonstrate that CLEMS is significantly better than a wide spectrum of existing LE algorithms and state-of-the-art cost-sensitive algorithms across different cost functions.
APA, Harvard, Vancouver, ISO, and other styles
12

Chu, Hong-Min, and 朱鴻敏. "Dynamic Principal Projectionfor Cost-sensitive Online Multi-label Classification." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/h8qfu5.

Full text
Abstract:
碩士
國立臺灣大學
資訊工程學研究所
105
We study multi-label classification (MLC) with three important real-world issues: online updating, label space dimensional reduction (LSDR), and cost-sensitivity. Current MLC algorithms have not been designed to address these three issues simultaneously. In this paper, we propose a novel algorithm, cost- sensitive dynamic principal projection (CS-DPP) that resolves all three issues. The foundation of CS-DPP is a framework that extends a leading LSDR algorithm to online updating with online principal component analysis (PCA). In particular, CS-DPP investigates the use of matrix stochastic gradient as the on- line PCA solver, and establishes its theoretical backbone when coupled with a carefully-designed online regression learner. In addition, CS-DPP embeds the cost information into label weights to achieve cost-sensitivity along with theoretical guarantees. Practical enhancements of CS-DPP are also studied to improve its efficiency. Experimental results verify that CS-DPP achieves better practical performance than current MLC algorithms across different evaluation criteria, and demonstrate the importance of resolving the three issues simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Chun-Liang, and 李俊良. "Condensed Filter Tree For Cost Sensitive Multi-Label Classification." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/42380891805580530943.

Full text
Abstract:
碩士
國立臺灣大學
資訊工程學研究所
101
Many real-world applications call for better multi-label classification algorithms in recent years and different applications often need considering different evaluation criteria. We formalize this need with a general setup, cost-sensitive multi-label classification (CSMLC), which takes the evaluation criteria into account during the learning process. Nevertheless, most existed algorithms can only focus on optimizing a few specific evaluation criteria, and cannot systematically deal with different criteria. In this paper, we propose a novel algorithm, called condensed filter tree (CFT), for optimizing any criteria in CSMLC. CFT is derived from reducing CSMLC to the famous filter tree algorithm for cost-sensitive multi- class classification via the simple label powerset approach. We successfully cope with the difficulty of having exponentially many extend-classes within the powerset for representation, training and prediction by carefully designing the tree structure and focusing on the key nodes. Experimental results across many real-world datasets validate that the pro- posed CFT algorithm results in the better performance for many general evaluation criteria when compared with existing special- purpose algorithms.
APA, Harvard, Vancouver, ISO, and other styles
14

Chen, Po-Lung, and 陳柏龍. "Active Learning for Multiclass Cost-sensitive Classification Using Probabilistic Models." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/65244803215661729379.

Full text
Abstract:
碩士
國立臺灣大學
資訊工程學研究所
100
Multiclass cost-sensitive active learning is a relatively new problem. In this thesis, we derive the maximum expected cost and cost-weighted minimum margin strategy for multiclass cost-sensitive active learning. These two strategies can be seem as the extended version of classical cost-insensitive active learning strategies. The experimental results demonstrate that the derived strategies are promising for cost-sensitive active learning. In particular, the cost-sensitive strategies outperform cost-insensitive ones on many benchmark data sets. The results also reveal how the hardness of data affects the performance of active learning strategies. Thus, in practical active learning applications, data analysis before strategy selection can be important.
APA, Harvard, Vancouver, ISO, and other styles
15

Chiu, Hsien-Chun, and 邱顯鈞. "Multi-label Classification with Feature-aware Cost-sensitive Label Embedding." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/fy6vw4.

