Academic literature on the topic 'Couette flow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Couette flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Couette flow"

1

Sanochkin, Yu V. "Thermocapillary couette flow." Fluid Dynamics 22, no. 5 (1988): 798–99. http://dx.doi.org/10.1007/bf01051705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lueptow, Richard. "Taylor-Couette flow." Scholarpedia 4, no. 11 (2009): 6389. http://dx.doi.org/10.4249/scholarpedia.6389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sarip, Sarip. "FENOMENA ALIRAN TAYLOR COUETTE POISEUILLE DENGAN ALIRAN AKSIAL-RADIAL DI DALAM SILINDER KONSENTRIS." Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan 5, no. 1 (May 4, 2021): 145. http://dx.doi.org/10.24912/jmstkik.v5i1.9058.

Full text
Abstract:
The filtering process using membrane technology is a modification of Taylor-Couette flow, which is a flow between two concentric cylinders that rotates with axial and radial flow and utilizes the vortex that occurs in Taylor-Couette flow which can increase membrane efficiency. The purpose this study was to determine the phenomenon of the Taylor Couette Poiseuille flow with axial-radial flow in concentric cylinders. The study was usesd a test section in the form of two concentric cylinders, in which the inner cylinder rotates as a membrane while the outer cylinder is stationary with a height of 500 mm, a radius ratio of 0.72; aspect ratio 40 and cylinder gap 12.5 mm. The inner cylinder rotation is set using an inverter to get the expected rotation. The phenomenon of observing flow patterns is done by using digital cameras on different inner cylinder turns. The results showed that changes in the inner cylinder rotations affect the flow pattern of Taylor-Couette that is formed in stages, namely laminar Couette, Taylor-vortex which is characterized by the appearance of paired vortexes, opposite directions that occur along the flow, wavy vortex and turbulant vortex. Changes in membrane porousity also show the effect of Taylor Couette Poiseuille flow phenomena with axial-radial flow which is higher, the transition to vortex occurs at higher Taylor numbers also means that Couette-Poiseuille flow stability increased. Keywords: axial-radial flow; Concentris cylinders; Taylor-Couette flow phenomenon. AbstrakProses penyaringan yang menggunakan teknologi membran merupakan modifikasi dari aliran Taylor-Couette, yaitu aliran diantara dua buah silinder konsentris yang berputar dengan aliran aksial dan radial serta memanfaatkan vortex yang terjadi pada aliran Taylor-Couette yang dapat meningkatkan efisiensi membran. Tujuan penelitian dilakukan untuk mengetahui fenomena aliran Taylor Couette Poiseuille dengan aliran aksial-radial di dalam silinder konsentris. Penelitian menggunakan seksi uji berupa dua silinder konsentris, yang mana silinder bagian dalam berputar sebagai membran sedangkan silinder luar diam dengan tinggi 500 mm, perbandingan radius 0,72; perbandingan aspek 40 dan celah silinder 12,5 mm. Putaran silinder bagian dalam diatur menggunakan inverter untuk mendapatkan putaran yang diharapkan. Fenomena pengamatan pola aliran dilakukan dengan menggunakan camera digital pada putaran silinder bagian dalam yang berbeda-beda. Hasil penelitian menunjukkan bahwa perubahan putaran silinder bagian dalam mempengaruhi pola aliran Taylor-Couette yang terbentuk secara berjenjang yaitu Couette laminar, Taylor-vortex yang ditandai dengan munculnya vortex yang saling berpasangan, berlawanan arah yang terjadi di sepanjang aliran, wavy vortex dan vortex turbulant. Perubahan porousitas membran juga menunjukkan pengaruh fenomena aliran Taylor Couette Poiseuille dengan aliran aksial-radial yang semakin tinggi maka transisi terjadinya vortex terjadi pada bilangan Taylor yang lebih tinggi pula berarti stabilitas aliran Couette-Poiseuille meningkat.
APA, Harvard, Vancouver, ISO, and other styles
4

