Academic literature on the topic 'Coupling calculation codes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coupling calculation codes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Coupling calculation codes"

1

Angelucci, M., D. Martelli, G. Barone, I. Di Piazza, and N. Forgione. "STH-CFD Codes Coupled Calculations Applied to HLM Loop and Pool Systems." Science and Technology of Nuclear Installations 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/1936894.

Full text
Abstract:
This work describes the coupling methodology between a modified version of RELAP5/Mod3.3 and ANSYS Fluent CFD code developed at the University of Pisa. The described coupling procedure can be classified as “two-way,” nonoverlapping, “online” coupling. In this work, a semi-implicit numerical scheme has been implemented, giving greater stability to the simulations. A MATLAB script manages both the codes, oversees the reading and writing of the boundary conditions at the interfaces, and handles the exchange of data. A new tool was used to control the Fluent session, allowing a reduction of the time required for the exchange of data. The coupling tool was used to simulate a loop system (NACIE facility) and a pool system (CIRCE facility), both working with Lead Bismuth Eutectic and located at ENEA Brasimone Research Centre. Some modifications in the coupling procedure turned out to be necessary to apply the methodology in the pool system. In this paper, the comparison between the obtained coupled numerical results and the experimental data is presented. The good agreement between experiments and calculations evinces the capability of the coupled calculation to model correctly the involved phenomena.
APA, Harvard, Vancouver, ISO, and other styles
2

Papadionysiou, Marianna, Kim Seongchan, Mathieu Hursin, et al. "COUPLING OF nTRACER TO COBRA-TF FOR HIGH-FIDELITY ANALYSIS OF VVERs." EPJ Web of Conferences 247 (2021): 02008. http://dx.doi.org/10.1051/epjconf/202124702008.

Full text
Abstract:
Paul Scherrer Institut is developing a high-resolution multi-physics core solver for VVER analysis. This work presents the preliminary stages of the development, specifically the coupling of the 3D pin-by-pin neutronic solver nTRACER to the sub-channel thermal-hydraulic code COBRA-TF for single assembly multi-physics steady state calculations. The coupling scheme and the modifications performed in the codes are described in details. The results of the coupled nTRACER/COBRA-TF calculations are compared to the ones of a standalone nTRACER calculation where the feedbacks are provided by a simplified 1D thermal-hydraulic solver. The agreement is very good with fuel temperature differences around 10 K which can be attributed to the different correlations used in the various solvers. The cross-comparison of the two multi-physics computational routes serves as a preliminary verification of the coupling scheme developed between nTRACER and COBRA-TF.
APA, Harvard, Vancouver, ISO, and other styles
3

Blanco, J. A., P. Rubiolo, and E. Dumonteil. "NEUTRONIC MODELING STRATEGIES FOR A LIQUID FUEL TRANSIENT CALCULATION." EPJ Web of Conferences 247 (2021): 06013. http://dx.doi.org/10.1051/epjconf/202124706013.

Full text
Abstract:
Framework • A detailed and highly flexible numerical tool to study criticality accidents has been developed • The tool implements a Multi-Physics coupling using neutronics, thermal-hydraulics and thermal-mechanics models based on Open FOAM and SERPENT codes • Two neutronics models: Quasi-Static Monte Carlo and SPN Objective: In this work a system composed by a 2D square liquid fuel cavity filled with a fuel molten salt has been used to: • Investigate the performance of the tool’s thermal-hydraulics and neutronics solvers coupling numerical scheme • Evaluate possible strategies for the implementation of the Quasi-Static (QS) method with the Monte Carlo (MC) neutronics code • Compare the QS-MC approach precision and computational cost against the Simplified P3 (SP3) method
APA, Harvard, Vancouver, ISO, and other styles
4

Kui, Dai. "Research of Short-Leg Shear Wall Structure System Function in Multiple Coupled Field." Advanced Materials Research 594-597 (November 2012): 2464–69. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.2464.

Full text
Abstract:
Calculation of Short-leg shear walls structural system is a multi-field coupling problem. Through the research and application of short-leg shear wall structure calculation theory, based on the national codes,the short-leg shear wall design principles are established.It is discussed for the reason of the world's first short-leg shear wall structure design formation and development research. According to short-leg shear wall force characteristics, horizonal displacement is divided into destructive story drift and harmless story drift, the formula for calculating the destructive story drift is obtained, using destructive story drift angle parameters and the change of main section height to control the deformation, to control structural rigidity to ensure the structural design rational purpose.
APA, Harvard, Vancouver, ISO, and other styles
5

Mazzantini, Oscar, Miguel Schivo, Julián Di Césare, Ricardo Garbero, Matías Rivero, and Germán Theler. "A Coupled Calculation Suite for Atucha II Operational Transients Analysis." Science and Technology of Nuclear Installations 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/785304.

Full text
Abstract:
While more than a decade ago reactor and thermal hydraulic calculations were tedious and often needed a lot of approximations and simplifications that forced the designers to take a very conservative approach, computational resources available nowadays allow engineers to cope with increasingly complex problems in a reasonable time. The use of best-estimate calculations provides tools to justify convenient engineering margins, reduces costs, and maximises economic benefits. In this direction, a suite of coupled best-estimate specific calculation codes was developed to analyse the behaviour of the Atucha II nuclear power plant in Argentina. The developed tool includes three-dimensional spatial neutron kinetics, a channel-level model of the core thermal hydraulics with subcooled boiling correlations, a one-dimensional model of the primary and secondary circuits including pumps, steam generators, heat exchangers, and the turbine with all their associated control loops, and a complete simulation of the reactor control, limitation, and protection system working in closed-loop conditions as a faithful representation of the real power plant. In the present paper, a description of the coupling scheme between the codes involved is given, and some examples of their application to Atucha II are shown.
APA, Harvard, Vancouver, ISO, and other styles
6

Shi, Qing Xuan, Jian Bo Tian, Kun Li, and Zhi Feng Guo. "Research Status on Seismic Performance of Steel-Concrete Composite Coupling Beam." Advanced Materials Research 671-674 (March 2013): 1315–18. http://dx.doi.org/10.4028/www.scientific.net/amr.671-674.1315.

Full text
Abstract:
Coupling beams of coupled shear wall system in seismic regions are required to have high load resisting capacity and excellent ductility and energy-dissipation capacity. To achieve this goal, the concept of steel-concrete composite coupling beam is proposed. The steel-concrete composite coupling beam is a new form and worthwhile to research and promote. Further, it is a new direction for the future development of the coupling beam. But there is a lack of specific calculation method and constructional measures in the current related codes. In this paper, the review of available literatures is made including the experimental study and influence factors of mechanical behavior. It works that have not yet been covered after summarizing each research methods and research contents, which will provide scientific reference material for the intensive research on steel-concrete composite coupling beam.
APA, Harvard, Vancouver, ISO, and other styles
7

Ferraro, Diego, Manuel García, Uwe Imke, et al. "SERPENT/SUBCHANFLOW COUPLED BURNUP CALCULATIONS FOR VVER FUEL ASSEMBLIES." EPJ Web of Conferences 247 (2021): 04005. http://dx.doi.org/10.1051/epjconf/202124704005.

Full text
Abstract:
The continuous improvement in nuclear industry safety standards and reactor designers’ and operators’ commercial goals represent a push for the development of highly accurate methodologies in reactor physics. This fact, combined with the availability of vast computational resources, allowed the development of a wide range of coupled state-of-the-art neutronic-thermal-hydraulic calculation tools worldwide during last decade. Under this framework, the McSAFE European Union project is a coordinated effort aimed to develop multiphysics tools based on Monte Carlo neutron transport and subchannel thermal-hydraulics codes, suitable for high-fidelity calculations for PWR and VVER reactors. This work presents the results for a pin-by-pin coupled burnup calculation using the Serpent 2 code (developed by VTT, Finland) and the subchannel thermal-hydraulics code SUBCHANFLOW (SCF, developed by KIT, Germany) for two different VVER-type fuel assembly types. For such purpose, a recently refurbished master-slave coupling scheme is considered, which provides several new features such as burnup and transient calculations capabilities for square and hexagonal geometries. Main aspects of this coupling are presented for this burnup case, showing some of the capabilities now available. On top of that, the obtained global results are compared with available published data from a similar high-fidelity approach for the same FA design, showing a good agreement. Finally, a brief analysis of the main resources requirement and main bottlenecks identification are also included. The results presented here provide valuable insights and pave the way to tackle the final goals of the McSAFE project, which includes full-core pin-by-pin depletion calculation within a fully coupled MC-TH approach.
APA, Harvard, Vancouver, ISO, and other styles
8

Ruan, Zhenglin, and Haibing Guo. "A HIGH-FIDELITY SIMULATION OF THE C5G7 BENCHMARK BY USING THE PARALLEL ENTER CODE." EPJ Web of Conferences 247 (2021): 06023. http://dx.doi.org/10.1051/epjconf/202124706023.

