Academic literature on the topic 'Coupler curves'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coupler curves.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Coupler curves"
Unruh, V., and P. Krishnaswami. "A Computer-Aided Design Technique for Semi-Automated Infinite Point Coupler Curve Synthesis of Four-Bar Linkages." Journal of Mechanical Design 117, no. 1 (March 1, 1995): 143–49. http://dx.doi.org/10.1115/1.2826099.
Full textLu, Deng-Maw, and Wen-Miin Hwang. "Synthesis of Spherical Four-Bar Mechanisms for Two or Three Prescribed Coupler-Curve Cusps." Journal of Mechanical Design 123, no. 2 (February 1, 2000): 247–53. http://dx.doi.org/10.1115/1.1360185.
Full textChung, W.-Y. "Position analysis of Assur kinematic chains using coupler curves." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220, no. 8 (August 1, 2006): 1249–59. http://dx.doi.org/10.1243/09544062jmes249.
Full textLu, D. M. "A Triangular Nomogram for Spherical Symmetric Coupler Curves and its Application to Mechanism Design." Journal of Mechanical Design 121, no. 2 (June 1, 1999): 323–26. http://dx.doi.org/10.1115/1.2829463.
Full textBlechschmidt, J. L., and J. J. Uicker. "Linkage Synthesis Using Algebraic Curves." Journal of Mechanisms, Transmissions, and Automation in Design 108, no. 4 (December 1, 1986): 543–48. http://dx.doi.org/10.1115/1.3258767.
Full textShirazi, Kourosh H. "Symmetrical Coupler Curve and Singular Point Classification in Planar and Spherical Swinging-Block Linkages." Journal of Mechanical Design 128, no. 2 (July 12, 2005): 436–43. http://dx.doi.org/10.1115/1.2167651.
Full textShieh, W. B., L. W. Tsai, S. Azarm, and A. L. Tits. "A New Class of Six-Bar Mechanisms With Symmetrical Coupler Curves." Journal of Mechanical Design 120, no. 1 (March 1, 1998): 150–53. http://dx.doi.org/10.1115/1.2826668.
Full textGibson, C. G., and D. Marsh. "On the Geometry of Geared 5-Bar Motion." Journal of Mechanical Design 112, no. 4 (December 1, 1990): 620–27. http://dx.doi.org/10.1115/1.2912654.
Full textCorves, Burkhard, Guido Lonij, and Mathias Hüsing. "Kinematic Synthesis of a Step Mechanism Based on a Five Bar Linkage." Applied Mechanics and Materials 162 (March 2012): 1–10. http://dx.doi.org/10.4028/www.scientific.net/amm.162.1.
Full textDhingra, A. K., A. N. Almadi, and D. Kohli. "A Closed-Form Approach to Coupler-Curves of Multi-Loop Mechanisms." Journal of Mechanical Design 122, no. 4 (August 1, 1999): 464–71. http://dx.doi.org/10.1115/1.1290394.
Full textDissertations / Theses on the topic "Coupler curves"
Natesan, Arun K. "Kinematic analysis and synthesis of four-bar mechanisms for straight line coupler curves /." Online version of thesis, 1994. http://hdl.handle.net/1850/11785.
Full textRojas, Nicolàs. "Distance-based formulations for the position analysis of kinematic chains." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/83516.
Full textEsta tesis aborda el problema de análisis de posición de cadenas cinemáticas, mecanismos con cuerpos rígidos (enlaces) interconectados por pares cinemáticos (articulaciones). Este problema, de naturaleza geométrica, consiste en encontrar los modos de ensamblaje factibles que una cadena cinemática puede adoptar. Un modo de ensamblaje es una transformación relativa posible entre los enlaces de una cadena cinemática. Los métodos reportados en la literatura para la solución del análisis de posición de cadenas cinemáticas se pueden clasificar como gráficos, analíticos o numéricos. Los enfoques gráficos son geométricos y se diseñan para resolver problemas particulares. Los métodos analíticos y numéricos tratan con cadenas cinemáticas de cualquier topología y traducen el problema geométrico original en un sistema de ecuaciones cinemáticas que define la ubicación de cada enlace, basado generalmente en ecuaciones de bucle independientes. En los enfoques analíticos, el sistema de ecuaciones cinemáticas se reduce a un polinomio, conocido como el polinomio característico de la cadena cinemática, utilizando diferentes métodos de eliminación. En los métodos numéricos, el sistema se resuelve utilizando, por ejemplo, la continuación polinomial o procedimientos basados en intervalos. En cualquier caso, el uso de ecuaciones de bucle independientes, un estándar en cinemática de mecanismos, rara vez ha sido cuestionado a pesar de que el sistema resultante de ecuaciones es bastante complicado, incluso para cadenas simples. Por otra parte, establecer el análisis de la posición de cadenas cinemáticas directamente en términos de poses, con o sin el uso de ecuaciones de bucle independientes, presenta dos inconvenientes: sistemas de referencia arbitrarios deben ser introducidos, y todas las fórmulas implican traslaciones y rotaciones de forma simultánea. Esta tesis se aparta de este enfoque estándar expresando el problema de posición original como un sistema de restricciones basadas en distancias, en lugar de directamente calcular posiciones cartesianas. Estas restricciones son posteriormente resueltas con procedimientos analíticos y numéricos adaptados a sus particularidades. Con el propósito de desarrollar los conceptos básicos y la teoría del enfoque propuesto, esta tesis se centra en el estudio de las cadenas cinemáticas planas más fundamentales, a saber, estructuras de Baranov, cadenas cinemáticas de Assur, y cadenas cinemáticas de Grübler. Los resultados obtenidos han demostrado que las técnicas desarrolladas son herramientas prometedoras para el análisis de posición de cadenas cinemáticas y problemas relacionados. Por ejemplo, usando dichas técnicas, los polinomios característicos de la mayoría de las estructuras de Baranov catalogadas se puede obtener sin realizar eliminaciones de variables o sustituciones trigonométricas, y utilizando solo álgebra elemental. Un resultado en claro contraste con las complejas eliminaciones de variables que se requieren cuando se utilizan ecuaciones de bucle independientes. El impacto del resultado anterior es mayor porque se demuestra que el polinomio característico de una estructura de Baranov, derivado con las técnicas propuestas, contiene toda la información necesaria y suficiente para resolver el análisis de posición de las cadenas cinemáticas de Assur que resultan de la sustitución de algunas de sus articulaciones de revolución por articulaciones prismáticas. De esta forma, se concluye que los polinomios de todos los robots planares totalmente paralelos se pueden derivar directamente del polinomio característico del conocido robot 3-RPR. Adicionalmente, se presenta un procedimiento eficaz, basado en restricciones de distancias y áreas orientadas, y argumentos geométricos, para trazar curvas de acoplador de cadenas cinemáticas de Grübler. En conjunto, todas estas técnicas y resultados constituyen contribuciones a la cinemática teórica de mecanismos, la cinemática de robots, y la geometría plana de distancias. Barcelona 13-
Adams, Daniel J. "Magnetization Dynamics in Coupled Thin Film Systems." ScholarWorks@UNO, 2019. https://scholarworks.uno.edu/td/2578.
Full textRadu, Cosmin. "Study of Magnetization Switching in Coupled Magnetic Nanostructured Systems." ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/894.
Full textSousa, Mayco Velasco de. "Consideração da superfície livre do fluido interno nas curvas de ressonância das cascas cilíndricas." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7864.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-10-10T12:05:27Z (GMT) No. of bitstreams: 2 Dissertação - Mayco Velasco de Sousa - 2017.pdf: 3290530 bytes, checksum: 4c18bf0526fa79993f57248b3161a0c6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-10-10T12:05:27Z (GMT). No. of bitstreams: 2 Dissertação - Mayco Velasco de Sousa - 2017.pdf: 3290530 bytes, checksum: 4c18bf0526fa79993f57248b3161a0c6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-06-22
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this master’s thesis, the free and forced nonlinear vibrations of an simply supported isotropic cylindrical shell fluid-filled by an incompressible, inrotational and non-viscous fluid are analyzed. The internal fluid is described by a velocity potential and the effects of the fluid ́s free surface on the non-linear vibrations of the cylindrical shell are considered. The non-linear equations of motion are obtained by the Rayleigh-Ritz method, considering the deformation field and changes of curvature described by the nonlinear theories of Donnell and Sanders. The chosen displacement field of the cylindrical shell corresponds to a modal solution proposed by Gonçalves (1987) that were obtained by the perturbation method. A parametric study is carried out to analyze the free vibrations, using the Galerkin-Urabe method to obtain for each geometry a system of non-linear algebraic equations, being solved by the Newton-Raphson method and thus to obtaining a relation between the amplitude and frequency. The results for these analyses show that depending on the geometric conditions there is a great influence of the free surface consideration on the nonlinear dynamic behavior of the cylindrical shell. Finally, a study of the forced vibrations of cylindrical shells subjected to time-dependent lateral pressure is made applying the fourth-order Runge-Kutta method to solve the second-order differential equations in time in order to find the phase portraits and the time response of the cylindrical shell. The influence of the consideration of the free surface effect of the internal fluid on the forced response of the cylindrical shell is observed and it is possible to note that the consideration of the free surface causes the appearance of important peaks of resonance in the resonance curves of the cylindrical shell.
Nesta dissertação são analisadas as vibrações não lineares, livres e forçada, de uma casca cilíndrica isotrópica simplesmente apoiada e preenchida por um fluido irrotacional, incompressível e não viscoso, que pode ser descrito por um potencial de velocidade. Considera-se os efeitos da superfície livre deste fluido nas vibrações não lineares da casca cilíndrica. As equações de movimento não lineares foram obtidas pelo método de Rayleigh-Ritz e para descrever o campo de deformação e momento de curvatura foram adotadas as teorias não lineares de Donnell e Sanders. O campo de deslocamento da casca cilíndrica utilizado corresponde a uma solução modal propostapor Gonçalves (1987) que foram obtidas pelo método da perturbação. Realizou-se um estudo paramétrico para analisar as vibrações livres onde para cada geometria estudada foi aplicado o método de Galerkin-Urabe para obter um sistema de equações algébricas não lineares, sendo então resolvidas pelo método de Newton-Raphson e assim obtendo uma relação entre a amplitude e a frequência. Os resultados para estes estudos mostram que dependendo das condições geométricas há uma grande influência da consideração da superfície livre no comportamento dinâmico não linear da casca cilíndrica. Por fim, é feito um estudo das vibrações forçadas de cascas cilíndricas submetidas a uma pressão lateral dependente do tempo, onde por meio do método de Runge-Kutta de quarta ordem soluciona-se as equações ordinais diferenciais de segunda ordem no tempo afim de encontrar as curvas de ressonância, planos-fase e a resposta no tempo da casca cilíndrica que serão utilizadas para analisar a influência da consideração do efeito de superfície livre do fluido interno na resposta forçada da casca cilíndrica. Observa-se que a consideração da superfície livre provoca o aparecimento de importantes picos de ressonância nas curvas de ressonância da casca cilíndrica.
Nelkov, Nyagolov Dimitar, Bashir Abbas, and Genovski Filip Valentinov. "Simulation of the Geometry Influence on Curvic Coupled Engagement." Thesis, Linnéuniversitetet, Institutionen för teknik, TEK, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27291.
Full textBarham, Connor C. "Childhood Trauma and Attachment Theory: Estimating a Growth Curve Relationship Between Adverse Childhood Experiences and the Therapeutic Alliance." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8595.
Full textKhan, Mohammad Asif. "Study of Magnetization Switching in Coupled Magnetic Nanostructured Systems using a Tunnel Diode Oscillator." ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/honors_theses/107.
Full textTong, Fuguo. "Numerical modeling of coupled thermo-hydro-mechanical processes in geological porous media." Doctoral thesis, KTH, Teknisk geologi och geofysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12009.
Full textQC20100720
THERESA
Ding, Yao. "Evaluation of New Seismic Performance Factors for Special Hybrid Coupled Core Wall Systems with Steel Coupling Beams." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573225104906633.
Full textBooks on the topic "Coupler curves"
McCulloch, Renée, and John Collins. Paediatric pain control. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199656097.003.0913.
Full textRosen, David H., and Uyen B. Hoang. The Nature of the Healing Process. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190628871.003.0007.
Full textAhlskog, J. Eric. Dementia with Lewy Body and Parkinson's Disease Patients. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199977567.001.0001.
Full textBook chapters on the topic "Coupler curves"
Yadav, Harishankar Singh, and Shubhashis Sanyal. "Generation of Coupler Curves for Planar Kinematic Chains Using Link Joint Equations." In Lecture Notes in Mechanical Engineering, 491–501. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0550-5_49.
Full textThomas, Federico, and Alba Pérez-Gracia. "A New Insight into the Coupler Curves of the RCCC Four-Bar Linkage." In Computational Kinematics, 552–59. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60867-9_63.
Full textInnocenti, Carlo. "Analytical Determination of the Intersections of Two Coupler-Point Curves Generated by Two Four-Bar Linkages." In Solid Mechanics and Its Applications, 251–62. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8192-9_23.
Full textRössl, Christian, and Holger Theisel. "Couple Points – A Local Approach to Global Surface Analysis." In Curves and Surfaces, 586–602. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27413-8_39.
Full textSchwemmer, Michael A., and Timothy J. Lewis. "The Theory of Weakly Coupled Oscillators." In Phase Response Curves in Neuroscience, 3–31. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0739-3_1.
Full textLewis, Timothy J., and Frances K. Skinner. "Understanding Activity in Electrically Coupled Networks Using PRCs and the Theory of Weakly Coupled Oscillators." In Phase Response Curves in Neuroscience, 329–59. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0739-3_14.
Full textJancovici, Bernard. "Two-Dimensional Logarithmic Interaction on Curved Surfaces." In Strongly Coupled Coulomb Systems, 709–12. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47086-1_134.
Full textCohen, Jeremy Emile, Rodrigo Cabral Farias, and Bertrand Rivet. "Curve Registered Coupled Low Rank Factorization." In Latent Variable Analysis and Signal Separation, 36–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93764-9_4.
Full textCanavier, Carmen C., and Srisairam Achuthan. "History of the Application of the Phase Resetting Curve to Neurons Coupled in a Pulsatile Manner." In Phase Response Curves in Neuroscience, 73–91. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0739-3_4.
Full textBai, Shaoping. "Determination of Linkage Parameters from Coupler Curve Equations." In Mechanisms, Transmissions and Applications, 49–57. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17067-1_6.
Full textConference papers on the topic "Coupler curves"
Rojas, Nicola´s, and Federico Thomas. "A Coordinate-Free Approach to Tracing the Coupler Curves of Pin-Jointed Linkages." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48147.
Full textDhingra, A. K., A. N. Almadi, and D. Kohli. "A Closed-Form Approach to Coupler-Curves of Multi-Loop Mechanisms." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/mech-5925.
Full textShieh, W. B., L. W. Tsai, S. Azarm, and A. L. Tits. "A New Class of Six-Bar Mechanisms With Symmetrical Coupler Curves." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dac-1491.
Full textYan, Hong-Sen, and Wen-Hsiang Hsieh. "On the Coupler Curve of RCPCR Linkages." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/mech-5900.
Full textHoeltzel, D. A., and W. H. Chieng. "Pattern Matching Synthesis As an Automated Approach to Mechanism Design." In ASME 1989 Design Technical Conferences. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/detc1989-0043.
Full textKota, S., and R. B. Gudapati. "Automatic Selection of Four-Bar Linkage Designs for Path Generation Task." In ASME 1988 Design Technology Conferences. American Society of Mechanical Engineers, 1988. http://dx.doi.org/10.1115/detc1988-0051.
Full textDurali, Mohammad, and Mohammad Mehdi Jalili Bahabadi. "Investigation of Train Dynamics in Passing Through Curves Using a Full Model." In ASME/IEEE 2004 Joint Rail Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/rtd2004-66044.
Full textNisbett, J. Keith, and Sanjay K. Gupta. "A Dynamic Implementation of Keller’s Sketching Rules for Burmester Curves an Approach to Sensitivity Analysis." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0329.
Full textChavan, Umesh, Mukund Nalawade, and Satishchandra Joshi. "Notice of Retraction: Synthesis of coupler curves with combined planar cam follower mechanisms by genetic algorithm." In 2010 2nd International Conference on Computer Engineering and Technology (ICCET). IEEE, 2010. http://dx.doi.org/10.1109/iccet.2010.5486260.
Full textUllah, Irfan, and Sridhar Kota. "Globally-Optimal Synthesis of Mechanisms for Path Generation Using Simulated Annealing and Powell’s Method." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1225.
Full textReports on the topic "Coupler curves"
Harris, John G. Coupled Elastic Surface Wave in Curved Structures. Fort Belvoir, VA: Defense Technical Information Center, February 2000. http://dx.doi.org/10.21236/ada374339.
Full textPrabhakar, S. New Diagnostics and Cures for Coupled-Bunch Instabilities. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1454227.
Full textPrabhakar, S. New Diagnostics and Cures for Coupled-Bunch Instabilities. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1454228.
Full textTeytelman, Dmitry. NEW DIAGNOSTICS AND CURES FOR COUPLED-BUNCH INSTABILITIES. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799991.
Full textPrabhakar, S. New diagnostics and cures for coupled-bunch instabilities. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/753308.
Full textFox, John D. Cure of Coupled Bunch Instabilities in PLS Storage Ring. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/813011.
Full textChao, Alex W. Study of Uneven Fills to Cure the Coupled-Bunch Instability in SRRC. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/800017.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full text