Eagles, P. M. "Ramped Taylor-Couette flow." Physical Review A 31, no. 3 (March 1, 1985): 1955–56. http://dx.doi.org/10.1103/physreva.31.1955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Babkin, V. A. "Plane Turbulent Couette Flow." Journal of Engineering Physics and Thermophysics 76, no. 6 (November 2003): 1251–54. http://dx.doi.org/10.1023/b:joep.0000012026.19646.c6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aristov, S. N., and E. Yu Prosviryakov. "Nonuniform convective Couette flow." Fluid Dynamics 51, no. 5 (September 2016): 581–87. http://dx.doi.org/10.1134/s001546281605001x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barenghi, C. F., and C. A. Jones. "Modulated Taylor–Couette flow." Journal of Fluid Mechanics 208 (November 1989): 127–60. http://dx.doi.org/10.1017/s0022112089002806.

Full text
Abstract:
The onset of instability in temporally modulated Taylor-Couette flow is considered. Critical Reynolds numbers have been found by computing Floquet exponents. We find that frequency modulation of the inner cylinder introduces a small destabilization, in agreement with the narrow-gap theory of Hall and some recent experiments of Ahlers. We review the previous computational literature on this problem, and find a number of contradictory results: the source of these discrepancies is examined, and a satisfactory resolution is achieved. Nonlinear axisymmetric calculations on the modulated problem have been done with an initial value code using a spectral method with collocation. The results are compared satisfactorily with Ahlers' measurements.At low modulation frequency, a large destabilization has been observed in past experiments. We show that this cannot be explained on the basis of perfect bifurcation theory: an analysis of the modulated amplitude equation shows that very small imperfections can substantially affect the behaviour at low frequency by giving rise to ‘transient’ vortices at subcritical Reynolds number. We argue that these ‘transient’ vortices are the source of the large destabilization seen in some experiments. Modelling the imperfections in the initial-value code provides additional confirmation of this effect.
APA, Harvard, Vancouver, ISO, and other styles
8

PERALTA, C., A. MELATOS, M. GIACOBELLO, and A. OOI. "Superfluid spherical Couette flow." Journal of Fluid Mechanics 609 (July 31, 2008): 221–74. http://dx.doi.org/10.1017/s002211200800236x.

Full text
Abstract:
We solve numerically for the first time the two-fluid Hall–Vinen–Bekarevich–Khalatnikov (HVBK) equations for an He-II-like superfluid contained in a differentially rotating spherical shell, generalizing previous simulations of viscous spherical Couette flow (SCF) and superfluid Taylor–Couette flow. The simulations are conducted for Reynolds numbers in the range 1 × 102≤Re≤3 × 104, rotational shear 0.1≤ΔΩ/Ω≤0.3, and dimensionless gap widths 0.2≤δ≤0.5. The system tends towards a stationary but unsteady state, where the torque oscillates persistently, with amplitude and period determined by δ and ΔΩ/Ω. In axisymmetric superfluid SCF, the number of meridional circulation cells multiplies as Re increases, and their shapes become more complex, especially in the superfluid component, with multiple secondary cells arising for Re > 103. The torque exerted by the normal component is approximately three times greater in a superfluid with anisotropic Hall–Vinen (HV) mutual friction than in a classical viscous fluid or a superfluid with isotropic Gorter–Mellink (GM) mutual friction. HV mutual friction also tends to ‘pinch’ meridional circulation cells more than GM mutual friction. The boundary condition on the superfluid component, whether no slip or perfect slip, does not affect the large-scale structure of the flow appreciably, but it does alter the cores of the circulation cells, especially at lower Re. As Re increases, and after initial transients die away, the mutual friction force dominates the vortex tension, and the streamlines of the superfluid and normal fluid components increasingly resemble each other. In non-axisymmetric superfluid SCF, three-dimensional vortex structures are classified according to topological invariants. For misaligned spheres, the flow is focal throughout most of its volume, except for thread-like zones where it is strain-dominated near the equator (inviscid component) and poles (viscous component). A wedge-shaped isosurface of vorticity rotates around the equator at roughly the rotation period. For a freely precessing outer sphere, the flow is equally strain- and vorticity-dominated throughout its volume. Unstable focus/contracting points are slightly more common than stable node/saddle/saddle points in the viscous component, but not in the inviscid component. Isosurfaces of positive and negative vorticity form interlocking poloidal ribbons (viscous component) or toroidal tongues (inviscid component) which attach and detach at roughly the rotation period.
APA, Harvard, Vancouver, ISO, and other styles
9

Peralta, C., A. Melatos, M. Giacobello, and A. Ooi. "Superfluid spherical Couette flow." Journal of Physics: Conference Series 150, no. 3 (February 1, 2009): 032081. http://dx.doi.org/10.1088/1742-6596/150/3/032081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rao, D. P., and R. C. Mehta. "Torsional-Couette-Flow HiGee." Chemical Engineering and Processing - Process Intensification 147 (January 2020): 107722. http://dx.doi.org/10.1016/j.cep.2019.107722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Couette flow"

1

Welsh, Stephanie. "Compressible Taylor-Couette flow." Thesis, University of Leeds, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616475.

Full text
Abstract:
Incompressible Taylor-Couette flow has been studied extensively over the years. However, the compressible system has been largely ignored with only a few notable studies. The present thesis aims to explore the compressible Taylor-Couette system for a large range of parameters. The compressible equations have been linearised and a spectral method was applied to solve the system using a MATLAB-routine. In Chapter 2, we discuss the analysis performed to solve the system and explain the basic concepts and phenomena we expect to find. We also explain the numerical methods used. Chapter 3 discusses the case in which the outer cylinder remains motionless. The most important parameters, the Mach and Prandtl number and the radius ratio, are varied. In Chapters 4 and 5, the same procedure is applied to the cases of the co- and counter-rotating cylinders, respectively.
APA, Harvard, Vancouver, ISO, and other styles
2

Blum, Kevin M. "Acoustically probed Taylor-Couette flow apparatus." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/27925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Youd, Anthony John. "Bifurcations in forced Taylor-Couette flow." Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Åsén, Per-Olov. "Stability of plane Couette flow and pipe Poiseuille flow." Doctoral thesis, KTH, Numerisk Analys och Datalogi, NADA, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4368.

Full text
Abstract:
This thesis concerns the stability of plane Couette flow and pipe Poiseuille flow in three space dimensions. The mathematical model for both flows is the incompressible Navier--Stokes equations. Both analytical and numerical techniques are used. We present new results for the resolvent corresponding to both flows. For plane Couette flow, analytical bounds on the resolvent have previously been derived in parts of the unstable half-plane. In the remaining part, only bounds based on numerical computations in an infinite parameter domain are available. Due to the need for truncation of this infinite parameter domain, these results are mathematically insufficient. We obtain a new analytical bound on the resolvent at s=0 in all but a compact subset of the parameter domain. This is done by deriving approximate solutions of the Orr--Sommerfeld equation and bounding the errors made by the approximations. In the remaining compact set, we use standard numerical techniques to obtain a bound. Hence, this part of the proof is not rigorous in the mathematical sense. In the thesis, we present a way of making also the numerical part of the proof rigorous. By using analytical techniques, we reduce the remaining compact subset of the parameter domain to a finite set of parameter values. In this set, we need to compute bounds on the solution of a boundary value problem. By using a validated numerical method, such bounds can be obtained. In the thesis, we investigate a validated numerical method for enclosing the solutions of boundary value problems. For pipe Poiseuille flow, only numerical bounds on the resolvent have previously been derived. We present analytical bounds in parts of the unstable half-plane. Also, we derive a bound on the resolvent for certain perturbations. Especially, the bound is valid for the perturbation which numerical computations indicate to be the perturbation which exhibits largest transient growth. The bound is valid in the entire unstable half-plane. We also investigate the stability of pipe Poiseuille flow by direct numerical simulations. Especially, we consider a disturbance which experiments have shown is efficient in triggering turbulence. The disturbance is in the form of blowing and suction in two small holes. Our results show the formation of hairpin vortices shortly after the disturbance. Initially, the hairpins form a localized packet of hairpins as they are advected downstream. After approximately $10$ pipe diameters from the disturbance origin, the flow becomes severely disordered. Our results show good agreement with the experimental results. In order to perform direct numerical simulations of disturbances which are highly localized in space, parallel computers must be used. Also, direct numerical simulations require the use of numerical methods of high order of accuracy. Many such methods have a global data dependency, making parallelization difficult. In this thesis, we also present the process of parallelizing a code for direct numerical simulations of pipe Poiseuille flow for a distributed memory computer.
QC 20100825
APA, Harvard, Vancouver, ISO, and other styles
5

Carnevali, Emanuele. "Simulation of a viscoelastic Taylor-Couette flow." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
Since the early stages of Computational Rheology the Taylor-Couette geometry received a lot of attention from researchers, up to becoming one of the benchmark problem of viscoleastic flows. In particular, the circular bounding geometry, together with the shear driven characteristic, allowed to gain relevant insight about the relation between the distortion of polymer conformation, and the arise of elastic instabilities. The present document has the purpose of presenting the thesis project results, concerning the numerical investigation of a Taylor-Couette geometry through the newly developed viscoelastic toolbox Rheotool of OpenFOAM. The simulations have been performed for increasing values of Weissemberg number, with the aim of detecting the effect of polymer stretching on the arise and development of particular fluid dynamic structures; furthermore, to understand the effect of space refinement on motion evolution, three different meshes have been used, exploiting also a new available stabilization technique based on stress-velocity coupling to avoid numerical breakdown.
APA, Harvard, Vancouver, ISO, and other styles
6

Deguchi, Kengo. "Finite amplitude solutions in sliding Couette flow." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pudjiono, Putut Irwan. "Protein precipitation in a Couette flow device." Thesis, University of Manchester, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Willis, Ashley Phillip. "The hydromagnetic stability of Taylor Couette flow." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MATUTTI, OSCAR CORONADO. "TAYLOR-COUETTE INSTABILITY IN VISCOPLASTIC FLUID FLOW." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2814@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
A superposição de um escoamento circular de Couette e um fluxo com gradiente de pressão axial, através de um espaço anular ocorre em muitas aplicações práticas, tais como: reatores químicos catalíticos, filtros, extratores líquido- líquido, mancais e o fluxo de retorno de lamas de perfuração entre a coluna de perfuração rotatória e a formação rochosa na perfuração de poços produtores de petróleo e gás. As linhas de corrente curvadas do fluxo circular de Couette podem causar uma instabilidade centrífuga que produz vórtices toroidais, conhecidos como vórtices de Taylor. A presença destes vórtices muda as características hidrodinâmicas e a transferência de calor no processo. Em conseqüência, é muito importante ser capaz de prever o aparecimento da instabilidade. A maioria das análises numéricas e experimentais disponíveis na literatura são para fluidos Newtonianos e viscoelásticos (soluções polimericas). Neste trabalho, o efeito das propriedades viscoplásticas de suspensões de altas concentrações neste tipo de escoamento e nas condições críticas para o aparecimento de vórtices são determinadas teoricamente através da solução das equações de conservação. As equações diferenciais foram integradas pelo método de elementos finitos-Galerkin e o sistema de equações algébricas não lineares resultante foi resolvido pelo método de Newton.
The superposition of a circular Couette flow and a pressure- driven axial flow in an annulus occurs in many practical applications, such as catalytic chemical reactors, filtration devices, liquid-liquid extractors, journal bearings, and the return flow of drilling mud between the rotating drill string and the stationary wall in oil and gas well drilling. The curved streamlines of the circular Couette flow can cause a centrifugal instability leading to toroidal vortices, well known as Taylor vortices. The presence of these vortices changes the hydrodynamic and heat transfer characteristics of the process. Therefore, it is very important to be able to predict the onset of instability. Most of the available theoretical and experimental analyses are for Newtonian and viscoelastic (polymeric solutions) liquids. In this work, the effect of the viscoplastic properties of high concentration suspensions on the onset of the Taylor vortices are determined theoretically by solving the conservation equations and searching the critical conditions. The differential equations were solved by the Galerkin / finite element method and the resulting set of non-linear algebraic equations, by Newtons method.
APA, Harvard, Vancouver, ISO, and other styles
10

Topayev, Sultan. "Taylor-Couette flow for shear-thinning fluids." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0301.

Full text
Abstract:
On s’intéresse aux instabilités secondaires dans un écoulement de Taylor-Couette en grand entrefer pour un fluide rhéofluidifiant. Des études théorique, expérimentale et numérique ont été mises en œuvre. D’un point de vue théorique, une analyse faiblement non linéaire a été développée en régime dit TVF (Taylor Vortex Flow) pour rendre compte des premiers effets de la non linéarité de la loi de comportement sur la structure de l’écoulement. Le comportement rhéologique du fluide est décrit par le modèle de Carreau. Des effets significatifs du caractère rhéofluidifiant ont été mis en évidence : Les rouleaux de Taylor ont une taille plus petite et sont écrasés contre le cylindre intérieur. Le jet radial sortant est plus fin et beaucoup plus intense que le jet radial entrant. Par conservation de débit, la zone de jet radial entrant est plus étendue. Ces modifications sont probablement à l’origine des instabilités des rouleaux de Taylor observées expérimentalement et numériquement. Le dispositif expérimental utilisé est constitué de deux cylindres coaxiaux, où le cylindre intérieur est en rotation et le cylindre extérieur est fixe. Le rapport des rayons est "eta = 0.4" et le rapport d’aspect "L = 32". Les fluides utilisés sont des solutions de xanthane à différentes concentrations ainsi qu’une solution de glycérole, comme fluide newtonien de référence. La structure de l’écoulement est déterminée par visualisation et par mesures de vitesse par PIV 2D. Pour la solution de glycérole, après la bifurcation primaire à "Re = Re_c", le régime TVF stationnaire reste stable jusqu’à pratiquement "7 Re_c". A partir de cette dernière valeur, les rouleaux de Taylor perdent leur stabilité vis-à-vis de perturbations azimutales. Dans le cas des solutions de xanthane, les valeurs du nombre de Reynolds à partir desquelles, les rouleaux de Taylor apparaissent sont en accord avec la théorie linéaire comme dans le cas Newtonien. En augmentant le nombre de Reynolds, les rouleaux de Taylor deviennent instables, mais cette-fois-ci vis-à vis de perturbations axiales. Ces instabilités peuvent être considérées comme des instabilités d’Eckhaus généralisées. Elles se caractérisent par un processus récurrent de création et d’appariement de rouleaux. L’augmentation du nombre de sites où se produit ce processus conduit à un écoulement chaotique (turbulence de phase). Il convient de noter que plus les effets rhéofluidifiants sont importants, et plus la gamme de Re où le régime TVF est stable, est réduite. Ces résultats ont été confirmés par une simulation numérique 2D des équations de conservation instationnaires, en utilisant le solveur de FreeFem++. Le cas des fluides rhéofluidifiants avec seuil de contrainte a été entamé , en se focalisant sur le cas particulier où il existe une zone non-cisaillée attachée au cylindre extérieur
This work deals with secondary instabilities in a Taylor-Couette flow with a wide gap in the case of shear-thinning fluids. Theoretical, experimental and numerical approaches are used. From theoretical point of view, a weakly nonlinear analysis has been done to account for the nonlinear effects of constitutive law on the flow structure of the Taylor Vortex Flow (TVF) regime. The shear-thinning behavior of the fluid are characterized by the Carreau model. Significant effects of shear-thinning have been demonstrated: Taylor vortices are smaller in size and shifted toward the inner cylinder. The radial outflow jet is thinner and stronger than the radial inflow jet. This asymmetry leads to an increase of the radial inflow zone. These changes in the flow structure are probably the origin of the secondary instabilities of Taylor vortices observed experimentally and numerically. The experimental setup consist of two coaxial cylinders where the inner cylinder is rotating and the outer one is at rest. The radius ratio is "eta = 0.4" and the aspect ratio is "L = 32". The fluids used are aqueous xanthan gum solutions at different concentrations and aqueous glycerol solution as a reference Newtonian fluid. The flow structure is analyzed through the visualization and by the 2D PIV velocity measurements. For the aqueous glycerol solution, once the primary bifurcation is reached at "Re = Re_c", the stationary TVF regime remains stable up to practically "Re = 7 Re_c". From this values the Taylor vortices lose its stability with respect to azimuthal disturbances. In the case of the aqueous xanthan gum solutions the values of the Reynolds number from which the Taylor vortices appear are in agreement with a linear theory as for the case of Newtonian fluid. By increasing the Reynolds number, the Taylor vortices become unstable, but with respect to axial disturbances. There instabilities can be considered as generalized Eckhaus instabilities. They are characterized by the continuous processes of creation and merging of vortices. The increase in the number of axial positions where these processes occur leads to the chaotic flow (phase turbulence). It should be noted that the stronger shear-thinning effects, the smaller the range of stable TVF regime. These results have been confirmed by a 2D numerical simulation of unsteady conservation equations, using PDE solver Freefem++. The case of shear-thinning with a stress-yield was started as well, focusing on the particular case when the unyielded zone is attached to the outer cylinder
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Couette flow"

1

Blum, Kevin M. Acoustically probed Taylor-Couette flow apparatus. Monterey, Calif: Naval Postgraduate School, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Coward, Adrian V. Stability of oscillatory two phase Couette flow. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

L, Husaini M., and Langley Research Center, eds. Finite length effects in Taylor-Couette flow. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andereck, C. David. Ordered and Turbulent Patterns in Taylor-Couette Flow. Boston, MA: Springer US, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Andereck, C. David, and F. Hayot, eds. Ordered and Turbulent Patterns in Taylor-Couette Flow. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3438-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

D, Sather, and United States. National Aeronautics and Space Administration., eds. Structure parameters in rotating Couette-Poiseuille channel flow. [Washington, DC: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

David, Andereck C., Hayot F, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on Ordered and Turbulent Patterns in Taylor-Couette Flow (1991 : Columbus, Ohio), eds. Ordered and turbulent patterns in Taylor-Couette flow. New York: Plenum Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1957-, Erlebacher Gordon, Hussaini M. Yousuff, and Institute for Computer Applications in Science and Engineering., eds. On the linear stability of compressible plane couette flow. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

F, Hatay Ferhat, and United States. National Aeronautics and Space Administration., eds. Numerical simulation of stability and stabiity control of high speed compressible rotating couette flow: Final report for NASA grant NAG-1-1103. [Washington, DC: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

E, Zorumski W., Rawls John W, and Langley Research Center, eds. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Couette flow"

1

Gooch, Jan W. "Couette Flow." In Encyclopedic Dictionary of Polymers, 174. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barenghi, Carlo F. "Superfluid Couette flow." In Physics of Rotating Fluids, 379–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45549-3_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Junk, Markus, and Christoph Egbers. "Isothermal spherical Couette flow." In Physics of Rotating Fluids, 215–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45549-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burton, Ralph A. "Steady Turbulent Couette Flow." In Heat, Bearings, and Lubrication, 60–67. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1248-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tillmark, Nils, and P. Henrik Alfredsson. "Turbulence in Plane Couette Flow." In Advances in Turbulence IV, 237–41. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1689-3_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Racina, Anna, Zhen Liu, and Matthias Kind. "Mixing in Taylor-Couette Flow." In Micro and Macro Mixing, 125–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04549-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Streett, C. L., and M. Y. Hussaini. "Finite Length Taylor Couette Flow." In Stability of Time Dependent and Spatially Varying Flows, 312–34. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4724-1_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pfister, Gerd. "Deterministic chaos in rotational Taylor-Couette flow." In Flow of Real Fluids, 199–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-15989-4_84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meseguer, A., F. Mellibovsky, F. Marques, and M. Avila. "Shear instabilities in Taylor-Couette flow." In Springer Proceedings in Physics, 115–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03085-7_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tillmark, N., and P. H. Alfredsson. "Experiments On Rotating Plane Couette Flow." In Advances in Turbulence VI, 391–94. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0297-8_111.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Couette flow"

1

Rüdiger, Günther. "Linear theory of MHD Taylor-Couette flow." In MHD COUETTE FLOWS: Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tilgner, A. "Differential rotation in precession driven flow." In MHD COUETTE FLOWS: Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hsu, Hsin-Wei, Jian-Bin Hsu, Wei Lo, and Chao-An Lin. "SECONDARY FLOW STRUCTURE OF TURBULENT COUETTE-POISEUILLE AND COUETTE FLOWS INSIDE A SQUARE DUCT FLOWS." In Sixth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/tsfp6.800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andersson, H., and B. Pettersson. "Modelling plane turbulent Couette flow." In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hsu, Hsin-Wei, Jian-Bin Hsu, Wei Lo, and Chao-An Lin. "LARGE EDDY SIMULATIONS OF TURBULENT COUETTE-POISEUILLE AND COUETTE FLOWS INSIDE A SQUARE DUCT." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.1270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hollerbach, Rainer. "End-effects in rapidly rotating cylindrical Taylor-Couette flow." In MHD COUETTE FLOWS: Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ji, Hantao. "Magnetorotational Instability in a Short Couette Flow of Liquid Gallium." In MHD COUETTE FLOWS: Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Frick, P. "Magnetic Field Induction in a Toroidal Screw Flow of Liquid Gallium." In MHD COUETTE FLOWS: Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Youd, Anthony J. "Hydromagnetic instabilities in Taylor-Couette flow at finite and infinite aspect ratios." In MHD COUETTE FLOWS: Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dobler, Wolfgang. "Taylor-Couette flow with an imposed magnetic field — linear and nonlinear results." In MHD COUETTE FLOWS: Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832144.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Couette flow"

1

Danberg, James E. Evaporation into Couette Flow. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada478033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

White, Annie, and Jacob Riglin. Taylor-Couette Flow Modeling. Office of Scientific and Technical Information (OSTI), September 2024. http://dx.doi.org/10.2172/2448298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Conley, A. J., and H. B. Keller. Wavy Taylor vortices in plane Couette flow. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/519102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Criminale, W., B. Long, and Mei Zhu. General three-dimensional disturbances to inviscid Couette flow. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6153081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

W. Liu. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/950772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Murray, B. T., G. B. McFadden, and S. R. Coriell. Stabilization of Taylor-Couette flow due to time-periodic outer cylinder oscillation. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.90-4283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ferguson, R. D., and Michael B. Frish. Measurements of Vorticity Vectors in Couette Flow with the Vorticity Optical Probe. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada276412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Renardy, Michael, and Yuriko Renardy. Linear Stability of Plane Couette Flow of an Upper Convected Maxwell Fluid. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada167927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ethan Schartman. Development of a Couette-Taylor flow device with active minimization of secondary circulation. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/950503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elliott, K. E., G. Ahmadi, and W. Kvasnak. Couette flows of a granular monolayer: An experimental study. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/78828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography