To see the other types of publications on this topic, follow the link: Coupled Microstrip Lines.

Journal articles on the topic 'Coupled Microstrip Lines'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Coupled Microstrip Lines.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pulov, R. D., S. N. Romanenko, and L. M. Karpukov. "Dispersion Properties of Coupled Microstrip Lines." Telecommunications and Radio Engineering 51, no. 4 (1997): 32–37. http://dx.doi.org/10.1615/telecomradeng.v51.i4.50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

KHALAJ-AMIRHOSSEINI, MOHAMMAD, and AHMAD CHELDAVI. "Circular symmetric coupled Microstrip transmission lines." International Conference on Electrical Engineering 6, no. 6 (2008): 1–14. http://dx.doi.org/10.21608/iceeng.2008.34384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peric, Mirjana, Sasa Ilic, and Slavoljub Aleksic. "Shielded coupled multilayered microstrip lines analysis using HBEM." Serbian Journal of Electrical Engineering 13, no. 2 (2016): 175–87. http://dx.doi.org/10.2298/sjee160217003p.

Full text
Abstract:
Shielded symmetrical coupled multilayered microstrip lines analysis have been done using the hybrid boundary element method (HBEM), which is developed a few years ago at the Faculty of Electronic Engineering in Nis. The quasi-TEM approximation is applied. Influences of different parameters as well as dimensions of such microstrip lines on characteristic parameters distribution are investigated. The results are presented in graphs and tables. In order to verify the obtained results, some comparative results are shown. The authors found them to be in very good agreement with the HBEM results.
APA, Harvard, Vancouver, ISO, and other styles
4

Kang, J. F., R. Q. Han, G. C. Xiong, X. Y. Liu, and Y. Y. Wang. "Kinetic inductance of coupled superconducting microstrip lines." Physica C: Superconductivity and its Applications 282-287 (August 1997): 2529–30. http://dx.doi.org/10.1016/s0921-4534(97)01333-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gilb, J. P., and C. A. Balanis. "Pulse distortion on multilayer coupled microstrip lines." IEEE Transactions on Microwave Theory and Techniques 37, no. 10 (1989): 1620–28. http://dx.doi.org/10.1109/22.41010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koochakzadeh, M., and A. Abbaspour-Tamijani. "Tunable Filters With Nonuniform Microstrip Coupled Lines." IEEE Microwave and Wireless Components Letters 18, no. 5 (2008): 314–16. http://dx.doi.org/10.1109/lmwc.2008.922115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hanna, Victor Fouad. "Parameters of shielded modified coupled microstrip lines." Microwave and Optical Technology Letters 2, no. 12 (1989): 407–11. http://dx.doi.org/10.1002/mop.4650021202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nakatani, A., and N. G. Alexopoulos. "Coupled Microstrip Lines on a Cylindrical Substrate." IEEE Transactions on Microwave Theory and Techniques 35, no. 12 (1987): 1392–98. http://dx.doi.org/10.1109/tmtt.1987.1133865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bedair, S. S. "Characteristics of asymmetrical coupled shielded microstrip lines." IEE Proceedings H Microwaves, Antennas and Propagation 132, no. 5 (1985): 342. http://dx.doi.org/10.1049/ip-h-2.1985.0062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schutt-Aine, J. E. "Time-domain characterization of coupled microstrip lines." IEEE Transactions on Components, Hybrids, and Manufacturing Technology 15, no. 2 (1992): 231–35. http://dx.doi.org/10.1109/33.142899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mu, T. C., H. Ogawa, and T. Itoh. "Characteristics of coupled slow-wave microstrip lines." Electronics Letters 21, no. 20 (1985): 946. http://dx.doi.org/10.1049/el:19850669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mazur, J., P. Kutysz, and A. Cwikla. "Coupled-mode analysis of ferrite microstrip lines." IEEE Microwave and Guided Wave Letters 9, no. 8 (1999): 300–302. http://dx.doi.org/10.1109/75.779908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Matsunaga, M., M. Katayama, and K. Yasumoto. "Coupled-Mode Analysis of Line Parameters of Coupled Microstrip Lines." Progress In Electromagnetics Research 24 (1999): 1–17. http://dx.doi.org/10.2528/pier99032902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mazur, J., M. Mazur, and J. Michalski. "Coupled-mode design of ferrite-loaded coupled-microstrip-lines section." IEEE Transactions on Microwave Theory and Techniques 50, no. 6 (2002): 1487–94. http://dx.doi.org/10.1109/tmtt.2002.1006409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sasic, Mubina, and Sehabbedin Taha Imeci. "Design of microstrip coupled-line bandpass filter." Heritage and Sustainable Development 3, no. 1 (2021): 44–52. http://dx.doi.org/10.37868/hsd.v3i1.55.

Full text
Abstract:
This project contains basic information, design, 3D projection, simulation, and analysis of Microstrip Bandpass Filter. The filter was composed of the feed lines connected to the two ports with the parallel coupled lines between them. The separation between these elements is reduced to the minimum for the purpose of reducing the error. Ultimately, the microstrip bandpass filter was designed with a 400 MHz bandwidth. We end up with these result: at the 4.43 GHz, S11 parameter is -9.868 dB and S22 is -1.808 dB, while at the 4.83 GHz, S11 is -9.995 dB and S22 is -1.826 dB.
APA, Harvard, Vancouver, ISO, and other styles
16

Luong, Duc‐Long, Giuseppe Acri, Florence Podevin, et al. "Forward‐wave directional coupler based on slow‐wave coupled microstrip lines." IET Microwaves, Antennas & Propagation 13, no. 14 (2019): 2486–89. http://dx.doi.org/10.1049/iet-map.2019.0296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jen-Tsai Kuo and C. K. C. Tzuang. "Complex modes in shielded suspended coupled microstrip lines." IEEE Transactions on Microwave Theory and Techniques 38, no. 9 (1990): 1278–86. http://dx.doi.org/10.1109/22.58654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Herscovici, N., and D. M. Pozar. "Full-wave analysis of aperture-coupled microstrip lines." IEEE Transactions on Microwave Theory and Techniques 39, no. 7 (1991): 1108–14. http://dx.doi.org/10.1109/22.85376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Feng, Wenjie, Meiling Hong, and Wenquan Che. "MICROSTRIP DIPLEXER DESIGN USING OPEN/SHORTED COUPLED LINES." Progress In Electromagnetics Research Letters 59 (2016): 123–27. http://dx.doi.org/10.2528/pierl16030805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tekin, Ibrahim. "Ultra wideband pulse generation using microstrip coupled lines." Microwave and Optical Technology Letters 51, no. 4 (2009): 944–49. http://dx.doi.org/10.1002/mop.24223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cheldavi, A. "Field coupling to nonuniform coupled microstrip transmission lines." International Journal of RF and Microwave Computer-Aided Engineering 13, no. 3 (2003): 215–28. http://dx.doi.org/10.1002/mmce.10076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Xiao-Hua, and Hualiang Zhang. "Novel balanced wideband filters using microstrip coupled lines." Microwave and Optical Technology Letters 56, no. 5 (2014): 1139–41. http://dx.doi.org/10.1002/mop.28268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wan, Changhua. "Accurate design equations for covered microstrip coupled lines." International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering 5, no. 6 (1995): 395–401. http://dx.doi.org/10.1002/mmce.4570050605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Abbosh, A. "Planar ultra‐wideband balun using coupled microstrip lines." Electronics Letters 49, no. 10 (2013): 662–64. http://dx.doi.org/10.1049/el.2013.0922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Matsunaga, M., M. Katayama, and K. Yasumoto. "Coupled-Mode Analysis of Line Parameters of Coupled Microstrip Lines - Abstract." Journal of Electromagnetic Waves and Applications 13, no. 10 (1999): 1395–96. http://dx.doi.org/10.1163/156939399x00736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Koufogiannidis, Ar, and K. Siakavara. "Coupled microstrip filters on multilayered dielectric media." Canadian Journal of Physics 80, no. 6 (2002): 675–85. http://dx.doi.org/10.1139/p02-008.

Full text
Abstract:
The work presented in this paper is an attempt to design filters with coupled microstrip lines on multilayered dielectric media using methods employed in other applications. A procedure was formulated for designing filters with the desired frequency response and smaller size using insertion loss method combined with the theory of multiconductor transmission lines. The frequency response was verified by considering that the filters act as cascaded four-port networks. The results were in a very good agreement with those expected from the theoretically design procedure. PACS No.: 84.40D
APA, Harvard, Vancouver, ISO, and other styles
27

Bayjja, M., M. Moubadir, G. Alsharahi, M. Aghoutane, and N. Amar Touhami. "Modeling a Planar Coupled Microstrip Lines using various Wavelets and Method of Moments." Advanced Electromagnetics 8, no. 1 (2019): 51–58. http://dx.doi.org/10.7716/aem.v8i1.771.

