Academic literature on the topic 'Cotype and type of Banach spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cotype and type of Banach spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cotype and type of Banach spaces"
Mastylo, Mieczyslaw. "Type and cotype of some Banach spaces." International Journal of Mathematics and Mathematical Sciences 15, no. 2 (1992): 235–40. http://dx.doi.org/10.1155/s0161171292000309.
Full textBasallote, Manuela, Manuel D. Contreras, and Santiago Díaz-Madrigal. "Uniformly convexifying operators in classical Banach spaces." Bulletin of the Australian Mathematical Society 59, no. 2 (April 1999): 225–36. http://dx.doi.org/10.1017/s0004972700032846.
Full textPietsch, Albrecht. "Type and cotype numbers of operators on Banach spaces." Studia Mathematica 96, no. 1 (1990): 21–37. http://dx.doi.org/10.4064/sm-96-1-21-37.
Full textKato, Mikio, and Yasuji Takahashi. "Type, Cotype Constants and Clarkson's Inequalities for Banach Spaces." Mathematische Nachrichten 186, no. 1 (1997): 187–96. http://dx.doi.org/10.1002/mana.3211860111.
Full textCuesta, Javier. "Type and Cotype Constants and the Linear Stability of Wigner’s Symmetry Theorem." Symmetry 11, no. 9 (September 3, 2019): 1107. http://dx.doi.org/10.3390/sym11091107.
Full textTorrea, José L., and Chao Zhang. "Fractional vector-valued Littlewood–Paley–Stein theory for semigroups." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 144, no. 3 (May 16, 2014): 637–67. http://dx.doi.org/10.1017/s0308210511001302.
Full textDing, Longyun. "Borel reductibility and Hölder (α) embeddability between Banach spaces." Journal of Symbolic Logic 77, no. 1 (March 2012): 224–44. http://dx.doi.org/10.2178/jsl/1327068700.
Full textKamińska, A., L. Maligranda, and L. E. Persson. "Indices, convexity and concavity of Calderón-Lozanovskii spaces." MATHEMATICA SCANDINAVICA 92, no. 1 (March 1, 2003): 141. http://dx.doi.org/10.7146/math.scand.a-14398.
Full textChilin, Vladimir I., Andrei V. Krygin, and Pheodor A. Sukochev. "Local uniform and uniform convexity of non-commutative symmetric spaces of measurable operators." Mathematical Proceedings of the Cambridge Philosophical Society 111, no. 2 (March 1992): 355–68. http://dx.doi.org/10.1017/s0305004100075459.
Full textVEOMETT, E., and K. WILDRICK. "SPACES OF SMALL METRIC COTYPE." Journal of Topology and Analysis 02, no. 04 (December 2010): 581–97. http://dx.doi.org/10.1142/s1793525310000422.
Full textDissertations / Theses on the topic "Cotype and type of Banach spaces"
Schoeman, Ilse Maria. "A theory of multiplier functions and sequences and its applications to Banach spaces / I.M. Schoeman." Thesis, North-West University, 2005. http://hdl.handle.net/10394/975.
Full textBERNARDINO, Adriano Thiago Lopes. "Contribuições à teoria multilinear de operadores absolutamente somantes." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17977.
Full textMade available in DSpace on 2016-10-11T18:36:34Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Adriano Thiago.pdf: 1085326 bytes, checksum: 498b2bcfd47961466edce3360e11a858 (MD5) Previous issue date: 2016-06-17
Neste trabalho estudamos algumas extens˜oes do conceito de operadores multilineares absolutamente somantes, generalizamos alguns resultados conhecidos e respondemos parcialmente alguns problemas abertos. Para a classe das aplica¸c˜oes absolutamente (p; q; r)-somantes, obtemos alguns resultados de coincidˆencia e inclus˜ao e mostramos que o ideal de polinˆomios absolutamente (p; q; r)-somantes n˜ao ´e corente, de acordo com a no¸c˜ao de ideais coerentes devida a D. Carando, V. Dimant e S. Muro. Para contornar esta falha, introduzimos o conceito de aplica¸c˜oes m´ultiplo (p; q; r)-somantes e mostramos que, com essa nova abordagem, o ideal de polinˆomios m´ultiplo (p; q; r)- somantes ´e coerente e compat´ıvel com o ideal de operadores lineares absolutamente (p; q; r)-somantes.
In this work we investigate some extensions of the concept of absolutely summing operators, generalize some known results and provide partial answers to some open questions. For the class of absolutely (p; q; r)-summing mappings we obtain some inclusion and coincidence results and show that the ideal of absolutely (p; q; r)-summing polynomials is not coherent, according to the notion of coherent ideals due to D. Carando, V. Dimant and S. Muro. In order to bypass this deficiency, we introduce the concept of multiple (p; q; r)-summing multilinear and polynomial operators and show that, with this new approach, the ideal of multiple (p; q; r)-summing polynomials is coherent and compatible with the ideal of absolutely (p; q; r)-summing operators.
Tarbard, Matthew. "Operators on Banach spaces of Bourgain-Delbaen type." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:4be220be-9347-48a1-85e6-eb0a30a8d51a.
Full textKlisinska, Anna. "Clarkson type inequalities and geometric properties of banach spaces." Licentiate thesis, Luleå tekniska universitet, Pedagogik, språk och Ämnesdidaktik, 1999. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-25946.
Full textGodkänd; 1999; 20070320 (ysko)
Malý, Lukáš. "Sobolev-Type Spaces : Properties of Newtonian Functions Based on Quasi-Banach Function Lattices in Metric Spaces." Doctoral thesis, Linköpings universitet, Matematik och tillämpad matematik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105616.
Full textAdhikari, Dhruba R. "Applications of degree theories to nonlinear operator equations in Banach spaces." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002158.
Full textAnzengruber, Stephan W., Bernd Hofmann, and Peter Mathé. "Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spaces." Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-99353.
Full textZahn, Mauricio. "Geometria dos espaços de Banach C([0, α ], X) para ordinais enumeráveis &alpha." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27082015-102002/.
Full textThe isomorphic classification of separable Banach spaces C(K) is due Milutin in the case when K are uncountable and to Bessaga and Pelczynski in the case when K are countable. In this work we prove a vectorial extention of this classification and provide several consequences, for example considering the infinite metric compact space K and Y a Banach space: 1. Let 1 < p < ∞ and Γ a infinite set, we classify, up to an isomorphism, the Banach spaces C(K, Y ⊕ lp(Γ)), in the case where the dual of Y contains no copy of lq, where 1/p+ 1/q =1. 2. We classify the Banach spaces C(K, Y ⊕ l∞(Γ)), when the density character of Y is strictly less that 2|Γ|. 3. We classify the Banach spaces C(K ×(S⊕ βΓ)) and C(S ⊕ (K× βΓ)) where S is an arbitrary dispersed compact and βΓ is the Stone-Cech compactification of Γ. We obtain also some cancellation laws for Banach spaces in the form C(K1,X)⊕ C(K2,Y), where K1 and K2 are metric compact Hausdorff spaces and X, Y Banach spaces satisfying appropriate conditions. We established also a quasi-dichotomy theorem envolving the C(K,X) spaces, where X is of finite cotype. Finally, we present some upper bounds of distortions of positive isomorphisms of C([0,ωk]) on C([0,ω]) and also of C([0,ω]) on C([0,ωk]), k∈ N, k ≥ 2.
Books on the topic "Cotype and type of Banach spaces"
Orlik, Lyubov', and Galina Zhukova. Operator equation and related questions of stability of differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1061676.
Full textGermany) International Conference on p-adic Functional Analysis (13th 2014 Paderborn. Advances in non-Archimedean analysis: 13th International Conference on p-adic Functional Analysis, August 12-16, 2014, University of Paderborn, Paderborn, Germany. Edited by Glöckner Helge 1969 editor, Escassut Alain editor, and Shamseddine Khodr 1966 editor. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textRhomari, Noureddine. On Bernstein Type and Maximal Inequalities for Dependent Banach-Valued Random Vectors and Applications. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.14.
Full textAdvances In Ultrametric Analysis 12th International Conference On Padic Functional Analysis July 26 2012 University Of Manitoba Winnipeg Canada. American Mathematical Society, 2013.
Find full textBook chapters on the topic "Cotype and type of Banach spaces"
Hytönen, Tuomas, Jan van Neerven, Mark Veraar, and Lutz Weis. "Type, cotype, and related properties." In Analysis in Banach Spaces, 53–162. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69808-3_2.
Full textLedoux, Michel, and Michel Talagrand. "Type and Cotype of Banach Spaces." In Probability in Banach Spaces, 236–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-20212-4_11.
Full textDiagana, Toka. "Metric, Banach, and Hilbert Spaces." In Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, 1–41. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00849-3_1.
Full textDiagana, Toka. "Linear Operators on Banach Spaces." In Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, 43–77. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00849-3_2.
Full textOdyniec, Włodzimierz, and Grzegorz Lewicki. "Kolmogorov’s type criteria for minimal projections." In Minimal Projections in Banach Spaces, 94–130. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0094531.
Full textZinn, Joel. "Universal Donsker Classes and Type 2." In Probability in Banach Spaces 6, 283–88. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4684-6781-9_16.
Full textAgarwal, Ravi P., Donal O’Regan, and D. R. Sahu. "Geometric Coefficients of Banach Spaces." In Fixed Point Theory for Lipschitzian-type Mappings with Applications, 127–74. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-75818-3_3.
Full textAgarwal, Ravi P., Donal O’Regan, and D. R. Sahu. "Existence Theorems in Banach Spaces." In Fixed Point Theory for Lipschitzian-type Mappings with Applications, 211–78. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-75818-3_5.
Full textGawarecki, L., and V. Mandrekar. "On Girsanov Type Theorem for Anticipative Shifts." In Probability in Banach Spaces, 9, 301–16. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0253-0_20.
Full textKokoszka, Piotr S., and Murad S. Taqqu. "Asymptotic Dependence of Stable Self-Similar Processes of Chentsov Type." In Probability in Banach Spaces, 8:, 152–65. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0367-4_11.
Full textConference papers on the topic "Cotype and type of Banach spaces"
SATCO, B. "INTEGRAL INCLUSIONS IN BANACH SPACES USING HENSTOCK-TYPE INTEGRALS." In Applied Analysis and Differential Equations - The International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708229_0027.
Full textUngureanu, Viorica Mariela, and Vasile F. Drǎgan. "Nonlinear differential equations of Riccati type on ordered Banach spaces." In The 9'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2012. http://dx.doi.org/10.14232/ejqtde.2012.3.17.
Full textAiena, Pietro. "Weyl type theorems for bounded linear operators on Banach spaces." In Proceedings of the Fourth International School — In Memory of Professor Antonio Aizpuru Tomás. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814335812_0002.
Full textAuwalu, Abba, and Ali Denker. "Chatterjea-type fixed point theorem on cone rectangular metric spaces with banach algebras." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0040595.
Full textQin, Haiyong, and Xin Zuo. "Controllability of nonlocal boundary conditions for impulsive differential systems of mixed type in banach spaces." In 2013 10th IEEE International Conference on Control and Automation (ICCA). IEEE, 2013. http://dx.doi.org/10.1109/icca.2013.6565021.
Full text