Contents
Academic literature on the topic 'Courbure moyenne'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Courbure moyenne.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Courbure moyenne"
Pacard, Frank. "Construction de surfaces à courbure moyenne constante." Séminaire de théorie spectrale et géométrie 17 (1999): 139–57. http://dx.doi.org/10.5802/tsg.212.
Full textLieutier, Denis. "Monotonie du périmètre et de la courbure moyenne." Quadrature, no. 71 (December 13, 2008): 12–17. http://dx.doi.org/10.1051/quadrature:2008014.
Full textQuadjovie, Horatio. "Flot de courbure moyenne modifiée avec obstacle conique." Bulletin des Sciences Mathématiques 128, no. 6 (July 2004): 447–66. http://dx.doi.org/10.1016/j.bulsci.2003.11.002.
Full textHélein, Frédéric. "Surfaces à courbure moyenne constante et inégalité de Wente." Séminaire de théorie spectrale et géométrie 15 (1997): 43–52. http://dx.doi.org/10.5802/tsg.179.
Full textCherrier, Pascal, and Abdellah Hanani. "Hypersurfaces compactes d'un fibré vectoriel riemannien à courbure moyenne prescrite." Comptes Rendus Mathematique 335, no. 6 (September 2002): 525–28. http://dx.doi.org/10.1016/s1631-073x(02)02500-1.
Full textMazet, Laurent. "Lignes de divergence pour les graphes à courbure moyenne constante." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 24, no. 5 (September 2007): 757–71. http://dx.doi.org/10.1016/j.anihpc.2006.06.004.
Full textSouganidis, P. "Unicité du mouvement par courbure moyenne perturbé par un bruit stochastique." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 21, no. 1 (February 2004): 1–23. http://dx.doi.org/10.1016/s0294-1449(03)00029-5.
Full textDaniel, Benoît. "Sphères à courbure moyenne constante et problème isopérimétrique dans les variétés homogènes." Séminaire de théorie spectrale et géométrie 28 (2010): 13–27. http://dx.doi.org/10.5802/tsg.276.
Full textBarles, Guy, Samuel Biton, and Olivier Ley. "Quelques résultats d'unicité pour l'équation du mouvement par courbure moyenne dans RN." ESAIM: Proceedings 11 (2002): 1–12. http://dx.doi.org/10.1051/proc:2002027.
Full textCastillon, Philippe. "Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique." Annales de la faculté des sciences de Toulouse Mathématiques 7, no. 3 (1998): 379–400. http://dx.doi.org/10.5802/afst.903.
Full textDissertations / Theses on the topic "Courbure moyenne"
Kirsch, Stéphane. "Courbure moyenne et interfaces." Paris 6, 2007. http://www.theses.fr/2007PA066103.
Full textJleli, Mohamed Boussaïri Pacard Franck. "Hypersurfaces à courbure moyenne constante." Créteil : Université de Paris-Val-de-Marne, 2004. http://doxa.scd.univ-paris12.fr:80/theses/th0200395.pdff.
Full textLaurain, Paul. "Comportement asymptotique des surfaces à courbure moyenne constante." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2010. http://tel.archives-ouvertes.fr/tel-00559640.
Full textOliveira, Iury Rafael Domingos de. "Surfaces à courbure moyenne constante dans les variétés homogènes." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0057.
Full textThe goal of this thesis is to study constant mean curvature surfaces into homogeneous 3-manifolds with 4-dimensional isometry group. In the first part of this thesis, we study constant mean curvature surfaces in the product manifolds \mathbb{S}^2\times\mathbb{R} and \mathbb{H}^2\times\mathbb{R}. As a main result, we establish a local classification for constant mean curvature surfaces with constant intrinsic curvature in these spaces. In this classification, we present a new example of constant mean curvature surfaces with constant intrinsic curvature in \mathbb{H}^2\times\mathbb{R}. As a consequence, we use the sister surface correspondence to classify the constant mean curvature surfaces with constant intrinsic curvature in the others homogeneous 3-manifolds with 4-dimensional isometry group, and then new examples with these conditions arise in \widetilde{\mathrm{PSL}}_{2}(\mathbb{R}). We devote the second part of this thesis to study minimal surfaces in \mathbb{S}^2\times\mathbb{R}. For this, we define a new Gauss map for surfaces in this space using the model of \mathbb{S}^2\times\mathbb{R} isometric to \mathbb{R}^3\setminus\{0\}, endowed with a metric conformally equivalent to the Euclidean metric of \mathbb{R}^3. As a main result, we prove that any two minimal conformal immersions in \mathbb{S}^2\times\mathbb{R} with the same non-constant Gauss map differ by only two types of ambient isometries. Moreover, if the Gauss map is a singular, we show that it is necessarily constant and then the surface is a vertical cylinder over a geodesic of \mathbb{S}^2 in \mathbb{S}^2\times\mathbb{R}. We also study some particular cases, among them we also prove that there is no minimal conformal immersion into \mathbb{S}^2\times\mathbb{R} with anti-holomorphic non-constant Gauss map
Dos, Reis Gabriel. "Sur les surfaces dont la courbure moyenne est constante." Paris 7, 2001. http://www.theses.fr/2001PA077187.
Full textDesmonts, Christophe. "Surfaces à courbure moyenne constante via les champs de spineurs." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0073/document.
Full textIn this thesis we are interested in the role played by the extrinsic curvatures of a hypersurface in the study of its geometry, especially in the case of spin manifolds. First, we focus our attention on the mean curvature and construct a new family of non simply connected minimal surfaces in the Lie group Sol3, by adapting a method used by Daniel and Hauswirth in Nil3 based on the properties of the Gauss map of a surface. Then we give a new spinorial proof of the Alexandrov Theorem extended to all Hr-curvatures in the euclidean space Rn+1 and in the hyperbolic space Hn+1, using a well-chosen test-spinor in the holographic inequalities recently obtained by Hijazi, Montiel and Raulot. These inequalities lead to a new proof of the Heintze-Karcher Inequality as well. Finally we use restrictions of particular ambient spinor fields constructed by Roth to give some extrinsic upper bounds for the first nonnegative eigenvalue of the Dirac operator of surfaces immersed into S2 x S1(r) and into the Berger spheres Sb3 (τ), and we describe the equality cases
Collin, Pascal. "Le problème de Dirichlet pour les surfaces à courbure moyenne prescrite." Paris 7, 1992. http://www.theses.fr/1992PA077233.
Full textSemmler, Beate. "Surfaces de courbure moyenne constante dans les espaces euclidien et hyperbolique." Paris 7, 1997. http://www.theses.fr/1997PA077289.
Full textRaujouan, Thomas. "Surfaces à courbure moyenne constante dans les espaces euclidien et hyperbolique." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4011.
Full textNon-zero constant mean curvature surfaces are mathematical models for physical interface problems with non-zero pressure difference. They are described by partial differential equations and can be constructed from holomorphic data via a Weierstrass-type representation, called "the DPW method". In this thesis, we use the DPW method and prove two main results. The first one states that perturbations of the DPW data for Delaunay unduloidal ends generate embedded annuli. This can be used to prove the embeddedness of surfaces constructed via the DPW method. The second result is the construction of n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n Delaunay ends
Castillon, Philippe. "Sur les sous-variétés à courbure moyenne constante dans l'espace hyperbolique." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10006.
Full text