Full text
Abstract:
In this paper, we apply a several wavelets basis functions to the method of moments to modeling the parallel-coupled microstrip lines. The first set of equations is for the shielded microstrip line solved with moment’s method and wavelets. The Green’s function is obtained from the theory of images. The second set are for the parallel-coupled microstrip lines operating in the TEM mode or when the analysis can be based on quasi-static approximation, the properties of coupled lines can be determined from the self- and mutual inductances and capacitances for the lines. To demonstrate the effectiven
APA, Harvard, Vancouver, ISO, and other styles
28

VandenBerg, N. L., and L. P. B. Katehi. "Broadband vertical interconnects using slot-coupled shielded microstrip lines." IEEE Transactions on Microwave Theory and Techniques 40, no. 1 (1992): 81–88. http://dx.doi.org/10.1109/22.108326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kobayashi, M., and H. Momoi. "Longitudinal and transverse current distributions on coupled microstrip lines." IEEE Transactions on Microwave Theory and Techniques 36, no. 3 (1988): 588–93. http://dx.doi.org/10.1109/22.3553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jui-Han Lu and Kin-Lu Wong. "Analysis of slot-coupled double-sided cylindrical microstrip lines." IEEE Transactions on Microwave Theory and Techniques 44, no. 7 (1996): 1167–70. http://dx.doi.org/10.1109/22.508656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Antar, Y. M. M., Z. Fan, and A. Ittipiboon. "Scattering parameters of arbitrarily oriented slot-coupled microstrip lines." IEE Proceedings - Microwaves, Antennas and Propagation 143, no. 2 (1996): 141. http://dx.doi.org/10.1049/ip-map:19960272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jeong Phill Kim and Wee Sang Park. "An improved network modeling of slot-coupled microstrip lines." IEEE Transactions on Microwave Theory and Techniques 46, no. 10 (1998): 1484–91. http://dx.doi.org/10.1109/22.721151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lu, Jui-Han, and Kin-Lu Wong. "Studies of slot-coupled double-sided perpendicular microstrip lines." Microwave and Optical Technology Letters 12, no. 6 (1996): 346–49. http://dx.doi.org/10.1002/(sici)1098-2760(19960820)12:6<346::aid-mop11>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Dengpeng, Zhongxiang Shen, and Erping Li. "An efficient method for analyzing nonuniformly coupled microstrip lines." International Journal of RF and Microwave Computer-Aided Engineering 15, no. 2 (2005): 147–55. http://dx.doi.org/10.1002/mmce.20062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Huang, F., C. H. Loh, and C. H. Poh. "Coupling parameters for capacitatively coupled orthogonal microstrip branch lines." International Journal of RF and Microwave Computer-Aided Engineering 8, no. 5 (1998): 367–74. http://dx.doi.org/10.1002/(sici)1099-047x(199809)8:5<367::aid-mmce3>3.0.co;2-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Phromloungsri, R., M. Chongcheawchamnan, and I. D. Robertson. "Inductively Compensated Parallel Coupled Microstrip Lines and Their Applications." IEEE Transactions on Microwave Theory and Techniques 54, no. 9 (2006): 3571–82. http://dx.doi.org/10.1109/tmtt.2006.881026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lauro, S. E., A. Toscano, and L. Vegni. "Symmetrical Coupled Microstrip Lines With Epsilon Negative Metamaterial Loading." IEEE Transactions on Magnetics 45, no. 3 (2009): 1182–85. http://dx.doi.org/10.1109/tmag.2009.2012547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bernal, Joaquin, Francisco Mesa, and David R. Jackson. "Crosstalk in Coupled Microstrip Lines With a Top Cover." IEEE Transactions on Electromagnetic Compatibility 56, no. 2 (2014): 375–84. http://dx.doi.org/10.1109/temc.2013.2281843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

van Wyk, M. D., and K. D. Palmer. "Bandwidth enhancement of microstrip patch antennas using coupled lines." Electronics Letters 37, no. 13 (2001): 806. http://dx.doi.org/10.1049/el:20010571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Musa, et al, Sarhan. "Finite Element Method Analysis of Symmetrical Coupled Microstrip Lines." International Journal of Computing and Digital Systems 3, no. 3 (2014): 189–95. http://dx.doi.org/10.12785/ijcds/030302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Seong-Ook Park and C. A. Balanis. "Closed-form asymptotic extraction method for coupled microstrip lines." IEEE Microwave and Guided Wave Letters 7, no. 3 (1997): 84–86. http://dx.doi.org/10.1109/75.556040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kovalenko, A. N. "Electrodynamic Analysis and Synthesis of Shielded Coupled Microstrip Lines." Radiophysics and Quantum Electronics 58, no. 10 (2016): 798–803. http://dx.doi.org/10.1007/s11141-016-9653-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rushan, Chen, Fang Dagang, and Li Xinguo. "Analysis of coupled cylindrical substrate microstrip lines by the method of lines." Microwave and Optical Technology Letters 6, no. 4 (1993): 256–58. http://dx.doi.org/10.1002/mop.4650060413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Velan, Sangeetha, Malathi Kanagasabai, Jayaram Kizhekke Pakkathillam, Sandeep Kumar Palaniswamy, and Rama Rao Tippuraj. "Spurious Passband Suppression in Compact Microstrip Rat-Race Coupler Deploying Modified Split Rings and Coupled Microstrip Lines." Wireless Personal Communications 109, no. 4 (2019): 2733–40. http://dx.doi.org/10.1007/s11277-019-06706-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

La, Dong-Sheng, Xin Guan, Shuai-Ming Chen, Yu-Ying Li, and Jing-Wei Guo. "Wideband Band-Pass Filter Design Using Coupled Line Cross-Shaped Resonator." Electronics 9, no. 12 (2020): 2173. http://dx.doi.org/10.3390/electronics9122173.

Full text
Abstract:
In this paper, a wideband bandpass filter with a coupled line cross-shaped resonator (CLCSR) is proposed. The proposed bandpass filter is composed of two open-end parallel coupled lines, one short-end parallel coupled line, one branch microstrip line, and the parallel coupled line feed structure. With the use of the even and odd mode approach, the transmission zeros and transmission poles of the proposed bandpass filter are analyzed. The coupling coefficient of the parallel coupled line feed structure is big, so the distance between the parallel coupled line is too small to be processed. A thr
APA, Harvard, Vancouver, ISO, and other styles
46

Li, Rui, Yafei Wang, Wei Yang, and Xuehua Li. "G-SHAPED DEFECTED MICROSTRIP STRUCTURE BASED METHOD OF REDUCING CROSSTALK OF COUPLED MICROSTRIP LINES." Progress In Electromagnetics Research M 101 (2021): 79–88. http://dx.doi.org/10.2528/pierm21010703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ghazali, Abu Nasar, Mohd Sazid, and Srikanta Pal. "A dual notched band UWB-BPF based on microstrip-to-short circuited CPW transition." International Journal of Microwave and Wireless Technologies 10, no. 7 (2018): 794–800. http://dx.doi.org/10.1017/s1759078718000594.

Full text
Abstract:
AbstractThis paper proposes a dual notched band ultra-wideband (UWB) bandpass filter (BPF) based on hybrid transition of microstrip and coplanar waveguide (CPW). The CPW in ground plane houses a stepped impedance resonator shorted at ends, and is designed to place its resonant modes within the UWB passband. The microstrips on the top plane are placed some distance apart in a back-to-back manner. The transition of microstrip on top and shorted CPW in the ground is coupled through the dielectric in a broadside manner. The optimized design of the transition develops the basic UWB spectrum with go
APA, Harvard, Vancouver, ISO, and other styles
48

Watanabe, K., and K. Yasumoto. "Coupled-Mode Analysis of Coupled Microstrip Transmission Lines Using a Singular Perturbation Technique." Progress In Electromagnetics Research 25 (2000): 95–110. http://dx.doi.org/10.2528/pier99042602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Karpukov, L. M., R. D. Pulov, and S. N. Romanenko. "Dispersion of the fundamental mode in coupled multiconductor microstrip lines." Telecommunications and Radio Engineering 53, no. 1 (1999): 85–88. http://dx.doi.org/10.1615/telecomradeng.v53.i1.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

El-Tanani, Mohammed A., and Gabriel M. Rebeiz. "Corrugated Microstrip Coupled Lines for Constant Absolute Bandwidth Tunable Filters." IEEE Transactions on Microwave Theory and Techniques 58, no. 4 (2010): 956–63. http://dx.doi.org/10.1109/tmtt.2010.2042517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!