Full text
Abstract:
In simulation of advanced nuclear reactors, requirements like high precision, high efficiency and convenient to multi-physics coupling are putting forward. The deterministic transport method has the advantage of high efficiency, capable of obtaining detailed flux distribution and efficient in multi-physics coupling, but its accuracy is limited by the homogenized reaction cross-section data and core modelling exactness. The traditional two-steps homogenization strategy may introduce substantial deviation during the assembly calculation. It is possible to conduct a whole core deterministic transport simulation pin-by-pin to achieve higher accuracy, which eliminates the assembly homogenization process. The C5G7 benchmarks were proposed to test the ability of a modern deterministic transport code in analyzing whole core reactor problems without spatial homogenization. Different deterministic code that developed by different methods were applied to the benchmark simulation and some of them solved the benchmark accurately. However, there still exist some drawbacks in the given calculation processes which carried out by some other deterministic transport codes and we could find that the fuel pin cell in the assembly were not exactly geometrically modelled owing to the limit of the code. Consequently, the calculation precision could be improved by utilizing a high-fidelity geometry modelling. In this paper, the C5G7 benchmarks with different control rod position and different configuration were calculated by the finite element SN neutron transport code ENTER [1], and the results were presented after massively parallel computation on TIANHE-II supercomputer. By introducing a large scale high-fidelity unstructured meshes, high fidelity distributions of power and neutron flux were gained and compared with the results from other codes, excellent consistency were observed. To sum up, the ENTER code can meet those new requirements in simulation of advanced nuclear reactors and more works and researches will be implemented for a further improvement.
APA, Harvard, Vancouver, ISO, and other styles
9

CHEN, WENWU, and BILL POIRIER. "QUANTUM DYNAMICAL CALCULATION OF ALL ROVIBRATIONAL STATES OF HO2 FOR TOTAL ANGULAR MOMENTUM J = 0–10." Journal of Theoretical and Computational Chemistry 09, no. 02 (2010): 435–69. http://dx.doi.org/10.1142/s0219633610005815.

Full text
Abstract:
The energy levels and wavefunctions for all rovibrational bound states of HO2 are systematically computed, for all total angular momentum values J = 0–10. The calculations are performed using ScalIT, a suite of software modules designed to enable quantum dynamics and related calculations to be performed on massively parallel computing architectures. This is the first-ever application of ScalIT to a real (and very challenging) molecular application. The codes, and in particular, the algorithms (optimal separable basis, preconditioned inexact spectral transform, phase space optimized discrete variable representation basis) are so efficient that in fact, the entire calculation can be performed on a single CPU — although parallel scalability over a small number of CPUs is also evaluated, and found to be essentially perfect in this regime. For the lowest 11 vibrational states, the rotational levels for J = 0–10 fit fairly well to a rigid rotor model, with all vibrational-state-dependent rotational constants, B eff (v), close to values obtained from a previous calculation for J = 0 and 1 [J Chem Phys107:2705, 1997]. However, comparatively larger discrepancies with the rigid-rotor model are found at the higher J values, manifesting in the observed K-splitting (along the O–O bond) of rovibrational levels. This supports earlier work [J Chem Phys113:11055, 2000] suggesting that Coriolis coupling is quite important for this system.
APA, Harvard, Vancouver, ISO, and other styles
10

De’an, Hu, Liu Chunhan, Xiao YiHua, and Han Xu. "Analysis of explosion in concrete by axisymmetric FE-SPH adaptive coupling method." Engineering Computations 31, no. 4 (2014): 758–74. http://dx.doi.org/10.1108/ec-08-2012-0202.

Full text
Abstract:
Purpose – The purpose of this paper is to confirm that the axisymmetric finite element and smoothed particle hydrodynamics (FE-SPH) adaptive coupling method is effective to solve explosion problem in concrete based on the experiments. Design/methodology/approach – Axisymmetric FE-SPH adaptive coupling method is first presented to simulate dynamic deformation process of concrete under internal blast loading. Using calculation codes of FE-SPH coupling method, numerical model of explosion is approximated initially by finite element method (FEM), and distorted finite elements are automatically converted into meshless particles to simulate damage, splash of concrete by SPH method, when equivalent plastic strain of elements reaches a specified value. Findings – In this paper, damage process and pressure curve of concrete around explosive are analyzed and buried depth of explosive in concrete influence on damage effect under internal blast loading are obtained. Numerical analyses show that FE-SPH coupling method integrates high computational efficiency of FEM and advantages of SPH method, such as natural simulation to damage, splash and other characteristics of explosion in concrete. Originality/value – This work shows that FE-SPH coupling method has good performance to solve the explosion problem.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Coupling calculation codes"

1

Daou, Mehdi Pierre. "Développement d’une méthodologie de couplage multimodèle avec changements de dimension : validation sur un cas-test réaliste." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM061/document.

Full text
Abstract:
Les progrès réalisés depuis plusieurs décennies, à la fois en termes de connaissances physiques, numériques et de puissance informatique disponible, permettent de traiter des simulations de plus en plus complexes. Les modélisations d'écoulements fluviaux et maritimes n'échappent pas à cette tendance. Ainsi, pour de très nombreuses applications de ce type, les modélisateurs doivent mettre en œuvre de véritables "systèmes de modélisation", couplant entre eux plusieurs modèles et logiciels, représentant différentes parties du système physique. La mise en place de tels systèmes permet de traiter de nombreuses études, comme par exemple les impacts de construction d'ouvrages d'art ou industriels, ou encore l'évaluation des aléas suite à un événement exceptionnel, etc.Dans le cadre de cette thèse, nous abordons cette problématique en utilisant une méthodologie de type Schwarz, empruntée à la théorie de décomposition de domaine, dont le principe est de ramener la résolution d'un problème complexe à celle de plusieurs sous-problèmes plus simples, grâce à un algorithme itératif. Ces méthodologies sont particulièrement bien adaptées au couplage de codes industriels puisqu'elles sont très peu intrusives.Cette thèse, réalisée dans le cadre d'un contrat CIFRE et grâce au financement du projet européen CRISMA, a été fortement ancrée dans un contexte industriel. Elle a été réalisée au sein d'Artelia en collaboration avec l'équipe AIRSEA du Laboratoire Jean Kuntzmann, avec pour objectif principal de transférer vers Artelia des connaissances et du savoir-faire concernant les méthodologies de couplage de modèles.Nous développons, dans le cadre de cette thèse, une méthodologie de couplage multi-modèles et de dimensions hétérogènes basée sur les méthodes de Schwarz, afin de permettre la modélisation de problématiques complexes dans des cas opérationnels (en complexifiant les problématiques étudiées au fur et à mesure de la thèse). Du point de vue industriel, les couplages mis en place sont fortement contraints par les logiciels utilisés répondant aux besoins d'Artelia (Telemac-3D, Mascaret, InterFOAM, Open-PALM).Nous étudions tout d'abord un couplage 1-D/3-D résolvant des écoulements à surface libre sous un même système de logiciel Telemac-Mascaret. L'avantage d'un tel couplage est une réduction de coût grâce à l'utilisation du modèle 1-D. Toutefois l’une des difficultés liées au changement de dimension réside dans la définition même de la notion de couplage entre des modèles de dimensions différentes. Ceci conduit à une solution couplée qui n’est pas définie d’une façon unique et qui dépend du choix des opérateurs d’interfaces.Puis nous nous intéressons au couplage monophasique/diphasique (1-D/3-D et 3-D/3-D) entre le système de logiciel Telemac-Mascaret et InterFOAM (modèle diphasique VOF), où la difficulté du choix des opérateurs d'interface lors du changement de physique (monophasique/diphasique) est aussi présente. Ce couplage a pour avantage de rendre possible la résolution d’écoulements complexes, que le système Telemac-Mascaret ne peut pas simuler (déferlement, lame d'eau, écoulement en charge, etc.) en utilisant localement InterFOAM avec son coût de calcul très important. Enfin, nous étudions l’application du couplage monophasique/diphasique sur un cas opérationnel d’étude d’ingénierie.Par ailleurs, les travaux effectués lors du projet CRISMA, pour le développement d'une application permettant de simuler les différents aspects d'une crise liée aux risques de submersions marines en Charente Maritime, coordonnés par Artelia, sont également présentés. Le projet CRISMA a pour objectif d'améliorer l'aide à la décision en se basant sur la simulation pour la gestion opérationnelle des situations de crise dans différents domaines du risque naturel et industriel (inondations, feux de forêt, pollutions accidentelles, etc.)<br>Progress has been performed for decades, in terms of physical knowledge, numerical techniques and computer power, that allows to address more and more complex simulations. Modelling of river and marine flows is no exception to this rule. For many applications, engineers have now to implement complex "modelling systems", coupling several models and software, representing various parts of the physical system. Such modelling systems allow addressing numerous studies, like quantifying the impacts of industrial constructions or highway structures, or evaluating the consequences of an extreme event.In the framwork of the present thesis, we address model coupling techniques using Schwarz's methodology, which is based on domain decomposition methods. The basic principle is to reduce the resolution of a complex problem into several simpler sub-problems, thanks to an iterative algorithm. These methods are particularly well suited for industrial codes, since they are very few intrusive.This thesis was realized within the framework of a CIFRE contract and thanks to the funding of the European CRISMA project and was thus greatly influenced by this industrial context. It was performed within the Artelia company, in collaboration with the AIRSEA team of the Jean Kuntzmann Laboratory, with the main objective of transferring to Artelia some knowledge and expertise regarding coupling methodologies.In this thesis, we develop a methodology for multi-model coupling with heterogeneous dimensions, based on Schwarz's methods, in order to allow modelling of complex problems in operational cases. From the industrial viewpoint, the developed coupled models must use software meeting Artelia's needs (Telemac-3D, Mascaret, InterFOAM, Open-PALM).We firstly study a testcase coupling 1-D and 3-D free surface flows, using the same software system Telemac-Mascaret. The advantage of such coupling is a reduction of the computation cost, thanks to the use of a 1-D model. However the change in the model dimension makes it difficult to define properly the notion of coupling, leading to a coupled solution which is not defined in a unique way but depends on the choice of the interface operators.Then we study a coupling case between a monophasic model and a diphasic model (1-D/3-D and 3-D/3-D), using Telemac-Mascaret and InterFOAM software systems. Once again, the main difficulty lies in the definition of interfaces operators, due to the change in the physics (monophasic / diphasic). Such a coupling makes it possible to solve complex flows that the Telemac-Mascaret system alone cannot address (breaking waves, water blade, closed-conduit flow, etc.), by locally using InterFOAM where necessary (InterFOAM is very expensive in terms of computations). Finally, we implement such a monophasic/diphasic coupling on an operational engineering study.In addition, we also present the work done during the CRISMA project. The overall objective of the CRISMA project was to develop a simulation-based decision support system for the operational crisis management in different domains of natural or industrial risks (floods, forest fires, accidental pollution, etc.). In this context, Artelia coordinated the development of an application allowing to simulate various aspects of crisis linked to flood risks in Charente-Maritime
APA, Harvard, Vancouver, ISO, and other styles
2

Grundmann, Ulrich, Ulrich Rohde, Siegfried Mittag, and Sören Kliem. "DYN3D version 3.2 - code for calculation of transients in light water reactors (LWR) with hexagonal or quadratic fuel elements - description of models and methods -." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28604.

Full text
Abstract:
DYN3D is an best estimate advanced code for the three-dimensional simulation of steady-states and transients in light water reactor cores with quadratic and hexagonal fuel assemblies. Burnup and poison-dynamic calculations can be performed. For the investigation of wide range transients, DYN3D is coupled with system codes as ATHLET and RELAP5. The neutron kinetic model is based on the solution of the three-dimensional two-group neutron diffusion equation by nodal expansion methods. The thermal-hydraulics comprises a one- or two-phase coolant flow model on the basis of four differential balance equations for mass, energy and momentum of the two-phase mixture and the mass balance for the vapour phase. Various cross section libraries are linked with DYN3D. Systematic code validation is performed by FZR and independent organizations.
APA, Harvard, Vancouver, ISO, and other styles
3

Grundmann, Ulrich, Ulrich Rohde, Siegfried Mittag, and Sören Kliem. "DYN3D version 3.2 - code for calculation of transients in light water reactors (LWR) with hexagonal or quadratic fuel elements - description of models and methods -." Forschungszentrum Rossendorf, 2005. https://hzdr.qucosa.de/id/qucosa%3A21687.

Full text
Abstract:
DYN3D is an best estimate advanced code for the three-dimensional simulation of steady-states and transients in light water reactor cores with quadratic and hexagonal fuel assemblies. Burnup and poison-dynamic calculations can be performed. For the investigation of wide range transients, DYN3D is coupled with system codes as ATHLET and RELAP5. The neutron kinetic model is based on the solution of the three-dimensional two-group neutron diffusion equation by nodal expansion methods. The thermal-hydraulics comprises a one- or two-phase coolant flow model on the basis of four differential balance equations for mass, energy and momentum of the two-phase mixture and the mass balance for the vapour phase. Various cross section libraries are linked with DYN3D. Systematic code validation is performed by FZR and independent organizations.
APA, Harvard, Vancouver, ISO, and other styles
4

Groszkowski, Peter. "Surface Code Threshold Calculation and Flux Qubit Coupling." Thesis, 2009. http://hdl.handle.net/10012/4795.

Full text
Abstract:
Building a quantum computer is a formidable challenge. In this thesis, we focus on two projects, which tackle very different aspects of quantum computation, and yet still share a common goal in hopefully getting us closer to implementing a quantum computer on a large scale. The first project involves a numerical error threshold calculation of a quantum error correcting code called a surface code. These are local check codes, which means that only nearest neighbour interaction is required to determine where errors occurred. This is an important advantage over other approaches, as in many physical systems, doing operations on arbitrarily spaced qubits is often very difficult. An error threshold is a measure of how well a given error correcting scheme performs. It gives the experimentalists an idea of which approaches to error correction hold greater promise. We simulate both toric and planar variations of a surface code, and numerically calculate a threshold value of approximately $6.0 \times 10^{-3}$, which is comparable to similar calculations done by others \cite{Raussendorf2006,Raussendorf2007,Wang2009}. The second project deals with coupling superconducting flux qubits together. It expands the scheme presented in \cite{Plourde2004} to a three qubit, two coupler scenario. We study L-shaped and line-shaped coupler geometries, and show how the coupling strength changes in terms of the dimensions of the couplers. We explore two cases, the first where the interaction energy between two nearest neighbour qubits is high, while the coupling to the third qubit is as negligible as possible, as well as a case where all the coupling energies are as small as possible. Although only an initial step, a similar scheme can in principle be extended further to implement a lattice required for computation on a surface code.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Coupling calculation codes"

1

"niques were prepared using pentane as the solvent. Similar methods were used in preparing calibration samples with the mold release, solder flux, and hydraulic oil samples. All contaminated coupons were gentl y heated in an oven at 50°C for several days to remove both semi-volatile and volatile components. This served to stabi-lize the contaminants, allowing for quantification by weighing. Once the weights became stable, the coupons were cooled and weighed to determine the amount of contaminant present on the surface. When not being weighed or examined, the coupons were kept in a desiccator. 3. RESULTS AND DISCUSSION Grazing-angle incidence reflectance spectroscopy acts to enhance the detection sensitivity for thin layers of residue predominantly through improved coupling of th e electric field intensity of the incident beam with the vibrating dipoles of the surface contaminant layer perpendicular to the metallic surface. Some additional enhancement of the infrared absorption spectrum will also occur due to a length-ening of the effective path length through the absorbing thin film layer [4-6]. If the optical properties of both thin film and substrate are known (or can be de-termined), the reflection-absorption spectrum can be calculated as a function of film thickness and angle of incidence. This capability is particularly useful for in-terpreting experimental data and designing optical instrumentation. Computer codes written at Sandia [7] performed these calculations for a variety of materials. 3.1. FTIR measurements FTIR reflectance data for the full drawing-agent sample set were obtained at NFESC and Sandia using angles of incidence of 75 and 60° for average film thickness ranging from 0.1 to 1 |im, and aluminum substrates with surface finish ranging from 600 to 80 grit. Since the surface finishing operation produced a highly directional roughness, measurements were made both longitudinally and transversely with respect to the polishing grooves. R values were determined at." In Surface Contamination and Cleaning. CRC Press, 2003. http://dx.doi.org/10.1201/9789047403289-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Coupling calculation codes"

1

Qingquan, Pan, and Wang Kan. "The Deep-Coupling and Preprocessed Photon Transport Based on RMC Codes." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81036.

Full text
Abstract:
The conventional method for neutron-photon coupling transport calculation lacks of clear physical meanings, where the process of neutron transport and photon transport are independent, and only ensures the numbers of photons to be coupling with the neutrons. At the same time, when dealing with photoelectric effect, the nuclear data will be processed frequently, increasing the amount of calculation. By modifying the RMC codes, the deep-coupling and preprocessed photon transport is achieved. This new coupling method can satisfy the physical requirements and reduce the computational complexity while ensuring the accuracy of the calculation. At the same time, the preprocessing of the photoelectric effect nuclear data can accelerate the calculation without changing the calculation results. Through the deep-coupling and preprocessed photon transport method, the RMC codes can finished the high-precision shielding calculation. A typical LWR component is calculated with the new method, and the results prove the effectiveness.
APA, Harvard, Vancouver, ISO, and other styles
2

Costa, Antonella Lombardi, Patrícia Amélia de Lima Reis, Claubia Pereira, Maria Auxiliadora Fortini Veloso, and Clarysson Alberto Mello da Silva. "Research Reactor Analysis Using Thermal Hydraulic and Neutron Kinetic Coupling." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30237.

Full text
Abstract:
Simulations of complex scenarios in nuclear power plants have been improved by the utilization of coupled thermal hydraulic (TH) and neutron kinetics (NK) system codes with the development of computer technology and new calculation methodology which made it possible to perform transport calculation schemes with accurate solutions. This paper presents a model for the IPR-R1 TRIGA research reactor using the RELAP5-3D 3.0.0 code. By using this code, a multi-dimensional neutron kinetics model based on the NESTLE code can be implemented also. In this way, during a 3D TH/NK coupled simulation, RELAP5-3D calls the appropriate NESTLE subroutines to perform the calculations. The development and the assessment of the thermal hydraulic RELAP5 code model for the IPR-R1 TRIGA have been validated for steady state and transient situations and the results were published in preceding works. The model has been adapted to RELAP5-3D code and was verified to point kinetic calculations. After this, adequate cross sections to the NK code were supplied using the WIMSD5 code. The results of steady state and transient calculations using the 3D neutron modeling to the IPR-R1 are being presented in this paper.
APA, Harvard, Vancouver, ISO, and other styles
3

Chiavola, O., and F. Palmieri. "Coupling Codes for Nozzle Flow Modelling in Diesel Injection System." In ASME 2006 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ices2006-1414.

Full text
Abstract:
This paper deals with a numerical investigation of a single cylinder diesel engine equipped with mechanical fuel direct injection system and focuses on the fuel injection system modelling with the aim of predicting the performance of the entire injection system, the spray characteristics, the interaction among spray-cones, combustion chamber flows and geometry. In the simulations, two different codes have been used. With the former one, AMESim code, the complete injection system has been analysed and the single components have been selected and modelled. The results obtained from the injection system simulation, in terms of injection needle lift, injection flow rate, pressure time evolution, have been used to initialize the latter computation tool, FIRE code, in which 3D flow numerical investigation of the internal injector flow has been performed. Since such a flow is directly linked to the spray modelling, the primary break-up effects have been taken into account. The details of the adopted modelling strategy have been shown and the results of each simulation step have been presented. In order to highlight the relationship among the nozzle flow condition and the spray formation-vaporization characteristics, a comparison between two different calculation setups has been shown. Moreover, a qualitative comparison among predictions and experimental data has been discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Wanlin, Kan Wang, Ganglin Yu, and Yaodong Li. "Research on Coupling Scheme of Monte Carlo Burnup Calculation in RMC." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81140.

Full text
Abstract:
Monte Carlo (MC) burnup calculation method, implemented through coupling neutron transport and point depletion solvers, is widely used in design and analysis of nuclear reactor. Burnup calculation is generally solved by dividing reactor lifetime into steps and modeling geometry into numbers of burnup areas where neutron flux and one group effective cross sections are treated as constant during each burnup step. Such constant approximation for neutron flux and effective cross section will lead to obvious error unless using fairly short step. To yield accuracy and efficiency improvement, coupling schemes have been researched in series of MC codes. In this study, four coupling schemes, beginning of step approximation, predictor-corrector methods by correcting nuclide density and flux-cross section as well as high order predictor-corrector with sub-step method were researched and implemented in RMC. Verification and comparison were performed by adopting assembly problem from VERA international benchmark. Results illustrate that high order coupled with sub-step method is with notable accuracy compared to beginning of step approximation and traditional predictor-corrector, especially for calculation in which step length is fairly long.
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Zheng, Hui Li, and Mengqi Wang. "Application of a 3D Discrete Ordinates-Monte Carlo Coupling Method on CAP1400 Cavity Streaming Calculation." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66401.

Full text
Abstract:
Neutrons and photons produced from reactor core during operation pass through the pressure vessel, reach the reactor cavity, and form the reactor cavity streaming. Reactor cavity streaming dose rates calculation during normal operation is important for the evaluation and control of the equipment dose rates in the nuclear power plant. Because reactor is great in dimension and complex in geometry, neutrons and photons fluence rates declined by several orders from reactor core to outside. Cavity streaming calculation is a deep penetration calculation with heavy computation load which is difficult to converge. Three dimensional Discrete Ordinates and Monte Carlo (SN-MC) coupling method combines the advantage of the SN method with high efficiency and the MC method with fine geometrical modeling. The SN-MC coupling method decreases the tally errors and increases the efficiency of the MC method effectively by using MC surface source generated by the SN fluence rates. In this paper, the theoretical model of the 3D SN-MC coupling method is presented. In order to fulfill the coupling calculation, a 3D Discrete Ordinates code is modified to output angular fluence rates, a link code DO2MC is developed to calculate cummulative distribution functions of source particle variables on surface source, and a source subroutine is written for a 3D Monte Carlo code. The 3D SN-MC coupling method is applied on the calculation of the CAP1400 cavity streaming neutron and photon dose rates. Numerical results show that the 3D SN-MC coupling codes are correct, the relative errors of the results are less than 20% compared with those of the MC bootstrapping method, and the efficiency is greatly enhanced.
APA, Harvard, Vancouver, ISO, and other styles
6

Timperi, Antti, Timo Pa¨ttikangas, Ismo Karppinen, Ville Lestinen, Jukka Ka¨hko¨nen, and Timo Toppila. "Validation of Fluid-Structure Interaction Calculations in a Large-Break Loss of Coolant Accident." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48206.

Full text
Abstract:
In the hypothetical Large-Break Loss Of Coolant Accident (LBLOCA), rapid depressurization of the reactor primary circuit causes loads on the reactor internals. This paper presents numerical simulations of a HDR experiment, where LBLOCA of a pressurized water reactor due to a sudden pipe break in the primary loop was studied. In the experiment, Fluid-Structure Interaction (FSI) phenomena caused by the flexibility of the core barrel were studied in particular. Star-CD Computational Fluid Dynamics (CFD) code and ABAQUS structural analysis code were used for three-dimensional calculations. The MpCCI code was used for two-way coupling of the CFD and structural analysis codes in order to take FSI into account. Two-way FSI calculation was also performed with ABAQUS only by modeling water as an acoustic medium. Pressure boundary condition at the pipe break was evaluated with the system code APROS as a two-phase calculation. Comparisons with the experiment were made for fluid pressures and break mass flow as well as for structural displacements and strains. Fairly good agreement was found between the experiment and simulation when coupling of the CFD and structural analysis codes was used. For the acoustic calculation, the results showed good agreement in the early phase of the simulation. In the late phase, structural loads were over-predicted by the acoustic calculation due to the effect of bulk flow of water which is not included in the acoustic model.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Kaiwen, Shichang Liu, Juanjuan Guo, and Kan Wang. "Internal Coupling Between Neutronics and Thermal-Hydraulics With RMC/CTF and Validation Using VERA Benchmarks." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-82397.

Full text
Abstract:
The main purpose of this work is to realize the internal coupling mode between the Monte Carlo neutronics transport code RMC and sub-channel thermal-hydraulic (TH) code CTF. The coupling was implemented with the coupling interfaces of RMC and CTF. And it features to use memory rather than files to transfer data from each other, which has a lot of advantages. With the internal coupling mode, power distribution calculated from RMC can be precisely provided to CTF, instead of utilizing the approximate method adopted by the external coupling mode. In addition, using memory to transfer data between those two codes can reduce the total calculation time significantly. The percentage of time reduction can be as large as 10%. Moreover, we have realized the parallel execution of CTF in the internal coupling mode and this saves a lot of time during the TH calculation. A modified Virtual Environment for Reactor Application (VERA) Problem #6 assembly and a 4-assembly structure have been used to test the accuracy and efficiency of internal calculation mode to external calculation mode. The results show that internal coupling can give a very close solution to the external one but with 10% time reduce, and can come to an ideal convergence state with only a few iterations.
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Siyuan, Bo Yang, Hexi Wu, Qianglin Wei, and Yibao Liu. "Spent Fuel Canister Criticality Safety Calculation in Groundwater Immersion Accident." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30978.

Full text
Abstract:
This paper studies the KBS-3 spent fuel canister criticality safety issue in the event of a groundwater penetration accident. First, the study calculates the composition of the PWR spent fuel assemblies by using MCBURN software, and the coupling of the MCNP and ORIGEN 2.1 computer codes. Then, with the help of Isotope Generation and Depletion Code, it calculates the composition of various types of actinides and their daughters for 100,000 years. Finally, the above calculation results are used in MCNP5 to calculate the effective multiplication factor keff of the canister for different degrees of groundwater penetration. The study finds that the maximum keff of the canister is 0.79609 in groundwater penetration accident, satisfying criticality safety standard.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Bin. "Core-Catcher Coolability Analysis With Coupled THEMA and RELAP Codes." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48624.

Full text
Abstract:
Core-catcher concept is widely used as a mitigation measure for containment protection under severe accident condition. Preliminary design of core-catcher is combined with ex-vessel corium behavior and corium cooling. The loose coupling of THEMA and RELAP codes provides a convenient method to evaluation the coolability of core catcher with a realistic ex-vessel corium characteristic by couple the corium and concrete basemat parameters like spreading area heat flux and etc. calculated by THEMA code and thermal-hydraulic transient behavior of coolant which flows through the basemat and is calculated by RELAP. In this paper the calculation results of coupling methodology is compared with experiment result and simulation of finite element model. The calculation results are consistent to the BENSON test rig, which demonstrates the heat removing capability of EPR core-catcher. However, it also reveals the flow instability in coolant channel, which penalizes the core-catcher coolability. But with an improved design of core-catcher with pre-filling water and core-catcher seal, which we presented in this paper, effect of flow instability can be mitigated, especially for the inlet and outlet of coolant channel.
APA, Harvard, Vancouver, ISO, and other styles
10

Rao, Junjie, Xiaotong Shang, and Kan Wang. "Verification of Shielding Calculation Capability of RMC With H.B.Robinson-2 Pressure Vessel Benchmark." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81694.

Full text
Abstract:
RMC is a 3-D continuous energy Monte Carlo code developed by REAL team in Tsinghua University, China. Besides the capability of fuel cycle burnup calculation, hybrid MPI/OpenMP parallelism strategy, sensitivity and uncertainty analysis, N-TH coupling calculation, shielding calculation methods including general source description, regional importance method, weight window method and source biasing method have been also developed for deep penetration problems. H.B.Robinson-2 Pressure Vessel Benchmark (HBR-2 benchmark) is used for the qualification of pressure vessel neutron flux calculation methods and shielding calculations based on this model have been performed by Monte Carlo codes such as SCALE, MCNPX and deterministic transport code DORT. In this work, the verification calculation of shielding calculation capability of RMC is conducted based on HBR-2 benchmark. The total calculation consists of two stages. Criticality calculation is performed first to obtain the fission neutron distribution in the reactor core assemblies. Then the fission neutron distribution is regarded as the initial neutron source in the following fixed source calculation. Variance reduction techniques such as source biasing and regional importance methods are combined together to be able to reduce the variance of the neutron flux in regions within and outside the pressure vessel including the downcomer and cavity regions. The preliminary calculation results show good agreement with MCNP and the shielding calculation of RMC is justified and applicable for deep penetration problems.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Coupling calculation codes"

1

Slater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5973682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Slater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10110196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography