Academic literature on the topic 'Counterfeit coin detector'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Counterfeit coin detector.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Counterfeit coin detector"
Tresanchez, Marcel, Tomàs Pallejà, Mercè Teixidó, and Jordi Palacín. "Using the Optical Mouse Sensor as a Two-Euro Counterfeit Coin Detector." Sensors 9, no. 9 (September 4, 2009): 7083–96. http://dx.doi.org/10.3390/s90907083.
Full textChen, Zi Wei, Jin Tian Yun, and Jun Bao Gu. "The Algorithm Research of Coin Detection Based on DSP." Applied Mechanics and Materials 29-32 (August 2010): 1229–34. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.1229.
Full textBoiko-Gagarin, Andrii. "Cheatings around the money counterfeiting in Russian and Austro-Hungarian empires in the XIX and XX Centuries." Ethnic History of European Nations, no. 61 (2020): 27–34. http://dx.doi.org/10.17721/2518-1270.2020.61.03.
Full textWang, Ting, and Hao Wang. "Research on Electronic Coin Recognition System Based on STC89C52." Applied Mechanics and Materials 713-715 (January 2015): 432–36. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.432.
Full textHmood, Ali K., and Ching Y. Suen. "Statistical edge-based feature selection for counterfeit coin detection." Multimedia Tools and Applications 79, no. 39-40 (August 5, 2020): 28621–42. http://dx.doi.org/10.1007/s11042-020-09447-8.
Full textDe Bonis, Annalisa, Luisa Gargano, and Ugo Vaccaro. "Optimal detection of a counterfeit coin with multi-arms balances." Discrete Applied Mathematics 61, no. 2 (July 1995): 121–31. http://dx.doi.org/10.1016/0166-218x(94)00010-b.
Full textWen-An, Liu, and Nie Zan-Kan. "Optimal detection of two counterfeit coins with two-arms balance." Discrete Applied Mathematics 137, no. 3 (March 2004): 267–91. http://dx.doi.org/10.1016/s0166-218x(03)00343-3.
Full textKhazaee, Saeed, Maryam Sharifi Rad, and Ching Y. Suen. "Detection of counterfeit coins based on 3D height-map image analysis." Expert Systems with Applications 174 (July 2021): 114801. http://dx.doi.org/10.1016/j.eswa.2021.114801.
Full textManas, Arnaud. "The music of gold: can gold counterfeited coins be detected by ear?" European Journal of Physics 36, no. 4 (May 13, 2015): 045012. http://dx.doi.org/10.1088/0143-0807/36/4/045012.
Full textBoiko-Haharin, A. "THE MONEY COUNTERFEITERS IN KYIV REGION IN THE 19th – EARLY 20th CENTURY." Bulletin of Taras Shevchenko National University of Kyiv. History, no. 145 (2020): 10–15. http://dx.doi.org/10.17721/1728-2640.2020.145.2.
Full textDissertations / Theses on the topic "Counterfeit coin detector"
Tresánchez, Ribes Marcel. "Aplicación de sensores de flujo óptico para el desarrollo de nuevos sistemas de medida de bajo coste." Doctoral thesis, Universitat de Lleida, 2011. http://hdl.handle.net/10803/53078.
Full textEn esta memoria se presentan diversos trabajos de investigación relacionados con la utilización de sensores de flujo óptico de bajo coste para el desarrollo de nuevos sistemas de medida compactos y de muy bajo coste. Las aplicaciones planteadas permiten aprovechar todo el potencial industrial de este tipo de sensores. Los sensores de flujo óptico tienen la particularidad de incorporar dentro de un único encapsulado un sistema de adquisición de imágenes y un procesador digital preprogramado para realizar el cómputo de flujo óptico (optical flow) de la imagen. De esta manera, este tipo de sensores no requieren ningún sistema procesador adicional y, en algunos casos, pueden funcionar sin ningún otro elemento adicional de control. Actualmente, el éxito comercial de los sensores de flujo óptico ha facilitado su producción industrial masiva con costes de fabricación muy bajos lo que ha incentivado el desarrollo de nuevas aplicaciones en campos tan diversos como la robótica donde el coste es un elemento fundamental en las aplicaciones destinadas a un mercado de consumo. En esta memoria se presenta, por un lado, el análisis del estado del arte de los sensores de flujo óptico y sus aplicaciones, y por el otro, el trabajo de investigación realizado sobre la utilización del sensor para el desarrollo de un codificador rotativo incremental, un codificador absoluto, un sistema de detección de monedas falsas de 2 euros y para realizar el seguimiento de la pupila del ojo de una persona con el fin de desarrollar un dispositivo apuntador que pueda ser de utilidad para una persona con discapacidad. Los resultados obtenidos en las pruebas experimentales realizadas con los diferentes sensores de flujo óptico utilizados en los dispositivos propuestos han permitido validar las propuestas realizadas y la versatilidad del diseño del sensor.
This work presents the research performed with optical flow sensors and the proposal of several new compact and low cost applications developed to take full advantage of the industrial potential of these sensors. Optical flow sensors include into the same chip an image acquisition system and a digital signal processor programmed to compute the optical flow of the image acquired. These sensors do not require additional post-processing and can operate without any other additional external control or processing device. Currently, the commercial success of the optical flow sensors has fostered its massive industrial production and has reduced its final cost. This characteristic, combined with the versatility of the design of the sensor, has also fostered the development of a huge range of new applications in different areas, such as robotics, where the cost is a fundamental factor that prone the development and commercialization of new consumer applications. This works presents, in one hand, a review of the state of the art of the research and development related with optical flow sensors and, in the other hand, a set of new applications proposed to take full advantage of the characteristics of the sensor. The new applications proposed are: a relative encoder, an absolute encoder, a counterfeit system for the 2€ case, and an accessibility device that tracks the pupil of the user to control pointer displacement in a computer screen. This device has been designed specifically to help people with mobility impairments in the upper extremities that cannot use the computer mouse. In all cases, the experimental results achieved with the different optical flow sensors used in the new applications proposed have validated the utility and versatility of each proposal and the utility and versatility of the design of this optical sensor.
Chen, Chih-Ming, and 陳志銘. "Counterfeit Coin Detection System Based on Audio and Image Analysis." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/09743824432183208460.
Full text國立高雄應用科技大學
電機工程系博碩士班
101
Abstract The purpose of this research is to combine mechanical, electronic and image analysis systems in order to achieve a better ratio of coin recognition. The experimental materials being used are NT dollars, counterfeit coins and tokens which are verified by some kind of coin validator(CVR) with true coin results. Using a microphone and webcam, the experimental materials were recorded, capturing their tap iron sounds and both sides of images. The main system framework recognized the coins by writing programs to get feature values of sounds, images and uses a propagation neural network. CVR was used in the experiment which was combined with the mechanical and electronic systems. This system was widely used in vending machine devices around the world since the year 2000. It used a condenser microphone to test the waveform, infrared light to test the diameter of the coin; and coils to measure the coin materials for frequencies and permeability. The microprocessor compares the data extracted from the measurements with data previously programmed into its memory during the manufacturing process. This allows it to verify the validity or nullity of the inserted coin. Therefore, CVR can eliminate efficiently the counterfeit coins and tokens. Since the skills and technology of making counterfeit coins are getting better and better, the coin validator, system combining with the mechanic and electronic, might not be able to recognize the coins completely. In our system, we use MATLAB -R2010b to develop our program. As for the image, the front and the back images of the New Taiwan dollar is captured by WEBCAM, followed by doing image processing: first, use circle detect of Gaussian function to get the image’s position and size; second, zoom in or out to adjust the image size to 100 x100; third, do the erosion and expansion; fourth, rotate the coin’s image every five degrees to increase the samples; and finally, every image is divided into 25 image’s blocks(20 x20), then the average values of the image’s blocks are vectorized as a 1 x400 feature vector. As for the audio, the microphone records the sound of the coin hitting the iron, then followed by system processing: first, detect start and end point; second, measure audio frames; third, enhance high-frequencies; fourth, execute Hamming window; and finally, use Mel-Frequency Coefficients to extract 13-dimensional features. After the processing, using the obtained features of sound and image feature vector as the input value of the back-propagation neural network, they can then be conducted into the Artificial Neural Network for training and classification. Through the experimental evidence of this study, it can indeed effectively enhance the identification of authentic coins. Keywords: coin recognition、Ann.、images、audio、feature vector(value).
Books on the topic "Counterfeit coin detector"
The criminal classes in India: With appendices regarding some foreign criminals who occasionally visit the presidency, including hints on the detection of counterfeit coin, with illustrations. Delhi: Mittal Publications, 1985.
Find full textThe Official Guide to Coin Grading and Counterfeit Detection Edition #2 (Official Guide to Coin Grading and Counterfeit Detection). House of Collectibles, 2004.
Find full textGradi, Professional Coin. Official Guide to Coin Grading and Counterfeit Detection (1st ed). House of Collectibles, 1997.
Find full textBook chapters on the topic "Counterfeit coin detector"
Rad, Maryam Sharifi, Saeed Khazaee, Li Liu, and Ching Y. Suen. "A Blob Detector Images-Based Method for Counterfeit Coin Detection by Fuzzy Association Rules Mining." In Pattern Recognition and Artificial Intelligence, 669–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59830-3_58.
Full textKhazaee, Saeed, Maryam Sharifi Rad, and Ching Y. Suen. "Detection of Counterfeit Coins Based on Modeling and Restoration of 3D Images." In Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications, 178–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54609-4_13.
Full textSun, Ke, and Ching Y. Suen. "Automatic Detection of Counterfeit Coins by Visual Measurements." In Frontiers in Pattern Recognition and Artificial Intelligence, 151–68. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811203527_0009.
Full textConference papers on the topic "Counterfeit coin detector"
Negka, Lydia, Georgios Gketsios, Nikolaos A. Anagnostopoulos, Georgios Spathoulas, Athanasios Kakarountas, and Stefan Katzenbeisser. "Employing Blockchain and Physical Unclonable Functions for Counterfeit IoT Devices Detection." In COINS '19: INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3312614.3312650.
Full textLeich, Marcus, Stefan Kiltz, Christian Krätzer, Jana Dittmann, and Claus Vielhauer. "Preliminary study of statistical pattern recognition-based coin counterfeit detection by means of high resolution 3D scanners." In IS&T/SPIE Electronic Imaging, edited by J. Angelo Beraldin, Geraldine S. Cheok, Michael B. McCarthy, Ulrich Neuschaefer-Rube, Atilla M. Baskurt, Ian E. McDowall, and Margaret Dolinsky. SPIE, 2011. http://dx.doi.org/10.1117/12.872360.
Full text