Dissertations / Theses on the topic 'Courbure moyenne'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 38 dissertations / theses for your research on the topic 'Courbure moyenne.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kirsch, Stéphane. "Courbure moyenne et interfaces." Paris 6, 2007. http://www.theses.fr/2007PA066103.
Full textJleli, Mohamed Boussaïri Pacard Franck. "Hypersurfaces à courbure moyenne constante." Créteil : Université de Paris-Val-de-Marne, 2004. http://doxa.scd.univ-paris12.fr:80/theses/th0200395.pdff.
Full textLaurain, Paul. "Comportement asymptotique des surfaces à courbure moyenne constante." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2010. http://tel.archives-ouvertes.fr/tel-00559640.
Full textOliveira, Iury Rafael Domingos de. "Surfaces à courbure moyenne constante dans les variétés homogènes." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0057.
Full textThe goal of this thesis is to study constant mean curvature surfaces into homogeneous 3-manifolds with 4-dimensional isometry group. In the first part of this thesis, we study constant mean curvature surfaces in the product manifolds \mathbb{S}^2\times\mathbb{R} and \mathbb{H}^2\times\mathbb{R}. As a main result, we establish a local classification for constant mean curvature surfaces with constant intrinsic curvature in these spaces. In this classification, we present a new example of constant mean curvature surfaces with constant intrinsic curvature in \mathbb{H}^2\times\mathbb{R}. As a consequence, we use the sister surface correspondence to classify the constant mean curvature surfaces with constant intrinsic curvature in the others homogeneous 3-manifolds with 4-dimensional isometry group, and then new examples with these conditions arise in \widetilde{\mathrm{PSL}}_{2}(\mathbb{R}). We devote the second part of this thesis to study minimal surfaces in \mathbb{S}^2\times\mathbb{R}. For this, we define a new Gauss map for surfaces in this space using the model of \mathbb{S}^2\times\mathbb{R} isometric to \mathbb{R}^3\setminus\{0\}, endowed with a metric conformally equivalent to the Euclidean metric of \mathbb{R}^3. As a main result, we prove that any two minimal conformal immersions in \mathbb{S}^2\times\mathbb{R} with the same non-constant Gauss map differ by only two types of ambient isometries. Moreover, if the Gauss map is a singular, we show that it is necessarily constant and then the surface is a vertical cylinder over a geodesic of \mathbb{S}^2 in \mathbb{S}^2\times\mathbb{R}. We also study some particular cases, among them we also prove that there is no minimal conformal immersion into \mathbb{S}^2\times\mathbb{R} with anti-holomorphic non-constant Gauss map
Dos, Reis Gabriel. "Sur les surfaces dont la courbure moyenne est constante." Paris 7, 2001. http://www.theses.fr/2001PA077187.
Full textDesmonts, Christophe. "Surfaces à courbure moyenne constante via les champs de spineurs." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0073/document.
Full textIn this thesis we are interested in the role played by the extrinsic curvatures of a hypersurface in the study of its geometry, especially in the case of spin manifolds. First, we focus our attention on the mean curvature and construct a new family of non simply connected minimal surfaces in the Lie group Sol3, by adapting a method used by Daniel and Hauswirth in Nil3 based on the properties of the Gauss map of a surface. Then we give a new spinorial proof of the Alexandrov Theorem extended to all Hr-curvatures in the euclidean space Rn+1 and in the hyperbolic space Hn+1, using a well-chosen test-spinor in the holographic inequalities recently obtained by Hijazi, Montiel and Raulot. These inequalities lead to a new proof of the Heintze-Karcher Inequality as well. Finally we use restrictions of particular ambient spinor fields constructed by Roth to give some extrinsic upper bounds for the first nonnegative eigenvalue of the Dirac operator of surfaces immersed into S2 x S1(r) and into the Berger spheres Sb3 (τ), and we describe the equality cases
Collin, Pascal. "Le problème de Dirichlet pour les surfaces à courbure moyenne prescrite." Paris 7, 1992. http://www.theses.fr/1992PA077233.
Full textSemmler, Beate. "Surfaces de courbure moyenne constante dans les espaces euclidien et hyperbolique." Paris 7, 1997. http://www.theses.fr/1997PA077289.
Full textRaujouan, Thomas. "Surfaces à courbure moyenne constante dans les espaces euclidien et hyperbolique." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4011.
Full textNon-zero constant mean curvature surfaces are mathematical models for physical interface problems with non-zero pressure difference. They are described by partial differential equations and can be constructed from holomorphic data via a Weierstrass-type representation, called "the DPW method". In this thesis, we use the DPW method and prove two main results. The first one states that perturbations of the DPW data for Delaunay unduloidal ends generate embedded annuli. This can be used to prove the embeddedness of surfaces constructed via the DPW method. The second result is the construction of n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n Delaunay ends
Castillon, Philippe. "Sur les sous-variétés à courbure moyenne constante dans l'espace hyperbolique." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10006.
Full textZolotareva, Tatiana. "Construction de surfaces à courbure moyenne constante et surfaces minimales par des méthodes perturbatives." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX003/document.
Full textThe subject of this thesis is the study of minimal and constant mean curvature submanifolds and of the influence of the geometry of the ambient manifold on the solutions of this problem.In the first chapter, following the ideas of F. Almgren, we propose a generalization of the notion of hypersurface with constant mean curvature to all codimensions. In codimension n-k we define constant mean curvature submanifolds as the critical points of the functional of the k - dimensional volume of the boundaries of k+1 - dimensional minimal submanifolds. We prove the existence in compact n-dimensional manifolds of n-k codimensional submanifolds with constant mean curvature for all k
Marachli, Alaa. "Sur la stabilité de certaines surfaces minimales sous le flot de courbure moyenne nulle dans l'espace de Minkowski." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC0034.
Full textThis thesis focuses on the stability of some minimal surfaces under the vanishing mean curvature flow in Minkowski space. This issue amounts to investigate a system which turns out to be hyperbolic as long as the involved surfaces are time-like surfaces.The work presented here includes two parts. The first part in joint work with Hajer Bahouri and Galina Perelman is dedicated to the issue of singularity formation in finite time for surfaces asymptotic to the Simons cone at infinity and the second part is devoted to the study of the stability of the helicoid.In the first part of this thesis, we prove by a constructive approach the existence of a family of surfaces which evolve by the vanishing mean curvature flow in Minkowski space and which as t tends to~0 blow up towards a surface which behaves like the Simons cone at infinity. This issue amounts to investigate the singularity formation for a second order quasilinear wave equation.The aim of the second part is to investigate the stability of the helicoid under normal radial perturbations. Actually, the helicoid is linearly unstable of index 1, and that is why we cannot expect to have stability for arbitrary perturbations. In this part, we establish that this instability is the only obstruction to the global nonlinear stability for the helicoid. More precisely, in the framework of normal radial perturbations, we prove the existence of a codimension one set of small initial data generating global solutions converging to the helicoid at infinity
Dumont, Yves. "Contributions à l'étude théorique de l'écoulement anisotrope de courbes et à l'epsilon régularisation du problème de flot à courbure moyenne." Mulhouse, 1998. http://www.theses.fr/1998MULH0510.
Full textForcadel, Nicolas. "Contribution à l'analyse d'équations aux dérivées partielles décrivant le mouvement de fronts avec applicationsà la dynamique des dislocations." Phd thesis, Ecole des Ponts ParisTech, 2007. http://tel.archives-ouvertes.fr/tel-00170767.
Full textLa première partie de ce mémoire est consacrée aux propriétés qualitatives de la dynamique d'une ligne de dislocation (existence, unicité, comportement asymptotique...). Cette étude repose en grande partie sur la théorie des solutions de viscosité. On propose également plusieurs schémas numériques pour cette dynamique et on montre leur convergence ainsi que des estimations d'erreurs entre la solution et son approximation numérique.
Dans une seconde partie nous faisons le lien entre la dynamique d'un nombre fini de dislocations et la dynamique de densité de dislocations en montrant des résultats d'homogénéisation. Nous étudions également, de manière théorique et numérique, un modèle pour la dynamique de densité de dislocations.
Forcadel, Nicolas. "Contribution à l'analyse d'équations aux dérivées partielles décrivant le mouvement de fronts avec applications à la dynamique des dislocations." Marne-la-vallée, ENPC, 2007. http://www.theses.fr/2007ENPC0711.
Full textAbergel, David. "Caractérisation bioinformatique des régions interORF chez la levure : analyse des biais de représentation, de la courbure moyenne prédite et de la conservation au sein du phylum des Hémi-Ascomycètes." Paris 11, 2004. http://www.theses.fr/2004PA112280.
Full textInterORF regions can be defined as located between two successive ORFs. This work aims at characterizing them, using several bioinformatic genome-scale approaches. The main organism studied is the S. Cerevisiae yeast, since many aspects related to interORF regions are already kown. Analyses have been carried out according to three ways:1. A statistical study of the di- and trinucleotides representation biases, which shows that these biases occur only for several word and that they can be associated with the taxonomy of the concerned species. 2. A study of the predicted average curvature (local and global) of the double-helix axis, close to the ATG, the STOP and the transcription boundaries : the curvature computed with a high granularity is quite the same as the one computed on random sequences, respecting the same linguistics as the studied regions. 3. A study of the conservation in the interORF and coding regions, within the phylum of the Hemi-Ascomycetous (10 species): they are highly conserved, especially for « essential » and highly expressed ORF. In order to resolve the problems generated by this work, I developed two tools :1. GenomX, an integrated software designed to be useful for all kinds of users, making easier the usual tasks in bioinformatics,particularly for genome-scale studies. 2. WInGS, a genomic data warehouse on yeast. An internal control of the information coherence is performed together with an integration of several databases, dealing with redundant and divergent data
Côte, Delphine. "Vortex et données non bornées pour les équations de Ginzburg-Landau paraboliques." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066002.
Full textWe are interested in this thesis in evolution equations related to the Ginzburg-Landau functionals, of parabolic nature. Our goal is to describe the temporal behavior of limiting solutions as a small penalisation parameter tends to 0.In the first chapter, we retrace in a synthetic way the remarkable study by Bethuel, Orlandi and Smets on the parabolic Ginzburg-Landau equation in dimension 2 : the evolution of point vortices is governed by the gradient flow of the Kirchoff-Onsager functionnal modified by a drift term ; it is smooth away from the merging and splitting times ; these phenomenon are subject to conservation of the local degree and energy dissipation.In the second chapter, we consider the Cauchy problem for systems of semi-linear parabolic equations. Motivated by the example of the vortices, we construct, for defocusing nonlinearities, global solutions to the associated integral equation with intial data unbounded in space (allowed to grow like exp(x^2)). In the case of focusing nonlinearities, we show a phenomenon of instantaneous blow-up.In the third chapter, we go back to the parabolic Ginzburg-Landau equation. We replace the energy bound of Bethuel, Orlandi et Smets by a local-in-space bound on the energy. This allows to consider general configurations of vortices without the help of « vanishing vortices ». We extend their analysis, and show various results of decomposition of the renormalized energy, and that the concentrated energy moves according to the mean curvature flow
Daniel, Benoît. "Sur les surfaces de Bryant et les disques minimaux délimités par trois droites." Paris 7, 2003. http://www.theses.fr/2003PA077150.
Full textBrassel, Morgan. "Instabilités de forme en croissance cristalline." Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00379392.
Full textDu point de vue de la modélisation, les problèmes rencontrés en croissance cristalline sont essentiellement des problèmes de mouvement d'interfaces. Nous abordons le cas particulier du mouvement par courbure moyenne, ainsi que son approximation par la méthode de champ de phase via l'équation d'Allen-Cahn. La discrétisation par éléments finis que nous proposons permet de couvrir de nombreuses variantes de l'équation : conservation du volume, termes de forçage, anisotropie.
Nous menons ensuite l'étude numérique d'un modèle variationnel de l'instabilité de Grinfeld. Celui-ci combine croissance cristalline et interactions élastiques, en couplant une équation d'Allen-Cahn à un système d'élasticité linéarisée pour le film. Une extension du modèle permet de prendre en compte le comportement élastique du substrat.
Nous proposons, par ailleurs, un modèle de champ de phase pour l'étude de l'instabilité liée à la mise en paquet de marches en surface du film. L'étude numérique de ce modèle s'appuie sur un algorithme inspiré des techniques de recuit simulé. Celui-ci permet d'envisager la méthode de champ de phase comme un outil d'optimisation globale.
Laslier, Benoît. "Dynamique stochastique d'interface discrète et modèles de dimères." Phd thesis, Université Claude Bernard - Lyon I, 2014. http://tel.archives-ouvertes.fr/tel-01044463.
Full textCartier, Sébastien. "Surfaces des espaces homogènes de dimension 3." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00672332.
Full textLaadhari, Aymen. "Modélisation numérique de la dynamique des globules rouges par la méthode des fonctions de niveau." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00598251.
Full textRoth, Julien. "Rigidité des hypersurfaces en géométrie riemannienne et spinorielle : Aspect extrinsèque et intrinsèque." Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00120756.
Full textLey, Olivier. "Equations quasilinéaires paraboliques dégénérées et équations de Hamilton-Jacobi : équations géométriques et mouvements de fronts." Tours, 2001. http://www.theses.fr/2001TOUR4027.
Full textIn the first part, we study quasilinear degenerate parabolic equations set in [RNx(0, T)] like the mean curvature eqution for graphs. We use the level-set approach to interpret the time-evolution of the unbounded solutions as a propagating front in [RN+1]. We prove that uniqueness is equivalent to the non-fattening of the front. Existence of discontinuous viscosity solutions is obtained from a L∞ local bound given by the level-set approach. A spectacular application is the existence of a unique continuous viscosity solution for any convex initial data. Working directly on the equation, we get existence and uniqueness results in the one-dimensional case. By imposing some polynomial-type growth restriction on the initial data in [RN], we prove the well-posedness of a large class of equations among functions with the same growth. The second part concerns time-dependent Hamilton-Jacobi equations. First, for equations set in the whole space [RN], we establish lower gradient bounds for the solutions. We exploit them to obtain regularity properties of the propagating fronts associated by the level-set approach. These bounds ensure the non-fattening but we show they are not sufficient to imply sharper regularity even for semiconcave functions. Secondly, we consider these equations in a smooth bounded set with Neumann boundary conditions. Using the corresponding control problem with reflection, we show that the discontinuous uniqueness result which holds for such equations set in [RN] is not true in this case
Ge, Yuxin. "Sur quelques équations aux dérivées partielles nonlinéaires provenant de la géométrie." Cachan, Ecole normale supérieure, 1997. http://www.theses.fr/1997DENS0029.
Full textLaslier, Benoît. "Dynamique stochastique d’interface discrète et modèles de dimères." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10110/document.
Full textWe studied the Glauber dynamics on tilings of finite regions of the plane by lozenges or 2 × 1 dominoes. These tilings are naturally associated with surfaces of R^3, which can be seen as interfaces in statistical physics models. In particular, lozenge tilings correspond to three dimensional Ising model at zero temperature. More precisely, tilings of a finite regions are in bijection with Ising configurations with some boundary conditions (depending on the tiled domain). These boundary conditions impose the coexistence of the + and - phases, together with the position of the boundary of the interface. In the thermodynamic limit where L, the characteristic length of the system, tends toward infinity, these interface follow a law of large number and converge to a deterministic limit shape depending only on the boundary condition. When the limit shape is planar and for lozenge tilings, Caputo, Martinelli and Toninelli [CMT12] showed that the mixing time of the dynamics is of order (L^{2+o(1)}) (diffusive scaling). We generalized this result to domino tilings, always in the case of a planar limit shape. We also proved a lower bound Tmix ≥ cL^2 which improve on the result of [CMT12] by a log factor. When the limit shape is not planar, it can either be analytic or have some “frozen” domains where it is degenerated in a sense. When it does not have such frozen region, and for lozenge tilings, we showed that the Glauber dynamics becomes “macroscopically close” to equilibrium in a time L^{2+o(1)}
Derlet, Ann. "Eigenvalues of the p-Laplacian in population dynamics and nodal solutions of a prescribed mean curvature problem." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209932.
Full textLa première partie (chapitres 1-2-3) traite d'un problème trouvant son origine en biologie mathématique, à savoir l'étude de la survie à long terme d'une population dont l'évolution est gouvernée par une équation parabolique non-linéaire. Dans le modèle considéré, le mécanisme de diffusion est contrôlé par le p-Laplacien, la non-linéarité est de type logistique et fait intervenir un poids m pouvant changer de signe, et les conditions aux limites sont de flux nul. Le poids m correspond à une répartition des ressources devant permettre la survie de la population. Dans le chapitre 1, nous déterminons entre autres un critère de survie à long terme faisant intervenir la valeur propre principale du p-Laplacien avec poids m. Cette valeur propre apparait, plus précisément, comme la valeur limite d'un paramètre en-dessous de laquelle toute solution positive de l'équation converge vers zéro lorsque t tend vers l'infini. Ceci nous conduit naturellement au problème de minimiser la valeur propre en question lorsque m varie dans une classe adéquate de poids. Dans le chapitre 2, nous prouvons l'existence de minimiseurs et montrons que ces derniers satisfont une propriété de type “bang-bang”. Plusieurs propriétés de montonie sont aussi étudiées dans des situations géométriques particulières, et une caractérisation complète est donnée en dimension 1. Le chapitre 3 est consacré à l'élaboration de simulations numériques, où l'algorithme utilisé combine un méthode de plus grande pente avec une représentation de certains ensembles comme ensembles de niveaux.
La deuxième sujet de cette thèse (chapitre 4) est un problème elliptique faisant intervenir l'opérateur de courbure moyenne. Nous nous intéressons à l'existence et à la multiplicité de solutions nodales de ce problème. Nous montrons que, si un certain paramètre de l'équation est suffisamment grand, il existe une solution nodale qui change de signe exactement deux fois. Nous établissons également l'existence d'un nombre arbitrairement grand de solutions nodales. Enfin, dans le cas particulier où le domaine est une boule, un résultat de brisure de symétrie est obtenu, résultat qui induit l'existence d'au moins deux solutions à deux domaines nodaux.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Schapira, Barbara. "Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative." Phd thesis, Université d'Orléans, 2003. http://tel.archives-ouvertes.fr/tel-00163420.
Full textDelingette, Hervé. "Modélisation, déformation et reconnaissance d'objets tridimensionnels à l'aide de maillages simplexes." Phd thesis, Ecole Centrale Paris, 1994. http://tel.archives-ouvertes.fr/tel-00632191.
Full textLemaire, Pierre. "Contributions à l'analyse de visages en 3D : approche régions, approche holistique et étude de dégradations." Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-01002114.
Full textCheikh, Ali Hussein. "Analyse asymptotique des équations de Hardy-Sobolev dans des espaces singuliers." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0174.
Full textIn this manuscript, divided into 3 parts, we study the existence of extremal for Hardy-Sobolev inequalities. Part 1: We obtain the (non-)existence of singulars solutions for the perturbative Hardy-Schrödinger equation on a non-smooth domain with the singular point 0 on the boundary of the domain. In particular, we introduce a geometric quantity G which generalizes the mean curvature for ”Large dimensions” and the new notion of the mass in ”Small dimensions”. Our main result is that, in the case of a subcritical perturbation, an interaction appears between the perturbation and G at 0 (resp. m) for large dimensions (resp. small dimensions). In addition, the negativity of the curvature G (resp. the positivity of the mass m) for the large dimensions (resp. small dimensions) is sufficient when the perturbation has no effect. Part 2: In this part, we perform a blow-up analysis of solutions for the Hardy-Sobolev equation of minimizing type. First, we obtain an optimal control of the family of solutions. After, we get specific informations about the blowup point using a Pohozaev identity. Part 3: We consider the best constant in a critical Sobolev inequality of second order. We show non-rigidity for the optimizers above a certain threshold, namely, we prove that the best constant is achieved by a nonconstant solution of the associated fourth order elliptic problem under Neumann boundary conditions. Our arguments rely on asymptotic estimates of the Rayleigh quotient. We also show rigidity below another threshold
Ley, Olivier. "Evolution de fronts avec vitesse non-locale et équations de Hamilton-Jacobi." Habilitation à diriger des recherches, Université François Rabelais - Tours, 2008. http://tel.archives-ouvertes.fr/tel-00362409.
Full textLe premier chapitre concerne l'évolution de fronts avec une vitesse normale prescrite. Pour étudier ce genre de problème, une première approche, dite par lignes de niveaux, consiste àreprésenter le front comme une ligne de niveau d'une fonction auxiliaire u. Cette approche ramène l'étude du problème d'évolution géométrique à un problème d'EDP puisque u vérifie une équation de Hamilton-Jacobi. Quelques résultats dans le cas de vitesses locales comme la courbure moyenne sont présentés mais la majorité des résultats concerne le cas de vitesses non-locales décrivant la dynamique des dislocations dans un cristal ou modélisant l'asymptotique d'un système de FitzHugh-Nagumo apparaissant en biologie. Une approche différente, basée sur des solutions de viscosité géométriques, est utilisée pour étudier des problèmes de propagation de fronts apparaissant en optimisation de formes. Le but est de trouver un ensemble optimal minimisant une énergie du type capacité à volume ou périmètre constant. L'idée est de déformer le bord d'un ensemble donné avec une vitesse normale adéquate de manière à diminuer au plus son énergie. La mise en oeuvre de cette idée nécessite la construction rigoureuse d'une telle évolution pour tout temps et la preuve de la convergence vers une solution du problème initial. De plus, la décroissance de l'énergie est obtenue le long du flot.
Le deuxième chapitre décrit des résultats d'unicité, d'existence et d'homogénéisation pour des équations de Hamilton-Jacobi-Bellman. La majeure partie du travail effectué concerne des équations provenant de problèmes de contrôle stochastique avec des contrôles non-bornés. Les équations comportent alors des termes quadratiques par rapport au gradient et les solutions étudiées sont elles-mêmes à croissance quadratique. Des liens entre ces solutions et les fonctions valeurs des problèmes de contrôle correspondants sont établis. La seconde partie est consacrée à un théorème d'homogénéisation pour un système d'équations de Hamilton-Jacobi du premier ordre.
Le troisième et dernier chapitre traite d'un sujet un peu à part, à savoir le lien entre les flots de gradient et l'inégalité de Lojasiewicz. La principale originalité de ce travail est de placer l'étude dans un cadre hilbertien pour des fonctions semiconvexes, ce qui sort du cadre de l'inégalité de Lojasiewicz classique. Le principal théorème produit des caractérisations de cette inégalité. Les résultats peuvent être précisés dans le cas des fonctions convexes ; en particulier, un contre-exemple de fonction convexe ne vérifiant pas l'inégalité de Lojasiewicz est construit. Cette dernière inégalité est reliée à la longueur des trajectoires de gradient. Une borne de cette longueur est obtenue pour les fonctions convexes coercives en dimension deux même lorsque cette inégalité n'est pas vérifiée.
Polette, Arnaud. "Analyse de maillages surfaciques par construction et comparaison de modèles moyens et par décomposition par graphes s'appuyant sur les courbures discrètes : application à l'étude de la cornée humaine." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4084/document.
Full textThis thesis comprises three parts. The first two parts concern the development of methods for the construction of mean geometric models and for model comparison. Several issues are addressed, such as the construction of an average cornea and the comparison of corneas. Currently, there are few studies with these objectives because the matching of corneal surfaces is a non-trivial problem. In addition to help to develop a better understanding of the corneal anatomy, 3D models of normal corneas can be used to detect any significant deviation from the norm, thereby allowing for an early diagnosis of diseases or abnormalities using the shape of the cornea. The second part of this thesis aims to develop a method for recognizing a surface from a group of surfaces using their 3D acquisitions in a biometric application pertinent to the cornea. The concept behind this method is to quantify the difference between each surface and a given surface and to determine the threshold for recognition. Two complementary methods are proposed. A cascading methodology using both methods to combine the advantages of each method is also proposed. The third and final part of this thesis focuses on a new method for decomposing 3D triangulated meshes into graphs. We use discrete curvature maps as the shape descriptor to split the mesh in eight different categories. Next, an adjacency graph is built with a node for each patch. These graphs are used to extract geometric characteristics described by patterns that allow for the detection of specific regions in a 3D model or recurrent characteristics
El, Ayoubi Mayass. "Le retard de croissance intra-utérin et la grande prématurité : impact sur la mortalité et les morbidités à court et à moyen terme." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB139/document.
Full textBackground: Intrauterine growth restriction (IUGR) refers to the inability of the fetus to achieve its genetically determined growth potential due to various causes. Most often, it is defined by a birth weight less than the 10th percentile for gestational age using neonatal growth curves. This thesis aims to answer unresolved questions about the definition and consequences of IUGR in the context of very preterm birth: (1) what is the best definition of IUGR for identifying children at risk? (2) What are the risks of mortality and neonatal respiratory and neurological morbidity associated with IUGR and are there interactions with the underlying pregnancy complications responsible for the very preterm birth? (3) What is the impact of IUGR on neurodevelopmental at 2 years, especially for children born extremely preterm ? Methods: We used two data sources. The MOSAIC study (Models for Organising Access to Intensive Care for Very Preterm Babies in Europe) is a European population-based study that included all births occurring between 22 and 31 weeks of gestation in 2003 in ten European regions. The children were followed until hospital discharge (study population = 4525 infants). The second source is a cohort of children born before 27 weeks of GA who were hospitalized in the neonatal intensive care unit at the Port Royal Hospital from 1999 to 2008 and had a pediatric examination and Brunet-Lézine (BL) neurodevelopmental assessment at 2 years of corrected age (445 children in the cohort, 268children followed at 2 years). The BL assessment includes four areas of child development: gross motor, fine motor, language and social interaction skills. Results: In both populations, the risk of death and bronchopulmonary dysplasia were higher for children with a birth weight <10th percentile of neonatal growth curves but also for children with a higher birth weight (between the 10th and the 24th percentile of neonatal growth curves or <10th percentile of fetal growth curves). In contrast, there was no link between neurological complications and low birth weight and no interactions with pregnancy complications. IUGR was associated with neurocognitive delay among extremely preterm children evaluated at two years of corrected age, especially for fine motor and social interaction skills, but not for language and gross motor skills. We did not find any association between IUGR and the risk of cerebral palsy at two years of corrected age. Conclusions: The use of the 10th percentile of neonatal growth curves is not suitable for identifying the impact of IUGR in very preterm infants; using higher thresholds or fetal growth curves is necessary. IUGR increased the risks of mortality and bronchopulmonary dysplasia, but was not associated with severe brain damage; these associations are observed in multiple clinical contexts (vascular and infectious pregnancy complications, and births at very early gestational ages). IUGR is a risk factor for poor medium-term neuro-development. Our results raise new questions about the appropriate surveillance for children with IUGR after discharge from the hospital and also about possible biological mechanisms that could explain the relationship between IUGR and respiratory morbidity and neurocognitive development
Colin, Julien. "Séchage en continu du bois énergie comme moyen de préconditionnement en vue de sa conservation thermochimique : approches expérimentale et numérique." Phd thesis, AgroParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00861231.
Full textAl, Hazzouri Naim. "Etude analytique du comportement de consommation des ménages syriens." Clermont-Ferrand 1, 1986. http://www.theses.fr/1986CLF10024.
Full textBretin, Elie. "Mouvements par courbure moyenne et méthode de champs de phase." Phd thesis, 2009. http://tel.archives-ouvertes.fr/tel-00995323.
Full textPolette, Arnaud. "Analyse de maillages surfaciques par construction et comparaison de modèles moyens et par décomposition par graphes s’appuyant sur les courbures discrètes : application à l’étude de la cornée humaine." Thèse, 2015. http://hdl.handle.net/1866/13715.
Full textCette thèse se découpe en trois parties. Les deux premières portent sur le développement de méthodes pour la construction de modèles géométriques moyens et pour la comparaison de modèles. Ces approches sont appliquées à la cornée humaine pour l’élaboration d’atlas et pour l’étude biométrique robuste. La troisième partie porte sur une méthode générique d'extraction d'informations dans un maillage en s'appuyant sur des propriétés différentielles discrètes afin de construire une structure par graphe permettant l'extraction de caractéristiques par une description sémantique. Les atlas anatomiques conventionnels (papier ou CD-ROM) sont limités par le fait qu'ils montrent généralement l'anatomie d'un seul individu qui ne représente pas nécessairement bien la population dont il est issu. Afin de remédier aux limitations des atlas conventionnels, nous proposons dans la première partie d’élaborer un atlas numérique 3D contenant les caractéristiques moyennes et les variabilités de la morphologie d'un organe, plus particulièrement de la cornée humaine. Plusieurs problématiques sont abordées, telles que la construction d'une cornée moyenne et la comparaison de cornées. Il existe à ce jour peu d'études ayant ces objectifs car la mise en correspondance de surfaces cornéennes est une problématique non triviale. En plus d'aider à développer une meilleure connaissance de l'anatomie cornéenne, la modélisation 3D de la cornée normale permet de détecter tout écart significatif par rapport à la "normale" permettant un diagnostic précoce de pathologies ou anomalies de la forme de la cornée. La seconde partie a pour objectif de développer une méthode pour reconnaître une surface parmi un groupe de surfaces à l’aide de leurs acquisitions 3D respectives, dans le cadre d’une application de biométrie sur la cornée. L’idée est de quantifier la différence entre chaque surface et une surface donnée, et de déterminer un seuil permettant la reconnaissance. Ce seuil est dépendant des variations normales au sein d’un même sujet, et du bruit inhérent à l’acquisition. Les surfaces sont rognées et trouées de façon imprévisible, de plus il n’y a pas de point de mise en correspondance commun aux surfaces. Deux méthodes complémentaires sont proposées. La première consiste à calculer le volume entre les surfaces après avoir effectué un recalage, et à utiliser ce volume comme un critère de similarité. La seconde approche s’appuie sur une décomposition en harmoniques sphériques en utilisant les coefficients comme des descripteurs de forme, qui permettront de comparer deux surfaces. Des résultats sont présentés pour chaque méthode en les comparant à la méthode la plus récemment décrite dans la littérature, les avantages et inconvénients de chacune sont détaillés. Une méthodologie en cascade utilisant ces deux méthodes afin de combiner les avantages de chacune est aussi proposée. La troisième et dernière partie porte sur une nouvelle méthode de décomposition en graphes de maillages 3D triangulés. Nous utilisons des cartes de courbures discrètes comme descripteur de forme afin de découper le maillage traité en huit différentes catégorie de carreaux (ou peak, ridge, saddle ridge, minimal, saddle valley, valley, pit et flat). Ensuite, un graphe d'adjacence est construit avec un nœud pour chaque carreau. Toutes les catégories de carreaux ne pouvant pas être adjacentes dans un contexte continu, des jonctions intermédiaires sont ajoutées afin d'assurer une cohérence continue entre les zones. Ces graphes sont utilisés pour extraire des caractéristiques géométriques décrites par des motifs (ou patterns), ce qui permet de détecter des régions spécifiques dans un modèle 3D, ou des motifs récurrents. Cette méthode de décomposition étant générique, elle peut être appliquée à de nombreux domaines où il est question d’analyser des modèles géométriques, en particulier dans le contexte de la cornée.
This thesis comprises three parts. The first two parts concern the development of methods for the construction of mean geometric models and for model comparison. These approaches are applied to the human cornea for the construction of atlases and a robust biometric study. The third part focuses on a generic method for the extraction of information in a mesh. This approach is based on discrete differential properties for building a graph structure to extract features using a semantic description. Conventional anatomical atlases (paper or CD-ROM) are limited by the fact they generally show the anatomy of a single individual who does not necessarily represent the population from which they originate. To address the limitations of conventional atlases, we propose in the first part of this thesis to construct a 3D digital atlas containing the average characteristics and variability of the morphology of an organ, especially that of the human cornea. Several issues are addressed, such as the construction of an average cornea and the comparison of corneas. Currently, there are few studies with these objectives because the matching of corneal surfaces is a non-trivial problem. In addition to help to develop a better understanding of the corneal anatomy, 3D models of normal corneas can be used to detect any significant deviation from the norm, thereby allowing for an early diagnosis of diseases or abnormalities using the shape of the cornea. The second part of this thesis aims to develop a method for recognizing a surface from a group of surfaces using their 3D acquisitions in a biometric application pertinent to the cornea. The concept behind this method is to quantify the difference between each surface and a given surface and to determine the threshold for recognition. This threshold depends on normal variations within the same subject and noise due to the acquisition system. The surfaces are randomly trimmed and pierced ; moreover, there is no common landmark on the surfaces. Two complementary methods are proposed. The first method consists of the computation of the volume between the surfaces after performing geometrical matching and the use of this volume as a criterion of similarity. The second approach is based on a decomposition of the surfaces into spherical harmonics using the coefficients as shape descriptors to compare the two surfaces. Each result of the proposed methods is compared to the most recent method described in the literature, with the benefits and disadvantages of each one described in detail. A cascading methodology using both methods to combine the advantages of each method is also proposed. The third and final part of this thesis focuses on a new method for decomposing 3D triangulated meshes into graphs. We use discrete curvature maps as the shape descriptor to split the mesh in eight different categories (peak, ridge, saddle ridge, minimal, saddle valley, valley, pit and flat). Next, an adjacency graph is built with a node for each patch. Because all categories of patches cannot be adjacent in a continuous context, intermediate junctions are added to ensure the continuous consistency between patches. These graphs are used to extract geometric characteristics described by patterns that allow for the detection of specific regions in a 3D model or recurrent characteristics. This decomposition method, being generic, can be used in many applications to analyze geometric models, especially in the context of the cornea.