Full text
Abstract:
碩士
國立臺灣大學
資訊工程學研究所
106
Multi-label classification (MLC) is an important learning problem where each instance is annotated with multiple labels. Label embedding (LE) is an important family of methods for MLC that extracts and utilizes the latent structure of labels towards better performance. Within the family, feature- aware LE methods, which jointly consider the feature and label information during extraction, have been shown to reach better performance than feature- unaware ones. Nevertheless, current feature-aware LE methods are not de- signed to flexibly adapt to different evaluation criteria. In this work, we pro- pose a novel feature-aware LE method that takes the desired evaluation cri- terion into account during training. The method, named Feature-aware Cost- sensitive Label Embedding (FaCLE), encodes the criterion into the distance between embedded vectors with a deep Siamese network. The feature-aware characteristic of FaCLE is achieved with a loss function that jointly considers the embedding error and the feature-to-embedding error. Moreover, FaCLE is coupled with an additional-bit trick to deal with the possibly asymmetric criteria. Experiment results across different datasets and evaluation criteria demonstrate that FaCLE is superior to other state-of-the-art feature-aware LE methods and cost-sensitive LE methods.
APA, Harvard, Vancouver, ISO, and other styles
16

"Cost-Sensitive Selective Classification and its Applications to Online Fraud Management." Doctoral diss., 2019. http://hdl.handle.net/2286/R.I.53598.

Full text
Abstract:
abstract: Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card fraud in online transactions. Every online transaction comes with a fraud risk and it is the merchant's liability to detect and stop fraudulent transactions. Merchants utilize various mechanisms to prevent and manage fraud such as automated fraud detection systems and manual transaction reviews by expert fraud analysts. Many proposed solutions mostly focus on fraud detection accuracy and ignore financial considerations. Also, the highly effective manual review process is overlooked. First, I propose Profit Optimizing Neural Risk Manager (PONRM), a selective classifier that (a) constitutes optimal collaboration between machine learning models and human expertise under industrial constraints, (b) is cost and profit sensitive. I suggest directions on how to characterize fraudulent behavior and assess the risk of a transaction. I show that my framework outperforms cost-sensitive and cost-insensitive baselines on three real-world merchant datasets. While PONRM is able to work with many supervised learners and obtain convincing results, utilizing probability outputs directly from the trained model itself can pose problems, especially in deep learning as softmax output is not a true uncertainty measure. This phenomenon, and the wide and rapid adoption of deep learning by practitioners brought unintended consequences in many situations such as in the infamous case of Google Photos' racist image recognition algorithm; thus, necessitated the utilization of the quantified uncertainty for each prediction. There have been recent efforts towards quantifying uncertainty in conventional deep learning methods (e.g., dropout as Bayesian approximation); however, their optimal use in decision making is often overlooked and understudied. Thus, I present a mixed-integer programming framework for selective classification called MIPSC, that investigates and combines model uncertainty and predictive mean to identify optimal classification and rejection regions. I also extend this framework to cost-sensitive settings (MIPCSC) and focus on the critical real-world problem, online fraud management and show that my approach outperforms industry standard methods significantly for online fraud management in real-world settings.
Dissertation/Thesis
Doctoral Dissertation Computer Science 2019
APA, Harvard, Vancouver, ISO, and other styles
17

Lo, Kuo-Hsuan, and 羅國宣. "Cost-sensitive Encoding for Label Space Dimension Reduction Algorithms on Multi-label Classification." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/52429303095910750546.

Full text
Abstract:
碩士
國立臺灣大學
資訊網路與多媒體研究所
105
In the multi-label classification problem (MLC) , the goal is to classify each instance into multiple classes simultaneously. Different real-world applications often demand different evaluation criteria, and hence algorithms that are capable of taking the criteria into account are preferable. Such algorithms are called cost-sensitive multi-label classification (CSMLC) algorithms. Existing algorithms such as label space dimension reduction (LSDR) are able to solve the MLC problem efficiently, but none of the LSDR algorithms are cost-sensitive. On the other hand, most of the existing CSMLC algorithms suffer from high computational complexity during training or prediction when using general criteria. In this work, we propose a novel algorithm called Cost-Sensitive Encoding for label space Dimension Reduction (CSEDR) that makes existing LSDR algorithms cost-sensitive while keeping their efficiency. Our algorithm embeds cost information into the encoded space, and reduce the computational burden of learning within the encoded space by LSDR. Extensive experiments justify that our algorithm both improves the existing LSDR algorithms and results in better performance or lower label space dimension than state-of-the-art CSMLC algorithms across different evaluating criteria.
APA, Harvard, Vancouver, ISO, and other styles
18

Webster, Jennifer B. "Cost-Sensitive Classification Methods for the Detection of Smuggled Nuclear Material in Cargo Containers." Thesis, 2013. http://hdl.handle.net/1969.1/151104.

Full text
Abstract:
Classification problems arise in so many different parts of life – from sorting machine parts to diagnosing a disease. Humans make these classifications utilizing vast amounts of data, filtering observations for useful information, and then making a decision based on a subjective level of cost/risk of classifying objects incorrectly. This study investigates the translation of the human decision process into a mathematical problem in the context of a border security problem: How does one find special nuclear material being smuggled inside large cargo crates while balancing the cost of invasively searching suspect containers against the risk of al lowing radioactive material to escape detection? This may be phrased as a classification problem in which one classifies cargo containers into two categories – those containing a smuggled source and those containing only innocuous cargo. This task presents numerous challenges, e.g., the stochastic nature of radiation and the low signal-to-noise ratio caused by background radiation and cargo shielding. In the course of this work, we will break the analysis of this problem into three major sections – the development of an optimal decision rule, the choice of most useful measurements or features, and the sensitivity of developed algorithms to physical variations. This will include an examination of how accounting for the cost/risk of a decision affects the formulation of our classification problem. Ultimately, a support vector machine (SVM) framework with F -score feature selection will be developed to provide nearly optimal classification given a constraint on the reliability of detection provided by our algorithm. In particular, this can decrease the fraction of false positives by an order of magnitude over current methods. The proposed method also takes into account the relationship between measurements, whereas current methods deal with detectors independently of one another.
APA, Harvard, Vancouver, ISO, and other styles
19

Parameswaran, Kamalaruban. "Transitions, Losses, and Re-parameterizations: Elements of Prediction Games." Phd thesis, 2017. http://hdl.handle.net/1885/131341.

Full text
Abstract:
This thesis presents some geometric insights into three different types of two-player prediction games – namely general learning task, prediction with expert advice, and online convex optimization. These games differ in the nature of the opponent (stochastic, adversarial, or intermediate), the order of the players' move, and the utility function. The insights shed some light on the understanding of the intrinsic barriers of the prediction problems and the design of computationally efficient learning algorithms with strong theoretical guarantees (such as generalizability, statistical consistency, and constant regret etc.). The main contributions of the thesis are: • Leveraging concepts from statistical decision theory, we develop a necessary toolkit for formalizing the prediction games mentioned above and quantifying the objective of them. • We investigate the cost-sensitive classification problem which is an instantiation of the general learning task, and demonstrate the hardness of this problem by producing the lower bounds on the minimax risk of it. Then we analyse the impact of imposing constraints (such as corruption level, and privacy requirements etc.) on the general learning task. This naturally leads us to further investigation of strong data processing inequalities which is a fundamental concept in information theory. Furthermore, by extending the hypothesis testing interpretation of standard privacy definitions, we propose an asymmetric (prioritized) privacy definition. • We study efficient merging schemes for prediction with expert advice problem and the geometric properties (mixability and exp-concavity) of the loss functions that guarantee constant regret bounds. As a result of our study, we construct two types of link functions (one using calculus approach and another using geometric approach) that can re-parameterize any binary mixable loss into an exp-concave loss. • We focus on some recent algorithms for online convex optimization, which exploit the easy nature of the data (such as sparsity, predictable sequences, and curved losses) in order to achieve better regret bound while ensuring the protection against the worst case scenario. We unify some of these existing techniques to obtain new update rules for the cases when these easy instances occur together, and analyse the regret bounds of them.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography