Academic literature on the topic 'Coulées pyroclastiques'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coulées pyroclastiques.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Coulées pyroclastiques"

1

Ross, Pierre-Simon, and Patrick Mercier-Langevin. "Igneous Rock Associations 14. The Volcanic Setting of VMS and SMS Deposits: A Review." Geoscience Canada 41, no. 3 (August 29, 2014): 365. http://dx.doi.org/10.12789/geocanj.2014.41.045.

Full text
Abstract:
Volcanogenic massive sulphide (VMS) deposits and seafloor massive sulphide (SMS) deposits have a spatial and genetic connection with contemporaneous volcanism. The control exerted by the volcanic succession (e.g. rock type, architecture and facies) on the nature and style of the ore and alteration (e.g. subsea-floor replacement vs. exhalative, or discordant vs. conformable) is significant, making it imperative to understand the local volcanology in developing better genetic and exploration models. Three VMS deposit groupings collectively represent a high proportion of cases: (1) deposits associated with complexes of submarine felsic domes, cryptodomes, lobe-hyaloclastite flows and/or blocky lavas, and their reworked equivalents; (2) deposits associated with thick piles of pumiceous felsic pyroclastic rocks, suggesting a caldera context; and (3) deposits associated with mafic volcanic footwalls and/or with sedimentary hosts, including significant deposits such as Windy Craggy (~300 Mt) in British Columbia. With regard to number (2) above, demonstrating the presence of a caldera in ancient successions can be difficult because silicic calderas tend to be large and exceed the limits of deposit-scale investigations. Furthermore, there is no consensus regarding what a large submarine caldera should look like, i.e., no accepted facies model exists showing the distribution of rock types. But without thick piles of pumiceous felsic pyroclastic deposits, arguing for a large submarine caldera is a challenge.SOMMAIRELes gisements de sulfures massifs volcanogènes (SMV) et leurs équivalents actuels au fonds des mers ont une connexion spatiale et génétique avec le volcanisme. La succession volcanique – composition, architecture, faciès – exerce un contrôle important sur la nature et le style de minéralisation et d’altération hydrothermale (p. ex. minéralisation mise en place par remplacement sous le fond marin vs. exhalative; altération discordante ou plus concordante). Il est donc impératif de connaître la volcanologie des roches encaissantes pour développer de meilleurs modèles génétiques et d’exploration. Trois groupes de gisements couvrant collectivement une grande proportion des cas sont discutés ici. Premièrement, plusieurs gisements sont associés à des complexes de dômes felsiques sous-marins, des cryptodômes, des coulées de type lobes-hyaloclastite et/ou des laves en blocs, ou leur équivalents resédimentés. Deuxièmement, certains gisements sont associés à d’épaisses séquences de roches pyroclastiques felsiques ponceuses, suggérant un contexte de caldeira. Troisièmement, plusieurs gisements sont associés avec des roches volcaniques mafiques et/ou avec des roches sédimentaires, par exemple l’important dépôt de Windy Craggy (~300 Mt) en Colombie-Britannique. Concernant les contextes de type 2, la démonstration d’une caldeira peut être difficile dans les successions anciennes, car les caldeiras felsiques sont de grandes dimensions, excédant les limites des études à l’échelle du gîte. De plus, il n’existe pas de consensus sur un modèle de faciès pour une grande caldeira sous-marine. Mais sans la présence d’épais empilements de roches pyroclastiques felsiques ponceuses, il est difficile d’argumenter en faveur d’une caldeira sous-marine.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Coulées pyroclastiques"

1

Formenti, Yvan. "Etude de la production et de la mobilité des écoulements pyroclastiques à Montserrat (Antilles)." Clermont-Ferrand 2, 2002. http://www.theses.fr/2002CLF21350.

Full text
Abstract:
L'éruption actuelle (depuis 1995) de la Soufrière Hills de Montserrat (Antilles) a produit 2 types de coulées pyroclastiques : des coulées à blocs et cendres et des coulées ponceuses. Lors de cette éruption, les coulées ponceuses sont plus mobiles que les coulées à blocs de cendres. Le travail a consisté à étudier le rôle des fluides magmatiques lors de la production et de la mobilité des coulées pyroclastiques de Montserrat. -L'estimation des paramètres physiques des explosions vulcaniennes de 1997 à Montserrat, grâce à l'observation des vitesses de sortie du matériel à l'évent, a montré une augmentation de l'intensité des explosions au cours des premières secondes. Les teneurs en eau et des pressions estimées au moment de la fragmentation traduisent le gradient de pression régnant dans la partie supérieure du conduit. Une grande partie des volatils présents dans le magma est alors utilisée à la fragmentation explosive du magma. -L'étude des vésicularités au pycnomètre à hélium et des textures au MEB des échantillons des dépôts des deux types de coulées pyroclastiques a contraint la capacité de ces particules à retenir des gaz magmatiques pendant leur mise en place. Cette étude a montré que seules les ponces de coulées ponceuses sont susceptibles de garder des gaz magmatiques. Entre 2 et 10% de leur volume est constitué de vésicules isolées, à l'inverse des vésicules des échantillons de dômes qui sont entièrement connectées au milieu ambiant. -La dernière partie s'est attachée à estimer les vitesses de gaz libérés au cours des écoulements pyroclastiques de Montserrat. Deux sources de gaz ont été étudiées : la diffusion de l'eau du verre silicaté et la libération de l'eau exsolvée des vésicules isolées par abrasion des ponces. Seule cette dernière source semble être en mesure de fluidiser une partie des écoulements ponceux, cela pourrait expliquer la différence de mobilité entre les coulées à blocs et cendres et les coulées ponceuses observées à Montserrat
APA, Harvard, Vancouver, ISO, and other styles
2

Chédeville-Monzo, Corentin. "Mécanismes d'auto-fluidisation des écoulements pyroclastiques : approche expérimentale." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22684/document.

Full text
Abstract:
Les écoulements pyroclastiques sont des mélanges à haute température de gaz et de particules volcaniques qui peuvent se propager sur de très grandes distances. Cette forte « mobilité » est souvent attribuée à leur capacité à se fluidiser, c’est-à-dire à générer et conserver une forte pression interstitielle de gaz qui réduit les forces de friction interne. L’objectif principal de cette thèse est de comprendre comment les irrégularités des terrains sur lesquelles se propagent les écoulements pyroclastiques peuvent favoriser leur fluidisation. Une première série d’expériences de laboratoire a consisté à générer des écoulements de particules fines (diamètre de 45-90 μm) sur des substrats de différentes rugosités. Les résultats montrent que la distance de parcours des écoulements augmente avec la rugosité, allant jusqu’à doubler par rapport à la distance de parcours sur fond lisse. Des analyses de vidéos haute vitesse et des mesures de pression interstitielle d’air à la base des écoulements montrent que la tête (partie antérieure) des écoulements qui se propagent sur un substrat rugueux s’auto-fluidisent en conséquence de la sédimentation des particules dans les interstices du substrat, chassant l’air qui remonte et percole dans l’écoulement. Ce mécanisme d’auto-fluidisation est efficace pour toutes les inclinaisons étudiées (0-30°), suggérant qu’il est susceptible de se produire tout au long de la mise en place d’un écoulement pyroclastique. Une seconde étude a consisté à faire chuter des lits de particules dans une colonne statique. Les résultats montrent que même pour une hauteur de relâchement relativement faible (20 cm), le mélange peut entièrement s’auto-fluidiser durant sa chute. Quand les particules sont suffisamment fines (<100 μm) la pression interstitielle dans le dépôt diffuse pendant plusieurs secondes, la durée de cette diffusion augmentant avec l’augmentation de l’épaisseur du lit et la diminution de taille des particules. Les temps de diffusions les plus longs sont observés avec un matériau provenant d’un dépôt d’écoulement pyroclastique (~30 s pour des lits de 28.5 cm d’épaisseur). Ces résultats suggèrent que les écoulements pyroclastiques qui se propagent sur des terrains accidentés peuvent s’auto-fluidiser et conserver une faible friction au cours de leur mise en place
Pyroclastic flows are hot mixtures of gas and particles that can propagate over large distances. This high “mobility” is often attributed to their ability to be fluidized, that is, to generate and retain high gas pore pressure that reduces internal friction forces. The main objective of this thesis is to understand how irregularities of substrates on which pyroclastic flows propagate can enhance their fluidization. A first set of laboratory experiments consisted of the generation of fine-grained flows (diameter of 45-90 μm) on substrate of various roughness. Results show that the flow runout distance increases with the substrate roughness, and is up to twice the runout on a smooth substrate. High speed video analyses and air pore pressure measurements at the flow base show that the flow head propagating over a rough substrate can auto-fluidize because of particles sedimentation into the substrate interstices, which forces the air to escape upward and percolate through the flow. This auto-fluidization mechanism is efficient at all inclinations investigated (0-30°), suggesting that it could occur during the whole emplacement of a pyroclastic flow. A second study consisted of the vertical release of beds of particles in a static column. Results show that the granular mixture can be fully fluidized, even when collapsing from a relatively low height (20 cm). When particles are fine enough (<100 μm), pore pressure in the deposit diffuses for several seconds, the diffusion duration increasing with increasing bed thickness and decreasing particle size. The longest diffusion durations are observed for pyroclastic flow deposit materials (~30 s for 28.5 cm thick beds). These results suggest that pyroclastic flows propagating on irregular terrains can auto-fluidize and preserve low internal friction during their emplacement
APA, Harvard, Vancouver, ISO, and other styles
3

Gueugneau, Valentin. "Etude de la formation et de la mise en place des déferlantes pyroclastiques par modélisations numérique et expérimentale." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC050/document.

Full text
Abstract:
Les écoulements pyroclastiques sont des écoulements volcaniques complexes dont le comportement physique fait encore l'objet de débats. Ils sont composés de deux parties : l'écoulement dense basal, riche en particules et en blocs, surmonté par la déferlante, diluée et turbulente. Les interactions entre ces deux parties ne sont pas bien comprises, tout comme leurs échanges de masses et de quantités de mouvement. Partant de ce constat, cette thèse se concentre sur l’étude des mécanismes de formation de la déferlante à partir de l’écoulement dense.Les expériences mettent en évidence un mécanisme de formation d'un écoulement dilué par l’alternance d’incorporation d'air et d’élutriation des particules fines d’un lit granulaire dense soumis à des vibrations. L'air est aspiré dans le lit granulaire pendant les phases de dilatation puis expulsé pendant les phases de contraction. Une partie des particules est alors soutenue par l'air turbulent expulsé et forme un mélange de gaz et de particules qui, plus dense que l’air, se transforme en un écoulement de gravité. Extrapolé à l’échelle d’un volcan, ce mécanisme d’incorporation d’air et d’élutriation peut être reproduit par une topographie rugueuse, où chaque obstacle génère une compaction puis une dilation de l’écoulement dense. La quantification du mécanisme a été effectuée et l’approche expérimentale a permis d’aboutir à une loi reliant le flux de masse de la partie dense vers la déferlante à la vitesse de l’écoulement dense. Le modèle numérique est utilisé dans un premier temps pour étudier la rhéologie de l’écoulement dense qui, en contrôlant sa vitesse, contrôle le flux de masse précédemment évoqué. Un chapitre est consacré à l’effet de la fluidisation de l’écoulement dense sur sa rhéologie. Les résultats montrent que la fluidisation par les gaz est capable d’expliquer à la fois la grande mobilité de ces écoulements, ainsi que la formation des morphologies terminales en lobes et chenaux. L’ingestion d’air dans un écoulement au cours de sa mise en place semble pouvoir expliquer une partie de la dynamique des écoulements denses. Des rhéologies simples, de premier ordre, ont également été analysées : la rhéologie de Coulomb, la rhéologie plastique, et la rhéologie à coefficient de frottement variable. Les résultats montrent que la rhéologie plastique semble la mieux adaptée pour reproduire la vitesse et l’extension des écoulements denses.Ce modèle numérique a ensuite été utilisé pour tester la loi de flux de masse obtenue suite aux expériences de laboratoire. Appliqués à l’effondrement de dôme du 25 juin 1997 à la Soufriere Hills de Montserrat, les résultats montrent que les simulations reproduisent des dépôts de déferlantes dont l’épaisseur et l’extension sont tout à fait réalistes. Les simulations reproduisent même les écoulements denses secondaires issus de la sédimentation de la déferlante puis de la remobilisation des dépôts. Les cycles d’ingestion/expulsion d’air dans l’écoulement dense, par interaction avec la topographie, expliqueraient donc à la fois la grande fluidité des écoulements denses et la formation des déferlantes pyroclastiques. Les résultats de cette thèse mettent à jour un mécanisme nouveau qui pourrait être la clé de la mise en place des écoulements pyroclastiques et pourrait permettre d’améliorer la prévision future des risques et des menaces par modélisation numérique
Small volume pyroclastic density currents are complex volcanic flows, whose physical behaviour is still debated. They comprise two parts: the pyroclastic flow, rich in particles and blocks, overridden by the ash-cloud surge, a turbulent and dilute flow. The interactions between these two parts are not fully understood, as well as their exchanges of mass and momentum. Therefore, the thesis focuses on the investigation of ash-cloud surge formation mechanisms from the pyroclastic flow. The experiments reveal a mechanism of dilute flow formation by alternation of air incorporation into and elutriation of fine particles from a dense granular bed subjected to vibrations. The air is aspirated into the granular bed during dilatations, and expulsed during the contraction phases. A part of the particles are then sustained by the turbulent expulsed air and form a mixture of gas and particles that transforms into a gravity current. Extrapolated to a volcanic edifice, this mechanism of air incorporation and elutriation can be reproduced by a rough topography, where each obstacle generates a compaction followed by a dilatation of the pyroclastic flow. The quantification of the mechanism has been accomplished and the mass flux from the dense flow to the ash-cloud surge has been deduced.The numerical model is first used to study the pyroclastic flow rheology, which controls the velocity of the flow, and then the mass flux previously mentioned. One chapter is dedicated to the fluidization effect on the pyroclastic flow rheology. Results show that this mechanism can explain the long runout of these flows, and also the formation of levées and channel morphologies. The air ingestion in the flow during its movement could explain a part of the pyroclastic flows dynamic. Simple rheologies has also been analyzed: a Coulomb rheology, a plastic rheology, and a variable friction coefficient rheology. Results show that the plastic rheology seems to be the most adapted rheology to simulate the pyroclastic flow dynamic. Then, the numerical model has been used to test the mass flow law obtained through experiments. Applied to the 25 June 1997 dome collapse at Soufrière Hills Volcano at Montserrat, results show that the simulations reproduce accurately the extension and the thickness of the surge deposits. The simulations are also able to reproduce the surge derived pyroclastic flow, generated by remobilisation of surge deposits. The cycles of ingestion/expulsion of air in the pyroclastic flow by interactions with the topography could explain both the great fluidity of these flows and the formation of ash-cloud surge. These results highlight a new mechanism that could be a key process in pyroclastic flow dynamic, which could improve significantly the hazard and risk assessment using numerical model
APA, Harvard, Vancouver, ISO, and other styles
4

Penlou, Baptiste. "Étude expérimentale des écoulements gaz-particules en contexte de fontaine pyroclastique." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2023. http://www.theses.fr/2023UCFA0159.

Full text
Abstract:
Les colonnes pyroclastiques se forment lors d'éruptions volcaniques explosives au cours desquelles un mélange de gaz et de particules est éjecté à grande vitesse depuis un évent et peut conduire à la formation de panaches convectifs. La stabilité de ces colonnes dépend de divers paramètres qui peuvent varier au cours du temps et causer l'effondrement partiel ou total du mélange pyroclastique. Ces effondrements donnent naissance à des fontaines éruptives à l'origine de courants de densité pyroclastiques (CDPs). L'objectif de cette thèse est double : étudier (1) les mécanismes de sédimentation des particules dans le panache et la partie diluée des CDPs et (2) les mécanismes d'émergence des CDPs dans les zones d'impacts des fontaines. La méthode choisie est l'approche expérimentale.Une première série d'expériences consiste à mettre en suspension des particules de taille variant de 49 à 467,5 µm dans un dispositif cylindrique et à mesurer la concentration locale de particules de chaque mélange. Pour cela, deux approches indépendantes ont été utilisées et ont donné des résultats similaires : une méthode acoustique et l'utilisation des capteurs de pression. Ces expériences mettent en lumière deux mécanismes de sédimentation des particules : la sédimentation améliorée et la sédimentation retardée. Dans les suspensions de petites particules (78 µm), la vitesse de sédimentation augmente avec la concentration locale de particules en raison de la formation de « clusters » qui chutent à une vitesse quatre fois supérieure à la vitesse terminale de sédimentation des particules individuelles (sédimentation améliorée). En revanche, dans les suspensions de plus grandes particules (467,5 µm), la vitesse de sédimentation diminue avec l'augmentation de la concentration de particules malgré la présence de « clusters » et elle est 30 % inférieure à la vitesse de chutes des particules individuelles (sédimentation retardée). Ces résultats suggèrent que les mécanismes de sédimentation en présence de « clusters » et se produisant dans les panaches où la partie diluée des courants de densité pyroclastiques devraient être pris en compte dans les modèles utilisés pour simuler ces phénomènes volcaniques afin de mieux prédire les caractéristiques des dépôts.Une seconde série d'expériences consiste à simuler une fontaine pyroclastique en relâchant dans un chenal des particules de tailles comprises entre 29 et 269 µm et à une hauteur de 3,27 m. Les résultats montrent que les mélanges dilués (1,6 - 4,4 vol.%) en chute libre s'accumulent dans la zone d'impact pour former des écoulements granulaires concentrés (~ 45 - 48 vol.%) dont la pression de fluide interstitiel compense presque totalement le poids des particules pour des tailles < 76 µm. De plus, la pression de fluide maximale mesurée à l'impact, la distance de parcours des écoulements et l'étirement horizontal des dépôts augmentent avec la diminution de taille des particules. En considérant le dimensionnement des expériences, ces résultats indiquent qu'une pression de fluide interstitielle élevée dans les courants de densité pyroclastiques concentrés peut être générée dans la zone d'impact des fontaines pyroclastiques en effondrement. La petite taille des particules, qui cause une faible perméabilité et un long temps de diffusion de la pression de pore, peut être l'un des facteurs principaux qui causent les longues distances parcourues par les écoulements
Pyroclastic columns form during explosive volcanic eruptions in which a mixture of gases and particles is ejected at high speed from a vent and can lead to the formation of convective plumes. The stability of these columns depends on various parameters that can vary over time and cause partial or total collapse of the pyroclastic mixture. These collapses give rise to eruptive fountains, forming density currents called pyroclastic density currents (PDCs). The objective of this thesis is twofold: to study (1) the mechanisms of particle sedimentation in the plume and the dilute part of PDCs, and (2) the mechanisms of PDC emergence in the impact zones of the fountains. The chosen method is the experimental approach.A first series of experiments involves suspending particles ranging in size from 49 to 467.5 µm in a cylindrical device and measuring the local particle concentration for each mixture. For this purpose, two independent approaches were used and provided similar results: an acoustic method and the use of pressure sensors. These experiments highlight two mechanisms of particle sedimentation: enhanced sedimentation and delayed sedimentation. In suspensions of small particles (78 µm), the sedimentation rate increases with the local particle concentration due to the formation of « clusters » that fall at a speed four times higher than the terminal settling velocity of individual particles (enhanced sedimentation). However, in suspensions of larger particles (467.5 µm), the sedimentation rate decreases with increasing particle concentration, despite the presence of « clusters » and it is 30 % lower than the settling speed of individual particles (delayed sedimentation). These results suggest that the sedimentation mechanisms in the presence of « clusters » occurring in plumes or the dilute part of PDC should be considered in models used to simulate these volcanic phenomena to better predict deposit characteristics.A second series of experiments simulates a pyroclastic fountain by releasing particles of sizes ranging from 29 and 269 µm into a channel at a height of 3.27 meters. The results show that dilute mixtures (1.6 - 4.4 vol.%) in free fall accumulate in the impact zone to form concentrated granular flows (~ 45 - 48 vol.%) whose interstitial fluid pressure nearly compensates for the weight of particles for sizes < 76 µm. Furthermore, the maximum fluid pressure measured at the impact, the flow travel distance, and the horizontal stretching of deposits increase with decreasing particle size. Considering the experiment dimensions, these results indicate that a high interstitial fluid pressure can be generated in the impact zone of collapsing pyroclastic fountains. The small particle size, causing low permeability and a long pressure diffusion time, may be one of the main factors leading to the long runout distances covered by the flows
APA, Harvard, Vancouver, ISO, and other styles
5

Bernard, Julien. "Capacité érosive des écoulements pyroclastiques : impact sur les budgets éruptifs et implications pour l'aléa." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22553/document.

Full text
Abstract:
Les écoulements (ou coulées) pyroclastiques (PFs) sont des mélanges concentrés de gaz et de particules à haute température qui représentent l’aléa volcanique le plus meurtrier qui soit. La protection des populations nécessite la mise au point de cartes des menaces précises, qui requièrent une connaissance fine de ces phénomènes. Cependant, les causes et les conséquences de l’érosion/incorporation associée aux PFs au cours de leur mise en place restent encore largement méconnues. Cette thèse se propose de caractériser la capacité érosive des PFs, de définir des mécanismes d’érosion, et de quantifier leurs impacts sur les budgets éruptifs et sur l’aléa associé. Pour cela, cette étude se concentre sur les PFs de volumes modestes mis en place pendant l’éruption d’août 2006 du volcan Tungurahua (Equateur) et adopte une démarche double, basée sur des investigations sédimentologiques et texturales des dépôts, couplées à la modélisation numérique. Une méthode originale, basée sur l’analyse d’images haute résolution corrigées par stéréologie, sur des études texturales détaillées des dépôts, et sur des bilans massiques de matière, permet de déterminer la granulométrie, la composition lithologique et la morphologie des produits sur l’ensemble de leur gamme de taille. Le calcul des bilans de matière montre que près de 50 wt. % des dépôts de PFs sont composés de matériaux non-juvéniles incorporés lors de la mise en place. Ces derniers proviennent principalement de la partie supérieure du volcan. La pente est ainsi le paramètre contrôlant au premier ordre l’intensité de l’érosion. Les budgets éruptifs complets indiquent un VEI de 3 (0,09 km 3 ) pour l’éruption, et soulignent l’importance de considérer séparément les matériaux juvéniles et non-juvéniles pour estimer la taille d’une éruption. L’étude détaillée des constituants met en évidence une ségrégation dynamique des clastes par densité au cours du transport, avec un taux de sédimentation de ≈10 cm.s -1 . Les données lithologiques, granulométriques et morphologiques démontrent la présence de phénomènes de fragmentation-abrasion des clastes pendant leur transport. Les clastes massifs (ex : laves anciennes) sont le principal agent de fragmentation des clastes scoriacés (ex : bombes). Des populations granulométriques fines, capables d’être transférées depuis l’écoulement dense principal vers les déferlantes et/ou le panache co-pyroclastique sont produites pendant toute la durée de la mise en place. Les modèles numériques basés sur une nouvelle loi d’érosion développée ici (et intégrée au code VolcFlow), démontrent la capacité de la rhéologie plastique à reproduire des PFs érosifs. L’érosion est associée à des variations dynamiques du rapport des contraintes normales/cisaillantes pendant la mise en place des écoulements, provoquées par des fluctuations d’épaisseur lors de phases de décélération. Le front fin des PFs, fortement frictionnel et érosif, est poussé par une tête et un corps plus épais, tous deux non érosifs. L’incorporation s’accompagne d’une augmentation de distance de parcours de l’ordre de 10-30% en fonction du taux d’incorporation, qui dépend de la quantité de matière affouillable disponible sur le volcan avant l’éruption. Ces résultats montrent que l’érosion peut avoir un rôle majeur sur les zones impactées par les PFs, et soulignent l’importance de prendre en compte cette capacité lors de la définition de l’aléa, ainsi que pour les études futures
Pyroclastic flows (PFs) are hot mixtures of gas and particles that represent the most deadly volcanic hazard. To protect the populations, it is necessary to work on precise risk maps, which require having a deep knowledge of these phenomena. However, the causes and consequences of erosion and incorporation of non-juvenile material during PFs emplacement remain poorly known. This thesis aims at characterizing the erosive capacity of pyroclastic flows, defining erosion mechanisms and quantifying their impact on eruptive budgets and associated hazards. Here, we focus on small-volume PFs and use an approach based on field and textural investigations coupled with numerical modeling of PFs emplacement. The August 2006 PF-forming eruption of Tungurahua volcano (Ecuador) is used as a case-study for this work.An original method, based on high-resolution, stereologically-corrected image analyses, detailed textural analyses of PFs deposits and mass budget, enables determining the grain size distribution and the componentry of PFs products along their entire clast size range. Volume calculation and mass budgets show that about 50 wt. % of the whole deposit consists of non-juvenile materials incorporated during PFs emplacement, and mostly coming from the upper part of the volcano. The slope is a prevailing parameter that controls PFs erosive power. Eruptive budgets support a VEI 3 event (0.09 km 3 ) for the 2006 eruption of Tungurahua and highlight the importance of separating juvenile from non-juvenile material. Detailed analyses of deposits’ componentry suggest a strong dynamic density-driven segregation of the clasts during PFs emplacement, associated with sedimentation rates of ≈10 cm.s -1 . Lateral variations of lithological, grain size, and morphological data demonstrate the occurrence of componentry-driven clast fragmentation and abrasion processes. Massive components (e.g. old lavas) are the main grinding agents of scoriaceous components (e.g. bombs). During emplacement, these processes continuously create fine grained populations, which are transferred from the main dense flow to pyroclastic surge or Co-PF cloud. Numerical models of erosive PFs based on a new erosion law integrated into VolcFlow code show the ability of plastic rheology to reproduce natural erosion patterns of PFs. The erosion is produced by dynamic variations of normal stress / shear stress ratio during emplacement, due to thickness unsteadiness during flow deceleration. The thin, highly frictional and erosive front of PFs pulses is pushed by the thicker and non-erosive head and flow body. Incorporation implies longer PFs runouts of about 10-30%, depending on the amount of incorporated material, which is related to the quantity of erodible material available on the volcano’s flanks before the eruption. These results show that erosion has a significant role on PFs runouts, and thus in hazard assessment, which should be closely taken into account in future works
APA, Harvard, Vancouver, ISO, and other styles
6

Bardintzeff, Jacques-Marie. "Les nuées ardentes : pétrogenèse et volcanologie." Paris 11, 1985. http://www.theses.fr/1985PA112253.

Full text
Abstract:
Les nuées ardentes constituent l'un des plus redoutables phénomènes volcaniques. Trois des plus récentes d'entre elles, en contexte de marge active (Santiaguito au Guatemala) ou d'arcs insulaires (Soufrière de Saint-Vincent aux Antilles et Merapi en Indonésie), sont choisies en exemples d’études. Leurs dynamismes volcaniques diffèrent : la Soufrière de Saint-Vincent émet des nuées ardentes verticales, le Santiaguito des nuées ardentes dirigées et le Merapi des nuées d'avalanches. Leurs pétrographies et leurs minéralogies sont celles des séries andésitiques, mais certaines nuées (Saint-Vincent) recèlent, en plus, une paragenèse calce-alcaline profonde. Les verres, abondants dans les nuées ardentes, présentent une variété chimique, qui, parfois, témoigne d'un mélange de magmas. Leurs morphologies (MEB), ponceuses ou massives et anguleuses, diffèrent selon qu'il s'agit de verres juvéniles, ou de verres anguleux, provenant de la pulvérisation de la mésostase d'anciennes laves. Les nuées ardentes d’explosion ont une granulométrie spécifique, différente notamment de celles des nuées d'avalanches. Cinq types de nuées ardentes sont distingués : 1. Les nuées d'avalanches : (1a) le type Merapi, issu de la pulvérisation d'un dôme entièrement solide et (1b) le type Arenal, issu de la pulvérisation d'un dôme dont l'intérieur est encore liquide. 2. Les nuées ardentes sensu stricto : (2a) le type Santiaguito, où l'apport de magma juvénile est faible, l'explosivité résultant de la richesse en fluides d'une lave acide visqueuse (dacite), (2b) le type Pelée, nuée dirigée, associée à un dôme et (2c)le type Saint-Vincent, nuées verticales à partir d'un cratère ouvert, le magma juvénile basique intervenant en quantité importante. Parmi toutes les causes favorisant le déclenchement des nuées ardentes (contrôle tectonique, cumulation et flottation dans la chambre magmatique, résistance du toit du volcan), deux facteurs jouent un rôle prépondérant : les hautes teneurs en éléments volatils (eau essentiellement, d'origine profonde ou superficielle) et les mélanges de magmas. Ces deux facteurs modifient les conditions thermodynamiques régnant dans la chambre magmatique et favorisent la vésiculation des magmas. Si un mélange de magmas est responsable des nuées (2b) et (2c), les fortes teneurs en fluides induisent plutôt le déclenchement des nuées (1a), (1b) et (2a)
Nuées ardentes are one of the most hazardous volcanic events. Three of these most recent volcanic events are studied. They were chosen in an active margin (Santiaguito, Guatemala), as well as in island arcs (St. Vincent Soufrière Volcano, West-Indies and Merapi, Java). Volcanic styles are different: St. Vincent Soufrière Volcano produces vertical nuées ardentes, Santiaguito low angle nuées ardentes, and Merapi collapse nuées ardentes. Their petrography and mineralogy are typical of andesitic trends. In addition, some nuées ardentes (St. Vincent) contain high pressure calk-alkaline paragenesis. Glasses are abundant in nuées deposits. Their chemical variations testify sometimes for magma-mixing. Two types of glass morphology can be distinguished (SEM) angular fragments are considered as old pulverized mesostases, and pumiceous glasses are considered as products of new magma. Grain sizes of nuée ardente deposits are specific and finer than collapse deposits. Five types of nuées ardentes are distinguished: 1. Collapse nuées ardentes: (1a) Merapi type, resulting of the explosion of a solid dame, and (1b) Arenal type resulting of the explosion of a dame with a liquid interior. 2. Explosion nuées ardentes: (2a) Santiaguito type: a small amount of new magma is produced and high explosiveness is essentially due to abundant volatiles in dacitic magmas, (2b) Pelée type, with law angle nuée related to a dome, and (2c) St. Vincent type with vertical nuée ardente ejected from an open crater. In the last type, large amounts·of basic new magma are produced. Several factors may play a role in the nuée ardente triggering tectonic control, cumulative and flotation processes of phenocrysts in magmatic chamber, breaking strength of the volcano-plug etc. Two of these factors play a more significant role high volatile contents (essentially water of deep or superficial origin), and magma-mixing. These two factors modify the thermodynamical conditions in the magmatic chamber and facilitate the magma vesiculations. Magma-mixing triggers (2b) and (2c) nuées types, and high fluid contents trigger (1a), (1b) and (2a) nuées types
APA, Harvard, Vancouver, ISO, and other styles
7

Polania, Oscar. "Polydispersity in Granular Flows : Exploring Effects in Dry and Submerged Environments." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS061.

Full text
Abstract:
Les écoulements granulaires sont des systèmes complexes et évolutifs dans lesquels les grains interagissent entre eux et, s'ils sont immergés, avec un fluide. Ces écoulements se produisent à différentes vitesses et contraintes, et peuvent se comporter comme des solides, des liquides ou même des gaz. Les écoulements granulaires sont impliqués dans de nombreux phénomènes et à de nombreuses échelles, depuis les écoulements de masse géophysiques tels que les glissements de terrain, les écoulements pyroclastiques et les avalanches de neige, jusqu'aux processus industriels tels que les produits pharmaceutiques, la production alimentaire et la construction. Par souci de simplicité, les écoulements granulaires sont généralement étudiés avec une distribution monodisperse de grains. Cependant, parmi ces écoulements, les grains impliqués dans ces processus ont des tailles différentes, une propriété appelée polydispersité.Cette thèse se concentre sur l'étude des écoulements granulaires et sur l'influence de la polydispersité sur les écoulements granulaires. Nous explorons l'effet de la polydispersité sur les écoulements à faible inertie et à forte inertie. En outre, nous étudions les écoulements granulaires secs et immergés dans la configuration d'effondrement de la colonne granulaire.Nous étudions les écoulements granulaires avec de méthodes expérimentales et numériques. Les simulations numériques des écoulements granulaires sont réalisées à l'aide de méthodes d'éléments discrets (DEM) et, pour les cas immergés, nous utilisons une méthode d'éléments finis couplée à des DEM. Nous menons également une campagne expérimentale dans l'appareil d'essai triaxial où nous faisons varier le niveau de polydispersité, dans le but d'étudier la résistance des matériaux granulaires polydispersés dans des conditions quasi-statiques. En outre, nous procédons à la modélisation physique des écoulements gravitaires immergés et secs dans la colonne granulaire. Notre objectif est d'explorer l'influence de la polydispersité sur les écoulements et d'identifier l'influence de la pression du fluide sur la mobilité. Pour les expériences, nous utilisons des grains sphériques, en nous concentrant exclusivement sur l'effet de la polydispersité sur les écoulements granulaires.Nos résultats nous permettent de conclure que la résistance au cisaillement des matériaux granulaires est indépendante de la polydispersité, depuis une condition quasistatique jusqu'à une condition de forte inertie. Pour des conditions d'inertie très importantes, la résistance au cisaillement des matériaux polydispersés est plus faible que celle des matériaux monodispersés. Nous avons constaté que cette différence provient de variations distinctes des paramètres géométriques et de force appartenant au réseau de contact et de force. En outre, nous démontrons que les écoulements granulaires immergés sont fortement influencés par une augmentation des niveaux de polydispersité. Nous montrons que la différence entre les matériaux monodispersés et polydispersés provient essentiellement de différentes évolutions de la pression de base du fluide. L'initiation des écoulements polydisperses est retardée par rapport aux écoulements monodisperses, en raison d'une variation négative soutenue de la pression du fluide avec une grande amplitude. Ensuite, lorsque l'écoulement se dépose, les systèmes polydisperses atteignent des distances plus longues en raison de la génération d'une pression interstitielle excédentaire qui dure plus longtemps que la pression interstitielle excédentaire provoquée par les systèmes monodisperses. Enfin, nous proposons un modèle qui relie l'énergie cinétique à la mobilité des écoulements granulaires, qui s'applique à différents niveaux de polydispersité et qui a été validé avec succès par des simulations et des expériences. Les résultats de cette thèse apportent de nouvelles connaissances sur le rôle de la polydispersité dans les écoulements granulaires secs et immergés
Granular flows are complex and evolving systems where grains interact with each other and, if immersed, interact with an ambient fluid. These flows occur at different velocities and state variables, and could behave like solids, liquids or even gases. Granular flows are involved in many circumstances and scales, from geophysical mass flows such as landslides, debris flows, pyroclastic flows, and snow avalanches, to industrial processes like pharmaceuticals, food production, and construction. For simplicity, granular flows are commonly studied with a monodisperse distribution of grains (e.i., grains with nearly the same size); however, among these flows, the grains involved in these processes have different sizes, a property termed as polydispersity.This thesis focuses on the study of granular flows and, specifically, on the influence that polydispersity has on granular flows. We explore the effect that polydispersity has on steady flows with low inertia, where granular materials can be considered as solids, and high inertia, where granular materials can be considered as fluids. Additionally, we study dry and immersed granular flows in the granular column collapse configuration, that is a benchmark geometry for studying granular flows with phases of acceleration and deceleration.We study granular flows by means of experimental and numerical methods. The numerical simulations of granular flows are done with discrete element methods (DEM) and, for immersed cases, we use a coupled finite element method (FEM) with DEM. We also conduct a controlled experimental campaign in the triaxial test apparatus where we systematically vary the polydispersity level, aiming to study the strength of polydisperse granular materials in quasi-static conditions. Furthermore, we do the physical modelling of immersed and dry gravity-driven flows in the granular column collapse configuration. Our goal is to explore the influence of polydispersity on granular flows and to identify the influence of the basal fluid pressure on the mobility of granular flows. For the experiments, we use spherical beads, exclusively focusing on the effect that size polydispersity has on granular flows.Our results allow us to conclude that the shear strength of granular materials is independent of the size polydispersity from a quasistatic condition to a condition of high inertia. For very large inertial conditions, the shear strength of polydisperse materials is smaller compared to that of monodisperse materials. We found that this difference arises from distinct variations in geometric and force parameters belonging to the contact and force network. Additionally, we provide evidence that immersed granular flows are strongly influenced by an increase in polydispersity levels. We show that the difference between monodisperse and polydisperse materials essentially arises from different evolutions of the basal fluid pressure. The initiation of polydisperse flows is delayed compared to monodisperse flows, due to a sustained negative fluid pressure change with large amplitude. Then, as the flow deposits, polydisperse systems reach longer runout distances due to the generation of exceeding pore pressure that lasts longer than the exceeding pore pressure provoked by monodisperse systems. Finally, we propose a model that links flow kinetic energy with the mobility of granular flows, which applies to different polydispersity levels, and has been successfully validated through simulations and experiments. The results of this thesis provide new insights into the role of polydispersity in both dry and immersed granular flows
APA, Harvard, Vancouver, ISO, and other styles
8

Mathé, Jordane. "Modélisation d'écoulements gravitaires fluidisés et applciation à la volcanologie." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22646/document.

Full text
Abstract:
Durant les trois années de la thèse, j’ai eu le plaisir de travailler en collaboration avec à la fois des volcanologues, des physiciens de laboratoire et des mathématiciens. Ce mémoire est l’occasion de présenter la démarche et les résultats de mes recherches dans le domaine de la modélisation d’écoulements granulaires denses fluidisés. Ces derniers consistent à développer un nouveau modèle mathématique et son étude théorique et numérique. Sur la base d’observations faites lors d’expériences de laboratoire, nous proposons une façon de modéliser le changement comportemental d’un écoulement granulaire initialement fluidisé au travers de la définition de sa rhéologie viscoplastique à seuil variable. Plus précisément, le seuil de plasticité est défini par la différence entre la pression lithostatique et la pression du fluide interstitiel. La nouveauté apportée par ce modèle ouvre de nouvelles perspectives à la fois pour le champ de recherche en mathématiques et pour la compréhension des lits granulaires fluidisés et leur application à la volcanologie. Du point de vue mathématique, une étude théorique du modèle a été menée. En proposant une preuve de l’existence de solutions faibles à un problème lié à la version homogène du modèle, nous apportons une extension au champ de connaissances autour des écoulements des fluides non-newtoniens. D’autre part, dans le but de reproduire numériquement des expériences de laboratoire de chute de colonne granulaire fluidisée, nous avons développé un code de simulation numérique incluant une nouvelle méthode de résolution des équations d’écoulement de fluides à seuil. Dans ce manuscrit, je décris et justifie les différents choix stratégiques pour le développement de ce code. Par ailleurs, je présente quelques tests académiques permettant de valider le code. Enfin, je donne les résultats de simulation de chute de colonne granulaire, qu’elle soit fluidisée ou non. Une comparaison avec les données de laboratoire est effectuée afin d’évaluer les points forts et les défauts du modèle par rapport à la réalité des expériences. En conclusion, dans la continuité du travail mené dans ce projet, des perspectives d’amélioration sont proposées
During these three years, I enjoyed to work with collaborators from volcanology, laboratory physics and mathematics. This document presents the steps and results of my research in the field of modelling of fluidised granular flows. The last consists in the development of a new mathematical model and its theoretical and numerical study. Based on observations made on experimental studies, the model focuses on the change in the behaviour of an initially fluidised granular flow through the definition of its viscoplastic rheology with variable threshold. More precisely, the threshold (aslo called yield stress) is defined via the difference between the lithostatic pressure and the pressure of the interstitial fluid. The innovation of this model opens perspectives for the mathematical research as well as for the study of fluidised granular flows and their application to volcanology. From a mathematical point of view, a theoretical study has been conducted. Proving the existence of weak solution for the homogeneous version of the model, we offer an extension in the field of knowledges of non-newtonian fluid flows. Also, we have developped a numerical code to simulate dambreak experiments with fluidised granular media. This one includes a new method to solve the flow equations of viscoplastic fluids. In this thesis, I describe and justify the numerical strategy chosen. Moreover, I present some academic tests to validate the code. At the end, I give the numerical results in the case of the dambreak simulation for dry and fluidised fluids. By comparing with experimental data, we evaluate the validity of the model and its resolution, and highlight the advantages and inconvenients. To conclude the project, I propose some perspectives of improvement for later work
APA, Harvard, Vancouver, ISO, and other styles
9

Weit, Anne. "Etude expérimentale de la concentration de particules solides dans les écoulements volcaniques biphasés turbulents." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC060.

Full text
Abstract:
Des mélanges de gaz et de particules sont présents dans divers environnements géophysiques. De tels mélanges chauds sont générés par des éruptions volcaniques explosives et comprennent des écoulements de conduit, des jets et des panaches, ainsi que des courants de densité pyroclastiques. La concentration de particules dans ces mélanges volcaniques peut varier fortement, allant de concentrations élevées (>50 % en volume) dans les écoulements denses fluidisés à des concentrations très faibles dans les suspensions diluées dans lesquelles les particules sont mises en suspension par la phase gazeuse turbulente. Une limite de concentration inférieure à ~% en volume dans les suspensions diluées a été suggérée par des études récentes, car des concentrations plus élevées nécessiteraient une énergie cinétique turbulente excessive. L'objectif principal de cette thèse est d'étudier expérimentalement le comportement d'un écoulement d'air turbulent dans un cylindre avec des concentrations de particules croissantes, pour différents nombres de Reynolds et en utilisant différents types de particules. Les nombres de Reynolds des mélanges gaz-particules dans les expériences atteignaient ~106. Une première série d'expériences a été menée avec des billes de verre de différentes tailles allant de 75-80 μm jusqu'à 2 mm, pour un total de huit tailles de particules. Au-dessus d'un seuil de concentration moyenne de 0.5-3 % en volume, qui augmentait avec le nombre de Reynolds, le comportement de l'écoulement a montré une transition d'une suspension homogène de particules (sous la concentration maximale) vers une séparation en une partie basale dense et une partie supérieure diluée contenant la concentration maximale des particules. Ce seuil de concentration a été détecté à l'aide de mesures de pression et d'une méthode impliquant une sphère dont la densité était légèrement inférieure à la densité apparente des particules et qui pouvait donc flotter au-dessus de la partie basale dense, si celle-ci était présente. Des vidéos à haute vitesse ont révélé que l'apparition de la concentration maximale de particules coïncidait avec l'émergence d’amas de particules dans la partie turbulente diluée. Dans une deuxième partie de la thèse, les expériences ont été répétées pour cinq gammes de tailles de particules de céramique et elles ont révélé le même comportement général que pour les billes de verre. Pour les deux types de particules, une concentration maximale a pu être détectée pour presque toutes les tailles de particules et a montré une augmentation avec le nombre de Reynolds à la puissance 1/5 (billes de verre) ou 0.4 (billes de céramique). Compte tenu du nombre de Reynolds des particules, la concentration maximale des particules augmente ensuite jusqu'à la puissance de 1/6 pour les particules de céramique et de verre. Ces résultats ouvrent de nouvelles perspectives sur la structure des mélanges gaz-particules volcaniques et ils fournissent également des contraintes pour les données d'entrée et de sortie des simulations numériques et pour les observations géophysiques
Mixtures consisting of gas and particles can be found in various geophysical environments. Hot mixtures are generated by explosive volcanic eruptions and include conduit flows, jets and buoyant plumes, and pyroclastic density currents. The particle concentration within these volcanic mixtures can vary highly, from high concentrations (>50 vol. %) in dense fluidized flows to very low concentrations in dilute suspensions in which the particles are suspended by the turbulent gas phase. A concentration limit of less than ~1 vol. % in dilute suspensions was suggested by recent studies, as higher concentrations would require excessive turbulent kinetic energy. The main objective of this thesis was to investigate experimentally the behavior of a turbulent air flow in a pipe with increasing particle concentrations, for different Reynolds numbers and using different types of particles. The Reynolds numbers of the gas-particle mixtures in the experiments were up to ~106. A first set of experiments was conducted with glass beads of varying sizes from 75-80 μm up to 2 mm, for eight particle size ranges in total. Above a bulk concentration threshold of ~0.5-3 vol. %, which increased with the Reynolds number, the flow behavior changed from a homogeneous suspension of particles (below the maximum concentration) to a separation into a dense basal part and an upper dilute part carrying the maximum concentration of particles. This concentration threshold was detected with pressure measurements and a method that involved a ball of a slightly lower density than the bulk density of the particles, which could thus float over the dense basal part, if present. High-speed videos revealed that the occurrence of the maximum particle concentration coincided with the emergence of particle clusters in the dilute turbulent part. In a second part of the thesis, the experiments were repeated for five ceramic particle size ranges and they yielded the same general behavior as for the glass beads. For both types of particles, a maximum concentration could be detected for almost all particle size ranges and showed an increase with the mixture Reynolds number to the power 1/5 (glass beads) or 0.4 (ceramic beads). Considering the particle Reynolds number the maximum particle concentration then increase to the power 1/6 for both ceramic and glass particles. These results give new insights about the structure of volcanic gas-particle mixtures and they also provide constraints for input and output data of numerical simulations and for geophysical observations
APA, Harvard, Vancouver, ISO, and other styles
10

Burgisser, Alain. "Magmas in Motion : Degassing in volcanic conduits and fabrics of pyroclastic density current." Phd thesis, 2003. http://tel.archives-ouvertes.fr/tel-00012122.

Full text
Abstract:
1) Nous évaluons les aspects dynamiques de dégazage et perméabilité dans les magmas au moyen d'expériences haute pression et température sur des roches naturelles. Le dégazage est mesuré par l'influence du taux de décompression sur la croissance des bulles de gaz contenues dans le magma et la perméabilité par l'évolution temporelle de la coalescence de ces bulles. La mise en paramètre de nos résultats dans un modèle numérique de conduit volcanique montre que les modèles précédents basés sur un dégazage en équilibre surestiment significativement l'accélération et le taux de décompression du magma. L'estimation des effets de la perméabilité montre que la transition entre les éruptions effusives et explosives est fortement contrôlée par la vitesse initiale de remontée du magma.
2) Nous unifions les deux visions de courants pyroclastiques admises (coulées pyroclastiques hautement concentrées et nuées ardentes diluées et turbulentes) grâce à des lois d'échelle basées sur la physique multiphasée. A partir la dynamique de l'interaction de particules avec un vortex élémentaire, nous considérons le spectre complet des vortex générés dans un écoulement turbulent. Nous démontrons que la présence de particules de tailles différentes force la stratification en densité du courant, puis nous expliquons le mécanisme de ségrégation des courants pyroclastiques en une partie basale concentrés surmontée d'une partie diluée. Comme l'interaction d'un courant avec des reliefs montagneux ou des corps aqueux s'enregistre dans ses dépôts, nous avons étudié les produits de la dernière grande éruption du volcan Okmok (Iles Aléoutiennes, USA). Au-delà de la reconstruction du déroulement de l'éruption, cette étude de terrain a permis de valider les aspects principaux du modèle, comme la superposition d'un courant dense et dilué, leur séparation lors de l'entrée dans l'océan et les caractéristiques des particules qui les constituent.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography