Academic literature on the topic 'Coupled harmonic oscillator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coupled harmonic oscillator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Coupled harmonic oscillator"
Dattoli, G., A. Torre, S. Lorenzutta, and G. Maino. "Coupled harmonic oscillators, generalized harmonic-oscillator eigenstates and coherent states." Il Nuovo Cimento B Series 11 111, no. 7 (July 1996): 811–23. http://dx.doi.org/10.1007/bf02749013.
Full textWang, Shijiao, Xiao San Ma, and Mu-Tian Cheng. "Multipartite Entanglement Generation in a Structured Environment." Entropy 22, no. 2 (February 7, 2020): 191. http://dx.doi.org/10.3390/e22020191.
Full textDudinetc, I. V., and V. I. Man’ko. "Quantum correlations for two coupled oscillators interacting with two heat baths." Canadian Journal of Physics 98, no. 4 (April 2020): 327–31. http://dx.doi.org/10.1139/cjp-2019-0067.
Full textLAWANDE, S. V., and Q. V. LAWANDE. "PATH INTEGRAL DERIVATION OF AN EXACT MASTER EQUATION." Modern Physics Letters B 09, no. 02 (January 20, 1995): 87–94. http://dx.doi.org/10.1142/s0217984995000097.
Full textChakrabarti, Barnali, and Bambi Hu. "Level correlation in coupled harmonic oscillator systems." Physics Letters A 315, no. 1-2 (August 2003): 93–100. http://dx.doi.org/10.1016/s0375-9601(03)01001-6.
Full textMerdaci, Abdeldjalil, Ahmed Jellal, Ayman Al Sawalha, and Abdelhadi Bahaoui. "Purity temperature dependency for coupled harmonic oscillator." Journal of Statistical Mechanics: Theory and Experiment 2018, no. 9 (September 6, 2018): 093101. http://dx.doi.org/10.1088/1742-5468/aad19b.
Full textMaidanik, G., and K. J. Becker. "Noise control of a master harmonic oscillator coupled to a set of satellite harmonic oscillators." Journal of the Acoustical Society of America 104, no. 5 (November 1998): 2628–37. http://dx.doi.org/10.1121/1.423846.
Full textTung, Mingwhei, Elia Eschenazi, and Jian-Min Yuan. "Dynamics of a morse oscillator coupled to a bath of harmonic oscillators." Chemical Physics Letters 115, no. 4-5 (April 1985): 405–10. http://dx.doi.org/10.1016/0009-2614(85)85158-7.
Full textBurrows, B. L., M. Cohen, and Tova Feldmann. "Coupled harmonic oscillator systems: Improved algebraic decoupling approach." International Journal of Quantum Chemistry 92, no. 4 (2003): 345–54. http://dx.doi.org/10.1002/qua.10521.
Full textMaidanik, G., and K. J. Becker. "Various loss factors of a master harmonic oscillator coupled to a number of satellite harmonic oscillators." Journal of the Acoustical Society of America 103, no. 6 (June 1998): 3184–95. http://dx.doi.org/10.1121/1.423035.
Full textDissertations / Theses on the topic "Coupled harmonic oscillator"
Monteiro, João Frederico Haas Leandro. "O estudo do emaranhamento na emissão espontânea no espaço livre e em uma cadeia de osciladores harmônicos acoplados." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2010. http://tede2.uepg.br/jspui/handle/prefix/879.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
In this dissertation, we studied entanglement in some fundamental systems of physics, such as an excited atom in free-space spontaneously decaying and coupled harmonic oscillators. In order to study entanglement in spontaneous emission in free-space, we employed theWeisskopf-Wigner theory which allowed us to obtain the time evolution of both the atom and field states. In the case of bipartite entanglement among field modes after spontaneous emission, we showed that the modes can become highly entangled and that the features of this entanglement strongly depend on the way the partitions are made. For the entanglement between atom and field during spontaneous emission, we were able to relate entanglement to a well known physical quantity namely the lifetime of an atom in a excited state. Keeping in mind the intention to study simple but relevant physical systems, we used in the second work a chain of coupled harmonic oscillators. It was well-known among researchers in the field of quantum information that a linear chain of coupled oscillators in the rotating wave approximation and prepared in classical states would never create entanglement. Then, we used two reference oscillators prepared in squeezed states to make creation of entanglement possible. We found results concerning the relationship between the phases in the reference oscillators’ state and dynamics of entanglement in the chain for some coupling configurations. We showed that it is not always true that squeezing can favor entanglement creation and that with the configuration used by us it is possible to localize entanglement. We proposed a possible implementation of our results in coupled microelectromechanical systems.
Nesta dissertação estudamos o emaranhamento em alguns sistemas fundamentais da Física, como um átomo no espaço livre realizando emissão espontânea e em osciladores harmônicos acoplados. Para o estudo do emaranhamento na emissão espontânea no espaço livre, utilizamos a teoria de Weisskopf-Wigner que nos permitiu obter a evolução temporal, tanto do estado do átomo, quanto do estado do campo. Para o caso de emaranhamento bipartido entre os modos do campo após a emissão espontânea, mostramos que os modos podem ficar altamente emaranhados e que as características desse emaranhamento dependem fortemente de como são realizadas as partições. Para o emaranhamento entre o átomo e o campo durante a emissão espontânea, pudemos relacionar o emaranhamento com uma quantidade Física bastante conhecida, o tempo de vida do átomo no seu estado excitado. Ainda com o intuito de estudar sistemas físicos simples, mas de relevância na Física, utilizamos, em um segundo trabalho, uma cadeia de osciladores harmônicos acoplados. Já era bem conhecido dos pesquisadores na área de informação quântica que uma cadeia linear de osciladores acoplados, na aproximação de onda girante e preparados em estados clássicos, não cria emaranhamento. Assim, utilizamos dois osciladores de referência em estados comprimidos para permitir a criação de emaranhamento. Encontramos resultados a respeito da relação das fases dos osciladores de referência e a dinâmica do emaranhamento na cadeia para algumas configurações de acoplamentos. Mostramos que nem sempre a compressão dos estados comprimidos favorece a criação de emaranhamento e que na configuração utilizada por nós é possível localizar o emaranhamento. Nós propusemos uma possível implementação de nossos estudos em sistemas microeletromecânicos acoplados.
Penbegul, Ali Yetkin. "Synchronization Of Linearly And Nonlinearly Coupled Harmonic Oscillators." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613258/index.pdf.
Full textVenkataraman, Vignesh. "Understanding open quantum systems with coupled harmonic oscillators." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/30715.
Full textGryga, Michal. "Silná vazba v plazmonických strukturách." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-382251.
Full textShih-YiYang and 楊士毅. "Study of quantum coherence and entanglement dynamics in coupled harmonic oscillator systems." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/02490690414690043777.
Full text國立成功大學
物理學系
102
Quantum Entanglement has been wildly discuss and studied in recent years. To verify whether a system is separable or not, A. Peres introduced a criterion called Positive Partial Transpose criterion, it can only be functional when it fulfill some sufficient and necessary condition which is it must be used in 2×2 and 2×3 low dimension states . However, R. Simon extended Peres-Horodecki criterion to continuous variable system. He found that it only fulfill sufficient and necessary condition in Gaussian state. In this thesis, we will study some interaction effect between some Coupled Simple Harmonic Oscillators system. By using the criterion mentioned above, we will closely observe two simple harmonic oscillator system and four simple harmonic oscillator system in time evolution dynamics of Entanglement. On the other hand, we will discuss under what kind of condition, Simon’s Gaussian states of PPT criterion can be simplified. Through these models analyze, we hope they can help us understand better in the entanglement phenomenon of few particles.
Abdul-Latif, Mohammed. "Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-12-10281.
Full textJhih-YuanGao and 高至遠. "A Study of Coupled Harmonic Oscillator Models toward Quantum Entanglement Dynamics in Macroscopic Quantum Phenomena." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/96826573450199014221.
Full text國立成功大學
物理學系
102
Peres-Horodecki-Simon criterion and logarithmic negativity are very powerful tools to determine the separability and to measure the entanglement of Gaussian states. In this thesis, we set up several models, all of which comprise a number of coupled oscillators, and by facilitating the separability criterion and measure we're able to calculate the entanglement between each pair of oscillators at any time analytically, which reveals several interesting phenomena, including entanglement sudden death and revival of entanglement. Also, we compare the entanglement between center of mass coordinates and that of their member oscillators, and thereby understand the role of it in a composite system. Lastly, we'll make an attempt at appreciating the effects of particle numbers on entanglement. We hope these analytically solvable models can help us understand more about the entanglement of interacting systems and of large systems.
Tay, Buang Ann Petrosky Tomio Y. Sudarshan E. C. G. "Coherence and decoherence processes of a harmonic oscillator coupled with finite temperature field exact eigenbasis solution of Kossakowski-Linblad's equation /." 2004. http://repositories.lib.utexas.edu/bitstream/handle/2152/2218/tayba042.pdf.
Full textTay, Buang Ann. "Coherence and decoherence processes of a harmonic oscillator coupled with finite temperature field: exact eigenbasis solution of Kossakowski-Linblad's equation." Thesis, 2004. http://hdl.handle.net/2152/2218.
Full text(9759650), Conor S. Pyles. "The Dynamics of Coupled Resonant Systems and Their Applications in Sensing." Thesis, 2020.
Find full textBook chapters on the topic "Coupled harmonic oscillator"
Garrett, Steven L. "The Simple Harmonic Oscillator." In Understanding Acoustics, 59–131. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_2.
Full textSong, Qiang, Fang Liu, Guanghui Wen, Jinde Cao, and Yang Tang. "Synchronization in Coupled Harmonic Oscillator Systems Based on Sampled Position Data." In Handbook of Real-Time Computing, 1–23. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-4585-87-3_21-1.
Full textQuintana, C., P. Jiménez-Macías, and O. Rosas-Ortiz. "Quantum Master Equation for the Time-Periodic Density Operator of a Single Qubit Coupled to a Harmonic Oscillator." In Trends in Mathematics, 271–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53305-2_17.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Distinguishable Particles." In The Picture Book of Quantum Mechanics, 129–41. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4684-0233-9_7.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Indistinguishable Particles." In The Picture Book of Quantum Mechanics, 142–56. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4684-0233-9_8.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Distinguishable Particles." In The Picture Book of Quantum Mechanics, 145–57. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0167-7_8.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Indistinguishable Particles." In The Picture Book of Quantum Mechanics, 158–72. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0167-7_9.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Distinguishable Particles." In The Picture Book of Quantum Mechanics, 157–69. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3951-6_8.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Indistinguishable Particles." In The Picture Book of Quantum Mechanics, 170–84. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3951-6_9.
Full textBrandt, Siegmund, Hans Dieter Dahmen, and Tilo Stroh. "A Two-Particle System: Coupled Harmonic Oscillators." In Interactive Quantum Mechanics, 122–37. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7424-2_5.
Full textConference papers on the topic "Coupled harmonic oscillator"
Yu, Bo, James S. Freudenberg, R. Brent Gillespie, and Richard H. Middleton. "String instability in coupled harmonic oscillator systems." In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6161385.
Full textSuarez, Almudena, Franco Ramirez, and Sergio Sancho. "Coupled-oscillator systems: Efficient simulation with harmonic-balance based oscillator models." In 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO). IEEE, 2014. http://dx.doi.org/10.1109/nemo.2014.6995676.
Full textGeorgiadis, Apostolos. "Design of Coupled Oscillator Arrays for Second Harmonic Radiation." In 2007 IEEE/MTT-S International Microwave Symposium. IEEE, 2007. http://dx.doi.org/10.1109/mwsym.2007.380061.
Full textGeorgiou, Ioannis T., and Ira B. Schwartz. "Decoupling the Free Axial-Transverse Motions of a Nonlinear Plate: An Invariant Manifold Approach." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0320.
Full textKawasaki, Kengo, Takayuki Tanaka, and Masayoshi Aikawa. "Ku band second harmonic N-coupled push-push oscillator array using microstrip resonator." In 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010. IEEE, 2010. http://dx.doi.org/10.1109/mwsym.2010.5517980.
Full textKaw, K., T. Tanaka, and M. Aikawa. "Ku band second harmonic N-coupled push-push oscillator array using microstrip resonator." In 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010. IEEE, 2010. http://dx.doi.org/10.1109/mwsym.2010.5518317.
Full textGourc, Etienne, Guilhem Michon, Se´bastien Seguy, and Alain Berlioz. "Experimental Investigation and Theoretical Analysis of a Nonlinear Energy Sink Under Harmonic Forcing." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48090.
Full textMuraki, Yasushi. "Application of a Coupled Harmonic Oscillator Model to Solar Activity and El Niño Phenomena." In 35th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.301.0084.
Full textPrados, A., L. L. Bonilla, and A. Carpio. "Statics and dynamics of a harmonic oscillator coupled to a one-dimensional Ising system." In NONEQUILIBRIUM STATISTICAL PHYSICS TODAY: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3569511.
Full textHaaker, T. I. "Analysis of a Class of Coupled Nonlinear Oscillators With an Application to Flow Induced Vibrations." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21416.
Full textReports on the topic "Coupled harmonic oscillator"
Yeon, Kyu-Hwang, Chung-In Um, Woo-Hyung Kahng, and Thomas F. George. Propagators for Driven Coupled Harmonic Oscillators. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada199418.
Full textMaidanik, G. Loss Factors of a Complex Composed of a Number of Coupled Harmonic Oscillators. Fort Belvoir, VA: Defense Technical Information Center, February 1997. http://dx.doi.org/10.21236/ada325092.
Full text