To see the other types of publications on this topic, follow the link: Courbure moyenne.

Dissertations / Theses on the topic 'Courbure moyenne'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 dissertations / theses for your research on the topic 'Courbure moyenne.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kirsch, Stéphane. "Courbure moyenne et interfaces." Paris 6, 2007. http://www.theses.fr/2007PA066103.

Full text
Abstract:
Les deux premiers chapitres de cette thèse sont consacrés à l'existence ou la non-existence d'hypersurfaces compactes sans bord à courbure moyenne prescrite dans l'espace euclidien R^N ou le tore plat T^N. L'objectif est de trouver des conditions sur la courbure moyenne que l'on prescrit assurant l'existence ou la non-existence. Dans le premier chapitre on prouve deux résultats d'existence pour les lacets à courbure prescrite dan
APA, Harvard, Vancouver, ISO, and other styles
2

Jleli, Mohamed Boussaïri Pacard Franck. "Hypersurfaces à courbure moyenne constante." Créteil : Université de Paris-Val-de-Marne, 2004. http://doxa.scd.univ-paris12.fr:80/theses/th0200395.pdff.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Laurain, Paul. "Comportement asymptotique des surfaces à courbure moyenne constante." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2010. http://tel.archives-ouvertes.fr/tel-00559640.

Full text
Abstract:
Dans cette thèse on étudie le comportement asymptotique des suites de surfaces à courbure moyenne constante. Plus précisément, on développe une analyse de « blow-up » pour l'équation générale des surfaces à courbure moyenne constante qui nous permet de localiser le lieux de concentration des suites de surface à grande courbure moyenne constante dans une variété courbée ou un domaine de l'espace euclidien. D'autre part, on démontre également dans ce manuscrit un certain nombre d'obstructions concernant la courbure moyenne d'une surface générale.
APA, Harvard, Vancouver, ISO, and other styles
4

Oliveira, Iury Rafael Domingos de. "Surfaces à courbure moyenne constante dans les variétés homogènes." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0057.

Full text
Abstract:
L'objectif de cette thèse est d'étudier les surfaces à courbure moyenne constante dans des variétés homogènes de dimension 3 avec un groupe d'isométries de dimension 4. Dans la première partie de cette thèse, nous étudions les surfaces à courbure moyenne constante dans les variétés produites \mathbb{S}^2\times\mathbb{R} et \mathbb{H}^2\times\mathbb{R}. Comme résultat principal, nous établissons une classification locale pour les surfaces à courbure moyenne constante et courbure intrinsèque constante dans ces espaces. Dans cette classification, nous présentons un nouvel exemple de surface à courbure moyenne constante et courbure intrinsèque constante dans \mathbb{H}^2\times\mathbb{R}. En conséquence, nous utilisons la correspondence des surfaces soeurs pour classifier les surfaces à courbure moyenne constante et courbure intrinsèque constante dans les autres variétés homogènes de dimension 3 avec un groupe d'isométries de dimension 4, et donc sous ces conditions des nouveaux examples apparaissent dans \widetilde{\mathrm{PSL}}_{2}(\mathbb{R}). Nous consacrons la deuxième partie de cette thèse à l'étude des surfaces minimales dans \mathbb{S}^2\times\mathbb{R}. À cet effet, nous définissons une nouvelle application de Gauss pour ces surfaces, en utilisant le modèle de \mathbb{S}^2\times\mathbb{R} qui est isométrique à \mathbb{R}^3\setminus\{0\}, muni d'une métrique conformément équivalente à la métrique de l'espace euclidien \mathbb{R}^3. Comme résultat principal, nous montrons que deux immersions minimales conformes quelconques en \mathbb{S}^2\times\mathbb{R}, avec la même application de Gauss non-constante, ne diffèrent que par des isométries de \mathbb{S}^2\times\mathbb{R} de deux types particuliers. De plus, si l'application de Gauss est singulière, nous montrons que cette application est forcément constante, et donc, la surface est un cylindre vertical sur une géodésique de \mathbb{S}^2 dans \mathbb{S}^2\times\mathbb{R}. Nous étudions également quelques cas particuliers, et, parmi eux, nous prouvons qu'il n'existe pas d'immersion minimale conforme dans \mathbb{S}^2\times\mathbb{R} telle que l'application de Gauss soit non-constante et anti-holomorphe
The goal of this thesis is to study constant mean curvature surfaces into homogeneous 3-manifolds with 4-dimensional isometry group. In the first part of this thesis, we study constant mean curvature surfaces in the product manifolds \mathbb{S}^2\times\mathbb{R} and \mathbb{H}^2\times\mathbb{R}. As a main result, we establish a local classification for constant mean curvature surfaces with constant intrinsic curvature in these spaces. In this classification, we present a new example of constant mean curvature surfaces with constant intrinsic curvature in \mathbb{H}^2\times\mathbb{R}. As a consequence, we use the sister surface correspondence to classify the constant mean curvature surfaces with constant intrinsic curvature in the others homogeneous 3-manifolds with 4-dimensional isometry group, and then new examples with these conditions arise in \widetilde{\mathrm{PSL}}_{2}(\mathbb{R}). We devote the second part of this thesis to study minimal surfaces in \mathbb{S}^2\times\mathbb{R}. For this, we define a new Gauss map for surfaces in this space using the model of \mathbb{S}^2\times\mathbb{R} isometric to \mathbb{R}^3\setminus\{0\}, endowed with a metric conformally equivalent to the Euclidean metric of \mathbb{R}^3. As a main result, we prove that any two minimal conformal immersions in \mathbb{S}^2\times\mathbb{R} with the same non-constant Gauss map differ by only two types of ambient isometries. Moreover, if the Gauss map is a singular, we show that it is necessarily constant and then the surface is a vertical cylinder over a geodesic of \mathbb{S}^2 in \mathbb{S}^2\times\mathbb{R}. We also study some particular cases, among them we also prove that there is no minimal conformal immersion into \mathbb{S}^2\times\mathbb{R} with anti-holomorphic non-constant Gauss map
APA, Harvard, Vancouver, ISO, and other styles
5

Dos, Reis Gabriel. "Sur les surfaces dont la courbure moyenne est constante." Paris 7, 2001. http://www.theses.fr/2001PA077187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Desmonts, Christophe. "Surfaces à courbure moyenne constante via les champs de spineurs." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0073/document.

Full text
Abstract:
Les travaux présentés dans cette thèse portent sur le rôle que peuvent jouer les différentes courbures extrinsèques d’une hypersurface dans l’étude de sa géométrie, en particulier dans le cas des variétés spinorielles. Dans un premier temps, nous nous intéressons au cas de la courbure moyenne et construisons une nouvelle famille de surfaces minimales non simplement connexes dans le groupe de Lie Sol3, en adaptant une méthode déjà utilisée par Daniel et Hauswirth dans Nil3 et utilisant les propriétés de l’application de Gauss d’une surface. Ensuite, nous démontrons le Théorème d’Alexandrov généralisé aux Hr-courbures dans l’espace euclidien Rn+1 et dans l’espace hyperbolique Hn+1 en testant un spineur adéquat dans des inégalités de type holographiques établies récemment par Hijazi, Montiel et Raulot. Grâce à ces inégalités, nous démontrons également l'Inégalité de Heintze-Karcher dans l'espace euclidien. Enfin, nous donnons des majorations extrinsèques de la première valeur propre de l’opérateur de Dirac des surfaces de S2 x S1(r) et des sphères de Berger Sb3 (τ) grâce aux restrictions de spineurs ambiants construits par Roth, et nous en caractérisons les cas d’égalité
In this thesis we are interested in the role played by the extrinsic curvatures of a hypersurface in the study of its geometry, especially in the case of spin manifolds. First, we focus our attention on the mean curvature and construct a new family of non simply connected minimal surfaces in the Lie group Sol3, by adapting a method used by Daniel and Hauswirth in Nil3 based on the properties of the Gauss map of a surface. Then we give a new spinorial proof of the Alexandrov Theorem extended to all Hr-curvatures in the euclidean space Rn+1 and in the hyperbolic space Hn+1, using a well-chosen test-spinor in the holographic inequalities recently obtained by Hijazi, Montiel and Raulot. These inequalities lead to a new proof of the Heintze-Karcher Inequality as well. Finally we use restrictions of particular ambient spinor fields constructed by Roth to give some extrinsic upper bounds for the first nonnegative eigenvalue of the Dirac operator of surfaces immersed into S2 x S1(r) and into the Berger spheres Sb3 (τ), and we describe the equality cases
APA, Harvard, Vancouver, ISO, and other styles
7

Collin, Pascal. "Le problème de Dirichlet pour les surfaces à courbure moyenne prescrite." Paris 7, 1992. http://www.theses.fr/1992PA077233.

Full text
Abstract:
Nous traitons ici essentiellement de l'unicite des solutions au probleme de dirichlet associe a l'equation des surfaces a courbure moyenne prescrite sur des domaines plans et non-bornes. On demontre un theoreme general donnant des estimations, au voisinage de l'infini, de la difference de deux solutions distinctes au probleme de dirichlet; duquel on deduit notamment un principe du maximum a l'infini pour ce type d'equation. Dans le cas particulier ou la courbure moyenne est identiquement nulle, on montre que l'unicite des solutions n'est pas necessairement acquise (meme pour des domaines simplement connexes) et que les estimations donnees sont les meilleures possible. On exhibe, pour cela, des fonctions (sur le bord d'une bande et d'un secteur) admettant une infinite d'extensions minimales au domaine et dont on maitrise la croissance a l'infini. Cependant, on demontre l'existence et l'unicite de la solution pour des donnees continues par morceaux et bornees sur le bord d'un domaine convexe distinct du demi-plan ou les solutions forment alors une famille a un parametre. Lorsque le domaine est une bande et pour des donnees lineaires au bord (plus generalement s'il existe des directions asymptotiques), on montre aussi l'unicite (helicoide ou plan). Enfin, lorsque la moyenne est une constante non nulle et le domaine est une bande, on construit une famille de contre-exemples a une conjecture de r. Finn (1965)
APA, Harvard, Vancouver, ISO, and other styles
8

Semmler, Beate. "Surfaces de courbure moyenne constante dans les espaces euclidien et hyperbolique." Paris 7, 1997. http://www.theses.fr/1997PA077289.

Full text
Abstract:
L'objet de cette these est l'etude des surfaces a courbure moyenne constante h non nulle, ou h-surfaces, dans les espaces euclidien et hyperbolique. Etant donnee c une courbe de jordan, on voudrait comprendre la topologie et la geometrie des h-surfaces dont le bord est c. Le chapitre 1 porte sur la symetrie et la rigidite des h-surfaces non compactes, proprement plongees dans l'espace hyperbolique dont le bord est plan. Cette etude est completee par une recherche de conditions geometriques forcant la surface a etre contenue dans un demi-espace. Dans les chapitres 2 et 5, on s'est interesse aux surfaces compactes. Sous certaines conditions on obtient les resultats suivants : si la courbure moyenne est assez petite en fonction de c, alors (i) les petites h-immersions sont plongees et topologiquement des disques, et (ii) les grandes h-surfaces plongees sont a genre zero et ressemblent a un grand morceau de sphere. Le probleme de compacite est traite dans les chapitres 3 et 4. L'objectif de ce type de resultats est de controler la limite d'une suite de h-surfaces dont les bords convergent vers un point. Le theoreme etabli pour des grandes h-surfaces compactes plongees de l'espace hyperbolique s'etend aux h-surfaces non compactes proprement plongees.
APA, Harvard, Vancouver, ISO, and other styles
9

Raujouan, Thomas. "Surfaces à courbure moyenne constante dans les espaces euclidien et hyperbolique." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4011.

Full text
Abstract:
Les surfaces à courbure moyenne constante non-nulle apparaissent en physique comme solutions à certains problèmes d'interface entre deux milieux de pressions différentes. Elles sont décrites mathématiquement par des équations aux dérivées partielles et sont constructibles à partir de données holomorphes via une représentation similaire à celle de Weierstrass pour les surfaces minimales. On présente dans cette thèse deux résultats s'appuyantsur cette représentation, dite <>.Le premier indique que les données donnant naissance à un bout Delaunay de type onduloïde induisent encore un anneau plongé après perturbation.Cette propriété sert notamment à démontrer que certaines surfaces construites par la méthode DPW sont plongées. Le second résultat est la construction, dans l'espace hyperbolique, de n-noïdes : surfaces plongées, de genre zéro, à courbure moyenne constante et munies de n bouts de type Delaunay
Non-zero constant mean curvature surfaces are mathematical models for physical interface problems with non-zero pressure difference. They are described by partial differential equations and can be constructed from holomorphic data via a Weierstrass-type representation, called "the DPW method". In this thesis, we use the DPW method and prove two main results. The first one states that perturbations of the DPW data for Delaunay unduloidal ends generate embedded annuli. This can be used to prove the embeddedness of surfaces constructed via the DPW method. The second result is the construction of n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n Delaunay ends
APA, Harvard, Vancouver, ISO, and other styles
10

Castillon, Philippe. "Sur les sous-variétés à courbure moyenne constante dans l'espace hyperbolique." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10006.

Full text
Abstract:
Dans les chapitres 2 et 3 de cette these, on s'interesse aux sous-varietes de l'espace hyperbolique dont la courbure moyenne est constante et strictement inferieure a un. Le premier resultat qu'on obtient concerne l'operateur de stabilite. Dans notre cas, cet operateur est essentiellement auto-adjoint, et on connait un minorant positif de son spectre essentiel. On montre que le nombre de valeurs propres inferieures a ce minorant est fini, et on en obtient un majorant qui fait intervenir la courbure totale. Ce faisant, on obtient un majorant de l'indice de morse de sous-variete. Un des points importants de la preuve est de controler le noyau de la chaleur de la sous-variete. On obtient ce controle en montrant qu'on a sur la sous-variete des inegalites isoperimetriques. Le second resultat porte sur la compactification. On etend aux sous-varietes a courbure moyenne constantes un resultat de g. De oliveira pour les sous-varietes minimales: on montre que la sous-variete est diffeomorphe a l'interieur d'une variete compact a bord, et que l'immersion s'etend continument au bord en une application a valeurs dans le compactifie de l'espace hyperbolique. Dans le chapitre 4, on etudie les surfaces de revolution a courbure moyenne constante dans l'espace hyperbolique. On obtient une construction cinematique de leurs meridiennes analogue a celle donne par c. Delaunay dans l'espace euclidien. Les courbes a faire rouler ont des proprietes focales similaires a celles des coniques euclidiennes. On trouve les analogues hyperboliques des ellipses, des hyperboles ainsi qu'une surprenante famille de paraboles
APA, Harvard, Vancouver, ISO, and other styles
11

Zolotareva, Tatiana. "Construction de surfaces à courbure moyenne constante et surfaces minimales par des méthodes perturbatives." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX003/document.

Full text
Abstract:
Cette thèse s'inscrit dans l'étude des sous-variétés minimales et à courbure moyenne constante et de l'influence de la géométrie de la variété ambiante sur les solutions de ce problème.Dans le premier chapitre, en suivant les idées de F. Almgren, on propose une généralisation de la notion d'hypersurface de courbure moyenne constante à toutes codimensions. En dimension n-k on définie les sous-variétés à courbure moyenne constante comme les points critiques de la fonctionnelle de k-volume des bords des variétés minimales de dimension k+1. On prouve l'existence dans une variété riemannienne compacte de dimension n de sous-variétés à courbure moyenne constante de codimension n-k pour tout k < n qui sont des perturbations des sphères géodésiques de petit volume.Dans le deuxième chapitre, on s'intéresse aux surfaces minimales à bords libres dans la boule unité de l'espace euclidien de dimension 3, c'est-à-dire aux surfaces minimales plongées dans la boule unité dont le bord rencontre la sphère unité orthogonalement. On démontre l'existence de deux famille géométriquement distinctes de telles surfaces qui sont indexées par un entier n assez grand, qui représente le nombre de composantes connexes du bord de ces surfaces. Nous donnons en particulier une deuxième preuve d'un résultat de A. Fraser et R. Schoen concernant l'existence de telles surfaces.Un des résultats fondamentaux de la théorie des surfaces à courbure moyenne constante est le théorème de Hopf qui affirme que les seules sphères topologiques à courbure moyenne constante dans l'espace euclidien de dimension 3 sont les sphères rondes. Dans le troisième chapitre, on propose une construction dans une variété riemannienne de dimension 3 d'une famille de sphères topologiques à courbure moyenne constante qui ne sont pas convexes et dont la courbure moyenne est très grande
The subject of this thesis is the study of minimal and constant mean curvature submanifolds and of the influence of the geometry of the ambient manifold on the solutions of this problem.In the first chapter, following the ideas of F. Almgren, we propose a generalization of the notion of hypersurface with constant mean curvature to all codimensions. In codimension n-k we define constant mean curvature submanifolds as the critical points of the functional of the k - dimensional volume of the boundaries of k+1 - dimensional minimal submanifolds. We prove the existence in compact n-dimensional manifolds of n-k codimensional submanifolds with constant mean curvature for all k
APA, Harvard, Vancouver, ISO, and other styles
12

Marachli, Alaa. "Sur la stabilité de certaines surfaces minimales sous le flot de courbure moyenne nulle dans l'espace de Minkowski." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC0034.

Full text
Abstract:
Cette thèse porte sur la question de stabilité de certaines surfaces minimales évoluant sous le flot de courbure moyenne nulle dans l'espace de Minkowski. Cette problématique conduit à l'étude d'un système d'équations qui s'avère d'être hyperbolique sous la condition que les surfaces en question restent de type temps.Le travail qu'on présente ici se compose de deux parties. La première partie est liée à la formation de singularités en temps fini pour des surfaces asymptotiques au cône de Simons à l'infini et la seconde partie est consacrée à la stabilité de l'hélicoïde.Dans la première partie de cette thèse, on montre en collaboration avec Hajer Bahouri et Galina Perelman par une approche constructive l'existence d'une famille de surfaces évoluant par le flot de courbure moyenne nulle dans l'espace de Minkowski qui explose lorsque t tend vers 0 vers une surface qui se comporte comme le cône de Simons à l'infini. Ce problème revient à étudier les phénomènes d'explosion pour une équation d'ondes quasi linéaire du second ordre.L'objectif de la seconde partie est d’étudier la stabilité de l'hélicoïde soumise à des perturbations radiales normales. En fait, l'hélicoïde est linéairement instable d'indice 1 et c'est pourquoi on ne peut s'attendre à un résultat de stabilité pour des perturbations arbitraires. Nous montrons dans cette partie que cette instabilité est la seule obstruction pour la stabilité non linéaire globale de l'hélicoïde. Plus précisément, en se plaçant dans le cadre des perturbations radiales normales, on a démontré l'existence d'une variété de codimension 1 constituée de données initiales générant des solutions globales convergeant vers l'hélicoïde à l'infini
This thesis focuses on the stability of some minimal surfaces under the vanishing mean curvature flow in Minkowski space. This issue amounts to investigate a system which turns out to be hyperbolic as long as the involved surfaces are time-like surfaces.The work presented here includes two parts. The first part in joint work with Hajer Bahouri and Galina Perelman is dedicated to the issue of singularity formation in finite time for surfaces asymptotic to the Simons cone at infinity and the second part is devoted to the study of the stability of the helicoid.In the first part of this thesis, we prove by a constructive approach the existence of a family of surfaces which evolve by the vanishing mean curvature flow in Minkowski space and which as t tends to~0 blow up towards a surface which behaves like the Simons cone at infinity. This issue amounts to investigate the singularity formation for a second order quasilinear wave equation.The aim of the second part is to investigate the stability of the helicoid under normal radial perturbations. Actually, the helicoid is linearly unstable of index 1, and that is why we cannot expect to have stability for arbitrary perturbations. In this part, we establish that this instability is the only obstruction to the global nonlinear stability for the helicoid. More precisely, in the framework of normal radial perturbations, we prove the existence of a codimension one set of small initial data generating global solutions converging to the helicoid at infinity
APA, Harvard, Vancouver, ISO, and other styles
13

Dumont, Yves. "Contributions à l'étude théorique de l'écoulement anisotrope de courbes et à l'epsilon régularisation du problème de flot à courbure moyenne." Mulhouse, 1998. http://www.theses.fr/1998MULH0510.

Full text
Abstract:
Ce mémoire présente une étude de quelques équations aux dérivées partielles non-linéaires associées à des problèmes de frontière libre, et particulièrement celles qui sont associées à l'évolution de courbes ou de surfaces dans la direction de leur normale et avec une vitesse qui est fonction de la courbure moyenne. Dans la première partie, nous présentons une étude de l'évolution anisotrope affine de courbes planes, fermées et convexes : nous montrons l'existence globale ou locale de la solution de l'équation aux dérivées partielles associée à cette évolution. Nous donnons quelques résultats numériques concernant cette évolution anisotrope. Dans la deuxième partie, nous étudions l'epsilon régularisation du problème de «flot à courbure moyenne». Cette technique a été initiée il y a quelques années pour prouver l'existence d'une solution de viscosité du problème de flot à courbure moyenne, lorsque des singularités apparaissent au cours de l'évolution ou si la surface initiale possède des singularités. En vue d'une étude numérique, on cherche à savoir quelle est la vitesse de convergence de la solution du problème régularisé vers la solution du problème original, quand le paramètre epsilon tend vers zéro, et dans quelle topologie on a cette convergence. Nous étudions le cas unidimensionnel et nous montrons qu'il existe un développement asymptotique de la solution du problème régularisé en fonction de epsilon et de ses puissances, tel que le premier terme du développement soit la solution de viscosité du problème de flot à courbure moyenne. De plus, nous prouvons que ce développement a un sens dans des espaces de Sobolev avec poids. Enfin, nous donnons une estimation de la vitesse de convergence dans ces mêmes topologies. On considère différents types de conditions aux limites. La troisième partie traite de la régularisation du problème de flot à courbure moyenne pour des surfaces axisymétriques. Nous y démontrons des résultats analogues à ceux obtenus dans la deuxième partie.
APA, Harvard, Vancouver, ISO, and other styles
14

Forcadel, Nicolas. "Contribution à l'analyse d'équations aux dérivées partielles décrivant le mouvement de fronts avec applicationsà la dynamique des dislocations." Phd thesis, Ecole des Ponts ParisTech, 2007. http://tel.archives-ouvertes.fr/tel-00170767.

Full text
Abstract:
Ce travail porte sur la modélisation, l'analyse et l'analyse numérique de la dynamique des dislocations ainsi que sur les liens très forts qui existent avec les mouvements de type mouvement par courbure moyenne. Les dislocations sont des défauts linéaires qui se déplacent dans les cristaux lorsque ceux-ci sont soumis à des contraintes extérieures. D'une manière générale, la dynamique d'une ligne de dislocation est décrite par une équation eikonale où la vitesse dépend de manière non locale de l'ensemble de la ligne. Il est également possible d'ajouter un terme de courbure moyenne dans la modélisation.

La première partie de ce mémoire est consacrée aux propriétés qualitatives de la dynamique d'une ligne de dislocation (existence, unicité, comportement asymptotique...). Cette étude repose en grande partie sur la théorie des solutions de viscosité. On propose également plusieurs schémas numériques pour cette dynamique et on montre leur convergence ainsi que des estimations d'erreurs entre la solution et son approximation numérique.

Dans une seconde partie nous faisons le lien entre la dynamique d'un nombre fini de dislocations et la dynamique de densité de dislocations en montrant des résultats d'homogénéisation. Nous étudions également, de manière théorique et numérique, un modèle pour la dynamique de densité de dislocations.
APA, Harvard, Vancouver, ISO, and other styles
15

Forcadel, Nicolas. "Contribution à l'analyse d'équations aux dérivées partielles décrivant le mouvement de fronts avec applications à la dynamique des dislocations." Marne-la-vallée, ENPC, 2007. http://www.theses.fr/2007ENPC0711.

Full text
Abstract:
Ce travail porte sur la modélisation, l'analyse et l'analyse numérique de la dynamique des dislocations ainsi que sur les liens très forts qui existent avec les mouvements de type mouvement par courbure moyenne. Les dislocations sont des défauts linéaires qui se déplacent dans les cristaux lorsque ceux-ci sont soumis à des contraintes extérieures. D'une manière générale, la dynamique d'une ligne de dislocation est décrite par une équation eikonale où la vitesse dépend de manière non locale de l'ensemble de la ligne. Il est également possible d'ajouter un terme de courbure moyenne dans la modélisation. La première partie de ce mémoire est consacrée aux propriétés qualitatives de la dynamique d'une ligne de dislocation (existence, unicité, comportement asymptotique. . . ). Cette étude repose en grande partie sur la théorie des solutions de viscosité. On propose également plusieurs schémas numériques pour cette dynamique et on montre leur convergence ainsi que des estimations d'erreurs entre la solution et son approximation numérique. Dans une seconde partie nous faisons le lien entre la dynamique d'un nombre fini de dislocations et la dynamique de densité de dislocations en montrant des résultats d'homogénéisation. Nous étudions également, de manière théorique et numérique, un modèle pour la dynamique de densité de dislocations.
APA, Harvard, Vancouver, ISO, and other styles
16

Abergel, David. "Caractérisation bioinformatique des régions interORF chez la levure : analyse des biais de représentation, de la courbure moyenne prédite et de la conservation au sein du phylum des Hémi-Ascomycètes." Paris 11, 2004. http://www.theses.fr/2004PA112280.

Full text
Abstract:
Les régions interORF sont définies comme étant situées entre deux ORF consécutives. Le but du travail a été de les caractériser, à partir de plusieurs approches bioinformatiques à l’échelle génomique. L’organisme d’étude choisi est principalement la levure S. Cerevisiae, en raison des connaissances acquises liées aux régions interORF. Ce travail s’est donc orienté selon trois axes :1. Une étude statistique des biais de représentation (di- et trinucléotides) qui montre que ces biais concernent uniquement certains mots et que l’on peut les associer à l’appartenance taxonomique de l’organisme étudié2. Une étude de la courbure moyenne (globale et locale) prédite de l’axe de la double-hélice au voisinage de l’ATG, du STOP et des bornes de transcription : la courbure analysée avec une forte granularité est quasiment indiscernable de celle obtenue en étudiant de la même façon des séquences aléatoires respectant les linguistiques des régions concernées. 3. Une étude de la conservation des régions interORF et des ORF dans le phylum des Hémi-Ascomycètes (10 organismes) : elles sont très conservées, particulièrement pour les ORF dites « essentielles » et fortement exprimées. Afin de répondre aux problèmes posés par ces études, j’ai développé deux outils :1. GenomX, logiciel intégré destiné à tout type d’utilisateur, automatisant la plupart des tâches usuelles en bioinformatique et particulièrement utile pour des études à l’échelle génomique. 2. WInGS, un entrepôt de données génomiques sur la levure. Un contrôle interne de la cohérence de l’information est effectué ainsi qu’une intégration de plusieurs bases de données, en traitant les cas de données redondantes et divergentes
InterORF regions can be defined as located between two successive ORFs. This work aims at characterizing them, using several bioinformatic genome-scale approaches. The main organism studied is the S. Cerevisiae yeast, since many aspects related to interORF regions are already kown. Analyses have been carried out according to three ways:1. A statistical study of the di- and trinucleotides representation biases, which shows that these biases occur only for several word and that they can be associated with the taxonomy of the concerned species. 2. A study of the predicted average curvature (local and global) of the double-helix axis, close to the ATG, the STOP and the transcription boundaries : the curvature computed with a high granularity is quite the same as the one computed on random sequences, respecting the same linguistics as the studied regions. 3. A study of the conservation in the interORF and coding regions, within the phylum of the Hemi-Ascomycetous (10 species): they are highly conserved, especially for « essential » and highly expressed ORF. In order to resolve the problems generated by this work, I developed two tools :1. GenomX, an integrated software designed to be useful for all kinds of users, making easier the usual tasks in bioinformatics,particularly for genome-scale studies. 2. WInGS, a genomic data warehouse on yeast. An internal control of the information coherence is performed together with an integration of several databases, dealing with redundant and divergent data
APA, Harvard, Vancouver, ISO, and other styles
17

Côte, Delphine. "Vortex et données non bornées pour les équations de Ginzburg-Landau paraboliques." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066002.

Full text
Abstract:
Nous nous intéressons dans ce mémoire à des équations d'évolution associées aux fonctionnelles de Ginzburg-Landau, de nature parabolique. Notre but est de décrire le comportement temporel de la limite des solutions quand un petit paramètre de pénalisation tend vers 0.Dans le premier chapitre, nous retraçons de manière synthétique l'étude remarquable due à Bethuel, Orlandi et Smets sur l'équation de Ginzburg-Landau parabolique en dimension 2 : l'évolution des points vortex est gouvernée par le flot gradient de la fonctionnelle de Kirchoff-Onsager modifié par un terme de drift; elle est régulière hors des temps de collision ou de séparation de vortex ;ces phénomènes sont soumis à la conservation du degré local et à la dissipation d'énergie.Dans le second chapitre, nous considérons le problème de Cauchy pour des systèmes d'équations paraboliques semi-linéaires. Motivés par l'exemple des vortex, nous construisons, pour des nonlinéarités défocalisantes, des solutions globales de l'équation intégrale associée ayant des données initiales non bornées en espace (croissant comme exp(x^2)). Dans le cas de nonlinéarités focalisantes, nous montrons un phénomène d'explosion instantanée.Dans le troisième chapitre, nous revenons à l'équation de Ginzburg-Landau parabolique en dimension quelconque. Nous remplaçons la borne sur l'énergie de Bethuel, Orlandi et Smets, par une borne locale en espace, qui permet de traiter des configurations générales de vortex sans avoir recours aux « vortex évanescents ». Nous étendons leur analyse, et montrons des résultats de décomposition de l'énergie renormalisée, et du mouvement par courbure moyenne de la mesure d'énergie concentrée
We are interested in this thesis in evolution equations related to the Ginzburg-Landau functionals, of parabolic nature. Our goal is to describe the temporal behavior of limiting solutions as a small penalisation parameter tends to 0.In the first chapter, we retrace in a synthetic way the remarkable study by Bethuel, Orlandi and Smets on the parabolic Ginzburg-Landau equation in dimension 2 : the evolution of point vortices is governed by the gradient flow of the Kirchoff-Onsager functionnal modified by a drift term ; it is smooth away from the merging and splitting times ; these phenomenon are subject to conservation of the local degree and energy dissipation.In the second chapter, we consider the Cauchy problem for systems of semi-linear parabolic equations. Motivated by the example of the vortices, we construct, for defocusing nonlinearities, global solutions to the associated integral equation with intial data unbounded in space (allowed to grow like exp(x^2)). In the case of focusing nonlinearities, we show a phenomenon of instantaneous blow-up.In the third chapter, we go back to the parabolic Ginzburg-Landau equation. We replace the energy bound of Bethuel, Orlandi et Smets by a local-in-space bound on the energy. This allows to consider general configurations of vortices without the help of « vanishing vortices ». We extend their analysis, and show various results of decomposition of the renormalized energy, and that the concentrated energy moves according to the mean curvature flow
APA, Harvard, Vancouver, ISO, and other styles
18

Daniel, Benoît. "Sur les surfaces de Bryant et les disques minimaux délimités par trois droites." Paris 7, 2003. http://www.theses.fr/2003PA077150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Brassel, Morgan. "Instabilités de forme en croissance cristalline." Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00379392.

Full text
Abstract:
Les circuits intégrés des puces électroniques sont gravés sur des films minces semi-conducteurs fabriqués par hétéro-épitaxie. Nous nous intéressons aux instabilités morphologiques qui peuvent apparaître au cours de la croissance de ces films.

Du point de vue de la modélisation, les problèmes rencontrés en croissance cristalline sont essentiellement des problèmes de mouvement d'interfaces. Nous abordons le cas particulier du mouvement par courbure moyenne, ainsi que son approximation par la méthode de champ de phase via l'équation d'Allen-Cahn. La discrétisation par éléments finis que nous proposons permet de couvrir de nombreuses variantes de l'équation : conservation du volume, termes de forçage, anisotropie.

Nous menons ensuite l'étude numérique d'un modèle variationnel de l'instabilité de Grinfeld. Celui-ci combine croissance cristalline et interactions élastiques, en couplant une équation d'Allen-Cahn à un système d'élasticité linéarisée pour le film. Une extension du modèle permet de prendre en compte le comportement élastique du substrat.

Nous proposons, par ailleurs, un modèle de champ de phase pour l'étude de l'instabilité liée à la mise en paquet de marches en surface du film. L'étude numérique de ce modèle s'appuie sur un algorithme inspiré des techniques de recuit simulé. Celui-ci permet d'envisager la méthode de champ de phase comme un outil d'optimisation globale.
APA, Harvard, Vancouver, ISO, and other styles
20

Laslier, Benoît. "Dynamique stochastique d'interface discrète et modèles de dimères." Phd thesis, Université Claude Bernard - Lyon I, 2014. http://tel.archives-ouvertes.fr/tel-01044463.

Full text
Abstract:
Nous avons étudié la dynamique de Glauber sur les pavages de domaines finies du plan par des losanges ou par des dominos de taille 2 × 1. Ces pavages sont naturellement associés à des surfaces de R^3, qui peuvent être vues comme des interfaces dans des modèles de physique statistique. En particulier les pavages par des losanges correspondent au modèle d'Ising tridimensionnel à température nulle. Plus précisément les pavages d'un domaine sont en bijection avec les configurations d'Ising vérifiant certaines conditions au bord (dépendant du domaine pavé). Ces conditions forcent la coexistence des phases + et - ainsi que la position du bord de l'interface. Dans la limite thermodynamique où L, la longueur caractéristique du système, tend vers l'infini, ces interfaces obéissent à une loi des grand nombre et convergent vers une forme limite déterministe ne dépendant que des conditions aux bord. Dans le cas où la forme limite est planaire et pour les losanges, Caputo, Martinelli et Toninelli [CMT12] ont montré que le temps de mélange Tmix de la dynamique est d'ordre O(L^{2+o(1)}) (scaling diffusif). Nous avons généralisé ce résultat aux pavages par des dominos, toujours dans le cas d'une forme limite planaire. Nous avons aussi prouvé une borne inférieure Tmix ≥ cL^2 qui améliore d'un facteur log le résultat de [CMT12]. Dans le cas où la forme limite n'est pas planaire, elle peut être analytique ou bien contenir des parties "gelées" où elle est en un sens dégénérée. Dans le cas où elle n'a pas de telle partie gelée, et pour les pavages par des losanges, nous avons montré que la dynamique de Glauber devient "macroscopiquement proche" de l'équilibre en un temps L^{2+o(1)}
APA, Harvard, Vancouver, ISO, and other styles
21

Cartier, Sébastien. "Surfaces des espaces homogènes de dimension 3." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00672332.

Full text
Abstract:
Ce mémoire porte sur l'étude des surfaces minimales et de courbure moyenne constante dans les espaces homogènes de dimension 3. Nous établissons les formules de Sym-Bobenko pour les surfaces de courbure moyenne constante 1/2 de H^2xR et minimales du groupe de Heisenberg, et donnons des exemples de construction de telles immersions par la méthode DPW. Nous montrons également que des propriétés de symétrie passent aux correspondances de type surfaces sœurs et cousines, ce qui entraîne l'existence de graphes entiers de courbure moyenne constante 1/2 à bout vertical dans H^2xR qui ne sont pas de révolution. Nous reprenons ensuite l'étude des bouts verticaux d'immersions de courbure moyenne constante 1/2 dans H^2xR. Nous munissons une famille de graphes entiers d'une structure de variété lisse et en déduisons un analogue pour H^2xR d'un théorème de A. E. Treibergs pour l'espace de Minkowski. Nous nous intéressons également aux déformations des anneaux de révolution. Une conséquence directe est l'existence d'anneaux immergés qui ne sont pas de révolution. Nous construisons notamment des anneaux dont les bouts n'ont pas le même axe. Enfin, nous décrivons les invariants de Nœther correspondant aux isométries des espaces homogènes pour les surfaces minimales et de courbure moyenne constante. Nous utilisons le formalisme de la géométrie de contact qui permet l'écriture de formules explicites en toute généralité, et nous étudions l'évolution des formes de Nœther sous l'action des isométries des espaces homogènes. Nous calculons ces invariants dans le cas des anneaux déformés de H^2xR, et dans celui des anneaux horizontaux du groupe de Heisenberg
APA, Harvard, Vancouver, ISO, and other styles
22

Laadhari, Aymen. "Modélisation numérique de la dynamique des globules rouges par la méthode des fonctions de niveau." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00598251.

Full text
Abstract:
Ce travail, à l'interface entre les mathématiques appliquées et la physique, s'articule autour de la modélisation numérique des vésicules biologiques, un modéle pour les globules rouges du sang. Pour cela, le modéle de Canham et Helfrich est adopté pour décrire le comportement des vésicules. La modélisation numérique utilise la méthode des fonctions de niveau dans un cadre éléments finis. Un nouvel algorithme de résolution numérique combinant une technique de multiplicateurs de Lagrange avec une adaptation automatique de maillages garantit la conservation exacte des volumes et des surfaces. Cet algorithme permet donc de dépasser une limitation cruciale actuelle de la méthode des fonctions de niveau, à savoir les pertes de masse couramment observées dans ce type de problémes. De plus, les propriétés de convergence de la méthode des fonctions de niveau se trouvent ainsi grandement améliorées, comme l'indiquent de nombreux tests numériques. Ces tests comprennent notamment des problémes d'advection élémentaires, des mouvements par courbure moyenne ainsi que des mouvements par diffusion de surface. Concernant l'équilibre statique des vésicules, une condition générale d'équilibre d'Euler-Lagrange est obtenue à l'aide d'outils de dérivation de forme. En dynamique, le mouvement d'une vésicule sous l'action d'un écoulement de cisaillement est étudié dans le cadre des nombres de Reynolds élevés. L'effet du confinement est considéré, et les régimes classiques de chenille de char et de basculement sont retrouvés. Finalement, pour la premiére fois, l'effet des termes inertiels est étudié et on montre qu'au delà d'une valeur critique du nombre de Reynolds, la vésicule passe d'un mouvement de basculement à un mouvement de chenille de char.
APA, Harvard, Vancouver, ISO, and other styles
23

Roth, Julien. "Rigidité des hypersurfaces en géométrie riemannienne et spinorielle : Aspect extrinsèque et intrinsèque." Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00120756.

Full text
Abstract:
La principale motivation de cette thèse est de mettre en relation les aspects extrinsèque et intrinsèque des hypersurfaces d'espaces modèles au moyen de résultats de rigidité. Dans un premier temps, nous donnons des résultats de pincment pour des minorations du rayon extrinsèqueen fonction des r-courbures moyennes dans les trois espaces modèles. Nous obtenons ensuite des résultats de pincement comparables pour des majorations de la première valeur propre du laplacien dans l'espace euclidien, ce qui nous permet d'obtenir des résultats concernant les hypersurfaces presque Einstein. Dans un second temps, nous donnons une caractérisation spinorielle des surfaces dans les 3-variétés homogènes à groupe d'isométries de dimension 4.
APA, Harvard, Vancouver, ISO, and other styles
24

Ley, Olivier. "Equations quasilinéaires paraboliques dégénérées et équations de Hamilton-Jacobi : équations géométriques et mouvements de fronts." Tours, 2001. http://www.theses.fr/2001TOUR4027.

Full text
Abstract:
La première partie est consacrée à des équations quesilinéaires dégénérées, posées dans [RNx(0, T)], du type de l'équation du mouvement par courbure moyenne des graphes. Nous utilisons l'approche par lignes de niveau pour interpréter l'évolution au cours du temps des solutions non bornées comme un mouvement d'hypersurfaces dans [RN+1]. Nous obtenons une condition d'unicité liée au non-épaississement du front associé par cette approche géométrique et des bornes L∞locales qui entraînent l'existence de solutions de viscosité discontinues. Une application spectaculaire est l'existence et l'unicité d'une solution de viscosité continue pour toute donnée initiale convexe. En travaillant directement sur les équations, nous montrons des résultats d'existence et d'unicité en dimension 1. En imposant des restrictions de type polynomial sur la croissance de la donnée initiale dans [RN], nous prouvons qu'une grande classe d'équations est bien posée dans l'ensemble des fonctions à même croissance. La seconde partie concerne les équations d'Hamilton-Jacobi paraboliques. En premier lieu, pour des équations posées dans tout l'espace, nous établissons des bornes inférieures de gradient pour les solutions que nous exploitons dans le cadre de l'approche par lignes de niveau. Ces bornes empêchent l'épaississement du front mais nous montrons par des contre-exemples qu'elles n'impliquent pas les propriétés plus fines espérées même pour des solutions semiconcaves. En second lieu, nous considérons ces équations posées dans un ouvert borné régulier avec une condition de Neumann au bord. En utilisant le problème de contrôle avec réflexion au bord associé, nous prouvons que le résultat d'unicité discontinu pour l'équation posée dans [RN] ne s'applique pas
In the first part, we study quasilinear degenerate parabolic equations set in [RNx(0, T)] like the mean curvature eqution for graphs. We use the level-set approach to interpret the time-evolution of the unbounded solutions as a propagating front in [RN+1]. We prove that uniqueness is equivalent to the non-fattening of the front. Existence of discontinuous viscosity solutions is obtained from a L∞ local bound given by the level-set approach. A spectacular application is the existence of a unique continuous viscosity solution for any convex initial data. Working directly on the equation, we get existence and uniqueness results in the one-dimensional case. By imposing some polynomial-type growth restriction on the initial data in [RN], we prove the well-posedness of a large class of equations among functions with the same growth. The second part concerns time-dependent Hamilton-Jacobi equations. First, for equations set in the whole space [RN], we establish lower gradient bounds for the solutions. We exploit them to obtain regularity properties of the propagating fronts associated by the level-set approach. These bounds ensure the non-fattening but we show they are not sufficient to imply sharper regularity even for semiconcave functions. Secondly, we consider these equations in a smooth bounded set with Neumann boundary conditions. Using the corresponding control problem with reflection, we show that the discontinuous uniqueness result which holds for such equations set in [RN] is not true in this case
APA, Harvard, Vancouver, ISO, and other styles
25

Ge, Yuxin. "Sur quelques équations aux dérivées partielles nonlinéaires provenant de la géométrie." Cachan, Ecole normale supérieure, 1997. http://www.theses.fr/1997DENS0029.

Full text
Abstract:
Les résultats présentés dans cette thèse concernent l'existence de solutions de certaines équations aux dérivées partielles elliptiques issues de la géométrie. Nous montrons l'existence des surfaces à courbure moyenne constante et des applications harmoniques entre variétés à l'aide de la théorie de morse sur les variétés hilbertiennes. Nous construisons aussi des surfaces immergées à courbure de gauss prescrite.
APA, Harvard, Vancouver, ISO, and other styles
26

Laslier, Benoît. "Dynamique stochastique d’interface discrète et modèles de dimères." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10110/document.

Full text
Abstract:
Nous avons étudié la dynamique de Glauber sur les pavages de domaines finies du plan par des losanges ou par des dominos de taille 2 × 1. Ces pavages sont naturellement associés à des surfaces de R^3, qui peuvent être vues comme des interfaces dans des modèles de physique statistique. En particulier les pavages par des losanges correspondent au modèle d'Ising tridimensionnel à température nulle. Plus précisément les pavages d'un domaine sont en bijection avec les configurations d'Ising vérifiant certaines conditions au bord (dépendant du domaine pavé). Ces conditions forcent la coexistence des phases + et - ainsi que la position du bord de l'interface. Dans la limite thermodynamique où L, la longueur caractéristique du système, tend vers l'infini, ces interfaces obéissent à une loi des grand nombre et convergent vers une forme limite déterministe ne dépendant que des conditions aux bord. Dans le cas où la forme limite est planaire et pour les losanges, Caputo, Martinelli et Toninelli [CMT12] ont montré que le temps de mélange Tmix de la dynamique est d'ordre O(L^{2+o(1)}) (scaling diffusif). Nous avons généralisé ce résultat aux pavages par des dominos, toujours dans le cas d'une forme limite planaire. Nous avons aussi prouvé une borne inférieure Tmix ≥ cL^2 qui améliore d'un facteur log le résultat de [CMT12]. Dans le cas où la forme limite n'est pas planaire, elle peut être analytique ou bien contenir des parties “gelées” où elle est en un sens dégénérée. Dans le cas où elle n'a pas de telle partie gelée, et pour les pavages par des losanges, nous avons montré que la dynamique de Glauber devient “macroscopiquement proche” de l'équilibre en un temps L^{2+o(1)}
We studied the Glauber dynamics on tilings of finite regions of the plane by lozenges or 2 × 1 dominoes. These tilings are naturally associated with surfaces of R^3, which can be seen as interfaces in statistical physics models. In particular, lozenge tilings correspond to three dimensional Ising model at zero temperature. More precisely, tilings of a finite regions are in bijection with Ising configurations with some boundary conditions (depending on the tiled domain). These boundary conditions impose the coexistence of the + and - phases, together with the position of the boundary of the interface. In the thermodynamic limit where L, the characteristic length of the system, tends toward infinity, these interface follow a law of large number and converge to a deterministic limit shape depending only on the boundary condition. When the limit shape is planar and for lozenge tilings, Caputo, Martinelli and Toninelli [CMT12] showed that the mixing time of the dynamics is of order (L^{2+o(1)}) (diffusive scaling). We generalized this result to domino tilings, always in the case of a planar limit shape. We also proved a lower bound Tmix ≥ cL^2 which improve on the result of [CMT12] by a log factor. When the limit shape is not planar, it can either be analytic or have some “frozen” domains where it is degenerated in a sense. When it does not have such frozen region, and for lozenge tilings, we showed that the Glauber dynamics becomes “macroscopically close” to equilibrium in a time L^{2+o(1)}
APA, Harvard, Vancouver, ISO, and other styles
27

Derlet, Ann. "Eigenvalues of the p-Laplacian in population dynamics and nodal solutions of a prescribed mean curvature problem." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209932.

Full text
Abstract:
Cette thèse est consacrée à l'étude de plusieurs problèmes d'équations aux dérivées partielles non-linéaires.

La première partie (chapitres 1-2-3) traite d'un problème trouvant son origine en biologie mathématique, à savoir l'étude de la survie à long terme d'une population dont l'évolution est gouvernée par une équation parabolique non-linéaire. Dans le modèle considéré, le mécanisme de diffusion est contrôlé par le p-Laplacien, la non-linéarité est de type logistique et fait intervenir un poids m pouvant changer de signe, et les conditions aux limites sont de flux nul. Le poids m correspond à une répartition des ressources devant permettre la survie de la population. Dans le chapitre 1, nous déterminons entre autres un critère de survie à long terme faisant intervenir la valeur propre principale du p-Laplacien avec poids m. Cette valeur propre apparait, plus précisément, comme la valeur limite d'un paramètre en-dessous de laquelle toute solution positive de l'équation converge vers zéro lorsque t tend vers l'infini. Ceci nous conduit naturellement au problème de minimiser la valeur propre en question lorsque m varie dans une classe adéquate de poids. Dans le chapitre 2, nous prouvons l'existence de minimiseurs et montrons que ces derniers satisfont une propriété de type “bang-bang”. Plusieurs propriétés de montonie sont aussi étudiées dans des situations géométriques particulières, et une caractérisation complète est donnée en dimension 1. Le chapitre 3 est consacré à l'élaboration de simulations numériques, où l'algorithme utilisé combine un méthode de plus grande pente avec une représentation de certains ensembles comme ensembles de niveaux.

La deuxième sujet de cette thèse (chapitre 4) est un problème elliptique faisant intervenir l'opérateur de courbure moyenne. Nous nous intéressons à l'existence et à la multiplicité de solutions nodales de ce problème. Nous montrons que, si un certain paramètre de l'équation est suffisamment grand, il existe une solution nodale qui change de signe exactement deux fois. Nous établissons également l'existence d'un nombre arbitrairement grand de solutions nodales. Enfin, dans le cas particulier où le domaine est une boule, un résultat de brisure de symétrie est obtenu, résultat qui induit l'existence d'au moins deux solutions à deux domaines nodaux.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
28

Schapira, Barbara. "Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative." Phd thesis, Université d'Orléans, 2003. http://tel.archives-ouvertes.fr/tel-00163420.

Full text
Abstract:
Cette thèse est consacrée à l'étude des propriétés ergodiques du feuilletage horosphérique d'une variété géométriquement finie à courbure négative $M$. Un de nos principaux résultats est la classification des mesures transverses quasi-invariantes dont la dérivée de Radon-Nikodym est un cocycle höldérien fixé, associé à une mesure de Gibbs. À un tel cocycle, nous associons certaines moyennes sur les horosphères et montrons qu'elles s'équidistribuent vers la mesure de Gibbs correspondante lorsque $M$ est compacte ou convexe-cocompacte. Lorsqu'elle n'est ni compacte ni convexe-cocompacte, nous limitons l'étude aux moyennes associées à la mesure d'entropie maximale. Nous montrons qu'elles forment une suite tendue, ce qui, dans le cas des surfaces, nous permet d'obtenir leur équidistribution vers cette mesure d'entropie maximale. En corollaire, nous obtenons l'équidistribution des orbites du flot horocyclique d'une surface hyperbolique géométriquement finie mais de volume infini.
APA, Harvard, Vancouver, ISO, and other styles
29

Delingette, Hervé. "Modélisation, déformation et reconnaissance d'objets tridimensionnels à l'aide de maillages simplexes." Phd thesis, Ecole Centrale Paris, 1994. http://tel.archives-ouvertes.fr/tel-00632191.

Full text
Abstract:
Dans cette thèse, une représentation originale d'objets tridimensionnels est introduite: les maillages simplexes. un k-maillage simplexe est un maillage ou chaque sommet est connecte à k + 1 sommets voisins. Ainsi un contour est représenté par un 1-maillage simplexe et une surface tridimensionnelle par un 2-maillage simplexe. La structure d'un maillage simplexe est duale de celle des triangulations. Plusieurs propriétés topologiques et géométriques originales rendent l'utilisation des maillages simplexes particulièrement bien adaptée à la représentation de surfaces déformables. Nous introduisons la notion d'angle simplexe, de courbure moyenne discrète et de paramètre métrique à chaque sommet du maillage. La propriété géométrique essentielle des maillages simplexes est la possibilité de représenter localement la forme d'un k-maillage en un sommet à l'aide de (k + 1) quantités adimensionnées. Les maillages simplexes déformables sont alors utilisés dans un système de modélisation d'objets tridimensionnels. En présence d'images volumiques ou de profondeur, un maillage simplexe est déformé sous l'action de forces régularisantes et de forces externes. Les maillages simplexes sont adaptatifs à plusieurs titres. D'une part, les sommets se concentrent aux endroits de fortes courbure et d'autre part, le maillage peut être raffiné ou décimé en fonction de la proximité des sommets aux données. Enfin, l'utilisation de maillages simplexes sphériques quasi-réguliers permet la reconnaissance de forme d'objets tridimensionnels, même en présence d'occultations. La forme d'un objet est alors représentée par l'ensemble des valeurs des angles simplexes du maillage simplexe déformé, projeté sur le maillage sphérique originel. La forme de deux objets est comparée par l'intermédiaire de leur image simplexe (simplex angle image)
APA, Harvard, Vancouver, ISO, and other styles
30

Lemaire, Pierre. "Contributions à l'analyse de visages en 3D : approche régions, approche holistique et étude de dégradations." Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-01002114.

Full text
Abstract:
Historiquement et socialement, le visage est chez l'humain une modalité de prédilection pour déterminer l'identité et l'état émotionnel d'une personne. Il est naturellement exploité en vision par ordinateur pour les problèmes de reconnaissance de personnes et d'émotions. Les algorithmes d'analyse faciale automatique doivent relever de nombreux défis : ils doivent être robustes aux conditions d'acquisition ainsi qu'aux expressions du visage, à l'identité, au vieillissement ou aux occultations selon le scénario. La modalité 3D a ainsi été récemment investiguée. Elle a l'avantage de permettre aux algorithmes d'être, en principe, robustes aux conditions d'éclairage ainsi qu'à la pose. Cette thèse est consacrée à l'analyse de visages en 3D, et plus précisément la reconnaissance faciale ainsi que la reconnaissance d'expressions faciales en 3D sans texture. Nous avons dans un premier temps axé notre travail sur l'apport que pouvait constituer une approche régions aux problèmes d'analyse faciale en 3D. L'idée générale est que le visage, pour réaliser les expressions faciales, est déformé localement par l'activation de muscles ou de groupes musculaires. Il est alors concevable de décomposer le visage en régions mimiques et statiques, et d'en tirer ainsi profit en analyse faciale. Nous avons proposé une paramétrisation spécifique, basée sur les distances géodésiques, pour rendre la localisation des régions mimiques et statiques le plus robustes possible aux expressions. Nous avons également proposé une approche régions pour la reconnaissance d'expressions du visage, qui permet de compenser les erreurs liées à la localisation automatique de points d'intérêt. Les deux approches proposées dans ce chapitre ont été évaluées sur des bases standards de l'état de l'art. Nous avons également souhaité aborder le problème de l'analyse faciale en 3D sous un autre angle, en adoptant un système de cartes de représentation de la surface 3D. Nous avons ainsi proposé de projeter sur le plan 2D des informations liées à la topologie de la surface 3D, à l'aide d'un descripteur géométrique inspiré d'une mesure de courbure moyenne. Les problèmes de reconnaissance faciale et de reconnaissance d'expressions 3D sont alors ramenés à ceux de l'analyse faciale en 2D. Nous avons par exemple utilisé SIFT pour l'extraction puis l'appariement de points d'intérêt en reconnaissance faciale. En reconnaissance d'expressions, nous avons utilisé une méthode de description des visages basée sur les histogrammes de gradients orientés, puis classé les expressions à l'aide de SVM multi-classes. Dans les deux cas, une méthode de fusion simple permet l'agrégation des résultats obtenus à différentes échelles. Ces deux propositions ont été évaluées sur la base BU-3DFE, montrant de bonnes performances tout en étant complètement automatiques. Enfin, nous nous sommes intéressés à l'impact des dégradations des modèles 3D sur les performances des algorithmes d'analyse faciale. Ces dégradations peuvent avoir plusieurs origines, de la capture physique du visage humain au traitement des données en vue de leur interprétation par l'algorithme. Après une étude des origines et une théorisation des types de dégradations potentielles, nous avons défini une méthodologie permettant de chiffrer leur impact sur des algorithmes d'analyse faciale en 3D. Le principe est d'exploiter une base de données considérée sans défauts, puis de lui appliquer des dégradations canoniques et quantifiables. Les algorithmes d'analyse sont alors testés en comparaison sur les bases dégradées et originales. Nous avons ainsi comparé le comportement de 4 algorithmes de reconnaissance faciale en 3D, ainsi que leur fusion, en présence de dégradations, validant par la diversité des résultats obtenus la pertinence de ce type d'évaluation.
APA, Harvard, Vancouver, ISO, and other styles
31

Cheikh, Ali Hussein. "Analyse asymptotique des équations de Hardy-Sobolev dans des espaces singuliers." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0174.

Full text
Abstract:
Dans ce manuscrit, divisé en 3 parties, nous étudions des extrémales d’inégalités de Hardy-Sobolev. Partie 1 : Nous obtenons l’existence de solutions singulières pour l’équation de Hardy-Schrödinger perturbée ou non sur un domaine non régulier avec le point singulier 0 de l’équation se trouvant sur le bord du domaine. En particulier, nous introduisons une courbure géométrique G qui généralise la courbure moyenne pour les ”grandes dimensions” et une notion nouvelle de masse m pour les ”petites dimensions”. Notre résultat principal est que dans le cas d’un potentiel variable du terme perturbatif sous-critique, une interaction entre perturbation et G en 0 (resp. m) dans le cas grandes dimensions (resp. petites dimensions) apparait. En plus, la négativité de la courbure G (resp. la positivité de la masse m) pour les grandes dimensions (resp. petites dimensions) est suffisant lorsque la perturbation n’a aucun effet. Partie 2 : Dans cette partie, nous travaillons sur l’analyse asymptotique des sous-extrémales explosives. Nous effectuons une analyse de blow-up pour une équation de Hardy-Sobolev. Dans un premier temps, nous obtenons un contrôle ponctuel optimal de la suite de solutions. Dans un second temps, nous obtenons des informations précises sur le point d’explosion en utilisant une identité de Pohozaev. Partie 3 : Nous considérons la meilleure constante dans une inégalité critique de second ordre de Sobolev. Nous montrons la non-rigidité pour les optimiseurs au-dessus d’un certain seuil, à savoir nous prouvons que la meilleure constante est atteinte par une solution non constante du problème elliptique de quatrième ordre sous des conditions limites de type Neumann. Nos arguments reposent sur des estimations asymptotiques du quotient de Rayleigh. Nous montrons également la rigidité en dessous d’un autre seuil pour les solutions de moindre énergie
In this manuscript, divided into 3 parts, we study the existence of extremal for Hardy-Sobolev inequalities. Part 1: We obtain the (non-)existence of singulars solutions for the perturbative Hardy-Schrödinger equation on a non-smooth domain with the singular point 0 on the boundary of the domain. In particular, we introduce a geometric quantity G which generalizes the mean curvature for ”Large dimensions” and the new notion of the mass in ”Small dimensions”. Our main result is that, in the case of a subcritical perturbation, an interaction appears between the perturbation and G at 0 (resp. m) for large dimensions (resp. small dimensions). In addition, the negativity of the curvature G (resp. the positivity of the mass m) for the large dimensions (resp. small dimensions) is sufficient when the perturbation has no effect. Part 2: In this part, we perform a blow-up analysis of solutions for the Hardy-Sobolev equation of minimizing type. First, we obtain an optimal control of the family of solutions. After, we get specific informations about the blowup point using a Pohozaev identity. Part 3: We consider the best constant in a critical Sobolev inequality of second order. We show non-rigidity for the optimizers above a certain threshold, namely, we prove that the best constant is achieved by a nonconstant solution of the associated fourth order elliptic problem under Neumann boundary conditions. Our arguments rely on asymptotic estimates of the Rayleigh quotient. We also show rigidity below another threshold
APA, Harvard, Vancouver, ISO, and other styles
32

Ley, Olivier. "Evolution de fronts avec vitesse non-locale et équations de Hamilton-Jacobi." Habilitation à diriger des recherches, Université François Rabelais - Tours, 2008. http://tel.archives-ouvertes.fr/tel-00362409.

Full text
Abstract:
Ce mémoire présente mes travaux de recherche effectués après ma thèse, entre 2002 et 2008. Les thèmes principaux sont les équations aux dérivées partielles non-linéaires et des problèmes d'évolutions de fronts ou d'interfaces. Il est organisé en trois chapitres.

Le premier chapitre concerne l'évolution de fronts avec une vitesse normale prescrite. Pour étudier ce genre de problème, une première approche, dite par lignes de niveaux, consiste àreprésenter le front comme une ligne de niveau d'une fonction auxiliaire u. Cette approche ramène l'étude du problème d'évolution géométrique à un problème d'EDP puisque u vérifie une équation de Hamilton-Jacobi. Quelques résultats dans le cas de vitesses locales comme la courbure moyenne sont présentés mais la majorité des résultats concerne le cas de vitesses non-locales décrivant la dynamique des dislocations dans un cristal ou modélisant l'asymptotique d'un système de FitzHugh-Nagumo apparaissant en biologie. Une approche différente, basée sur des solutions de viscosité géométriques, est utilisée pour étudier des problèmes de propagation de fronts apparaissant en optimisation de formes. Le but est de trouver un ensemble optimal minimisant une énergie du type capacité à volume ou périmètre constant. L'idée est de déformer le bord d'un ensemble donné avec une vitesse normale adéquate de manière à diminuer au plus son énergie. La mise en oeuvre de cette idée nécessite la construction rigoureuse d'une telle évolution pour tout temps et la preuve de la convergence vers une solution du problème initial. De plus, la décroissance de l'énergie est obtenue le long du flot.

Le deuxième chapitre décrit des résultats d'unicité, d'existence et d'homogénéisation pour des équations de Hamilton-Jacobi-Bellman. La majeure partie du travail effectué concerne des équations provenant de problèmes de contrôle stochastique avec des contrôles non-bornés. Les équations comportent alors des termes quadratiques par rapport au gradient et les solutions étudiées sont elles-mêmes à croissance quadratique. Des liens entre ces solutions et les fonctions valeurs des problèmes de contrôle correspondants sont établis. La seconde partie est consacrée à un théorème d'homogénéisation pour un système d'équations de Hamilton-Jacobi du premier ordre.

Le troisième et dernier chapitre traite d'un sujet un peu à part, à savoir le lien entre les flots de gradient et l'inégalité de Lojasiewicz. La principale originalité de ce travail est de placer l'étude dans un cadre hilbertien pour des fonctions semiconvexes, ce qui sort du cadre de l'inégalité de Lojasiewicz classique. Le principal théorème produit des caractérisations de cette inégalité. Les résultats peuvent être précisés dans le cas des fonctions convexes ; en particulier, un contre-exemple de fonction convexe ne vérifiant pas l'inégalité de Lojasiewicz est construit. Cette dernière inégalité est reliée à la longueur des trajectoires de gradient. Une borne de cette longueur est obtenue pour les fonctions convexes coercives en dimension deux même lorsque cette inégalité n'est pas vérifiée.
APA, Harvard, Vancouver, ISO, and other styles
33

Polette, Arnaud. "Analyse de maillages surfaciques par construction et comparaison de modèles moyens et par décomposition par graphes s'appuyant sur les courbures discrètes : application à l'étude de la cornée humaine." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4084/document.

Full text
Abstract:
Cette thèse se découpe en trois parties. Les deux premières portent sur le développement de méthodes pour la construction de modèles géométriques moyens et pour la comparaison de modèles. Plusieurs problématiques sont abordées, telles que la construction d'une cornée moyenne et la comparaison de cornées. Il existe à ce jour peu d'études ayant ces objectifs car la mise en correspondance de surfaces cornéennes est une problématique non triviale. En plus d'aider à développer la connaissance de l'anatomie cornéenne, la modélisation de la cornée normale permet de détecter tout écart significatif par rapport à la normale permettant un diagnostic précoce de pathologies. La seconde partie a pour objectif de développer une méthode pour reconnaître une surface parmi un groupe de surfaces à l’aide de leurs acquisitions pour une application de biométrie. L’idée est de quantifier la différence entre chaque surface et une surface donnée, et de déterminer un seuil permettant la reconnaissance. Deux méthodes sont proposées et une méthodologie en cascade utilisant ces deux méthodes afin de combiner les avantages de chacune est aussi proposée. La troisième et dernière partie porte sur une nouvelle méthode de décomposition en graphes de maillages 3D triangulés. Nous utilisons des cartes de courbures discrètes comme descripteur de forme afin de découper le maillage en différentes catégorie de carreaux. Ensuite un graphe d'adjacence est construit avec un nœud pour chaque carreau. Ces graphes sont utilisés pour extraire des caractéristiques géométriques décrites par des motifs (ou patterns), ce qui permet de détecter des régions spécifiques dans un modèle 3D, ou des motifs récurrents
This thesis comprises three parts. The first two parts concern the development of methods for the construction of mean geometric models and for model comparison. Several issues are addressed, such as the construction of an average cornea and the comparison of corneas. Currently, there are few studies with these objectives because the matching of corneal surfaces is a non-trivial problem. In addition to help to develop a better understanding of the corneal anatomy, 3D models of normal corneas can be used to detect any significant deviation from the norm, thereby allowing for an early diagnosis of diseases or abnormalities using the shape of the cornea. The second part of this thesis aims to develop a method for recognizing a surface from a group of surfaces using their 3D acquisitions in a biometric application pertinent to the cornea. The concept behind this method is to quantify the difference between each surface and a given surface and to determine the threshold for recognition. Two complementary methods are proposed. A cascading methodology using both methods to combine the advantages of each method is also proposed. The third and final part of this thesis focuses on a new method for decomposing 3D triangulated meshes into graphs. We use discrete curvature maps as the shape descriptor to split the mesh in eight different categories. Next, an adjacency graph is built with a node for each patch. These graphs are used to extract geometric characteristics described by patterns that allow for the detection of specific regions in a 3D model or recurrent characteristics
APA, Harvard, Vancouver, ISO, and other styles
34

El, Ayoubi Mayass. "Le retard de croissance intra-utérin et la grande prématurité : impact sur la mortalité et les morbidités à court et à moyen terme." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB139/document.

Full text
Abstract:
Contexte: Le retard de croissance intra-utérin (RCIU) désigne l’incapacité du fœtus à atteindre son potentiel de croissance déterminé génétiquement en raison de diverses causes. Il est défini le plus souvent par un poids de naissance inférieur au 10ème percentile pour l’âge gestationnel sur les courbes néonatales. Ce travail de thèse a comme objectif de répondre aux questions non-résolues sur la définition et les conséquences du RCIU dans le contexte de la grande prématurité: (1) Quelle est la meilleure définition du RCIU à utiliser pour identifier les enfants à risque ? (2) Quels sont les risques de mortalité et de morbidités néonatales respiratoires et neurologiques associés au RCIU et existe-t-il des interactions avec les pathologies de la grossesse responsables de cette naissance très prématurée ? (3) Quel est l’impact du RCIU sur le devenir neuro-développemental à 2 ans, en particulier chez les enfants nés extrêmement prématurément ? Méthodes: Nous avons utilisé deux sources de données. L’étude MOSAIC (Models for OrganiSing Access to Intensive Care for Very Preterm Babies in Europe) est une étude européenne en population qui porte sur l’ensemble des naissances survenues entre 22 et 31 semaines d’aménorrhée en 2003 dans dix régions européennes. Les enfants ont été suivis jusqu’à la sortie d’hospitalisation (population d’étude : 4525 enfants). La deuxième source est une cohorte d’enfants nés avant 27SA qui ont été hospitalisés dans le service de réanimation néonatale à l'hôpital de Port-Royal de 1999 à 2008 et qui ont eu un examen pédiatrique et une évaluation selon l’échelle de Brunet-Lézine qui inclut quatre domaines du développement global de l’enfant : la motricité globale, la motricité fine, le langage et l’interaction sociale (445 enfants admis, 268 enfants suivis à 2 ans). Résultats: Dans les deux populations, les risques de décès et de dysplasie broncho-pulmonaire étaient plus élevés pour les enfants ayant un poids de naissance <10éme percentile des courbes néonatales, mais également pour des enfants avec un poids plus élevé (entre le 10éme et le 24éme percentile des courbes néonatales ou <10ème percentile des courbes fœtales). Par contre, il n’y avait pas de lien entre les complications neurologiques et le faible poids, ni d’interaction avec les pathologies de la grossesse. Le RCIU était associé à un risque élevé du retard neurocognitif à deux ans d’âge corrigé chez les extrêmes prématurés, surtout dans le domaine de la motricité fine et de l’interaction sociale mais pas dans le domaine du langage et de la motricité globale. Nous n’avons pas trouvé d’association entre le RCIU et le risque d’infirmité motrice cérébrale à deux ans d’âge corrigé. Conclusions: L’utilisation du 10ème percentile des courbes néonatales n’est pas adaptée pour identifier l’impact du RCIU chez les grands prématurés ; l’utilisation de multiples seuils ou de courbes de croissance fœtale est nécessaire. Le RCIU accroit les risques de mortalité et de dysplasie broncho-pulmonaire, mais n’est pas associé aux lésions cérébrales sévères ; ces associations sont observées dans différents contextes périnatals (pathologies vasculaires et infectieuses, et naissances à des âges gestationnels très précoces). Le RCIU représente un facteur pronostic défavorable pour le neuro-développement à moyen terme. Nos résultats soulèvent de nouvelles questions sur le suivi adapté pour les enfants ayant un RCIU après leur sortie de l’hôpital et aussi sur les éventuels mécanismes biologiques pouvant expliquer les liens entre le RCIU avec une morbidité respiratoire et certains domaines du développement neurocognitif à moyen terme
Background: Intrauterine growth restriction (IUGR) refers to the inability of the fetus to achieve its genetically determined growth potential due to various causes. Most often, it is defined by a birth weight less than the 10th percentile for gestational age using neonatal growth curves. This thesis aims to answer unresolved questions about the definition and consequences of IUGR in the context of very preterm birth: (1) what is the best definition of IUGR for identifying children at risk? (2) What are the risks of mortality and neonatal respiratory and neurological morbidity associated with IUGR and are there interactions with the underlying pregnancy complications responsible for the very preterm birth? (3) What is the impact of IUGR on neurodevelopmental at 2 years, especially for children born extremely preterm ? Methods: We used two data sources. The MOSAIC study (Models for Organising Access to Intensive Care for Very Preterm Babies in Europe) is a European population-based study that included all births occurring between 22 and 31 weeks of gestation in 2003 in ten European regions. The children were followed until hospital discharge (study population = 4525 infants). The second source is a cohort of children born before 27 weeks of GA who were hospitalized in the neonatal intensive care unit at the Port Royal Hospital from 1999 to 2008 and had a pediatric examination and Brunet-Lézine (BL) neurodevelopmental assessment at 2 years of corrected age (445 children in the cohort, 268children followed at 2 years). The BL assessment includes four areas of child development: gross motor, fine motor, language and social interaction skills. Results: In both populations, the risk of death and bronchopulmonary dysplasia were higher for children with a birth weight <10th percentile of neonatal growth curves but also for children with a higher birth weight (between the 10th and the 24th percentile of neonatal growth curves or <10th percentile of fetal growth curves). In contrast, there was no link between neurological complications and low birth weight and no interactions with pregnancy complications. IUGR was associated with neurocognitive delay among extremely preterm children evaluated at two years of corrected age, especially for fine motor and social interaction skills, but not for language and gross motor skills. We did not find any association between IUGR and the risk of cerebral palsy at two years of corrected age. Conclusions: The use of the 10th percentile of neonatal growth curves is not suitable for identifying the impact of IUGR in very preterm infants; using higher thresholds or fetal growth curves is necessary. IUGR increased the risks of mortality and bronchopulmonary dysplasia, but was not associated with severe brain damage; these associations are observed in multiple clinical contexts (vascular and infectious pregnancy complications, and births at very early gestational ages). IUGR is a risk factor for poor medium-term neuro-development. Our results raise new questions about the appropriate surveillance for children with IUGR after discharge from the hospital and also about possible biological mechanisms that could explain the relationship between IUGR and respiratory morbidity and neurocognitive development
APA, Harvard, Vancouver, ISO, and other styles
35

Colin, Julien. "Séchage en continu du bois énergie comme moyen de préconditionnement en vue de sa conservation thermochimique : approches expérimentale et numérique." Phd thesis, AgroParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00861231.

Full text
Abstract:
Les voies sèches de valorisation du bois énergie sont de plus en plus exigeantes vis-à-vis de la qualité de la matière première et notamment quant à sa teneur en eau. Ainsi, une étape intermédiaire de préconditionnement, sur site industriel, tend à se développer. La mise en œuvre de séchoirs en continu est alors séduisante de par son faible coût et sa parfaite intégration dans la ligne de production. Cependant, elle n'est pas sans écueil : la variabilité de la biomasse et l'hétérogénéité des conditions climatiques au sein du séchoir rendent fastidieux le dimensionnement du séchoir et de la source de chaleur associée d'une part et la maximisation du flux matière d'autre part.Notre étude a pour ambition de développer un outil informatique d'aide à la conception et à l'optimisation de séchoirs en continu traversés par un lit condensé de particules de bois. Pour y parvenir, nous associons une approche expérimentale et une approche numérique du procédé. La démarche scientifique s'articule autour de deux échelles représentatives :- A l'échelle de la particule de bois, le modèle de Van Meel, reposant sur le concept de courbe caractéristique de séchage, est étendu : le couplage entre transferts de chaleur et de masse est rendu explicite. Nous disposons dès lors d'un modèle réactif et prédictif en conditions climatiques variables. Parallèlement, un premier dispositif expérimental original est conçu et construit pour l'étude du séchage de particules de bois isolées. Les données recueillies sont alors analysées en vue d'alimenter en paramètres et de valider le modèle semi-analytique ;- A l'échelle du séchoir, une modélisation double-échelle est adoptée pour tenir compte de l'évolution des conditions climatiques. Un soin particulier est apporté à la modélisation, se voulant être la plus proche possible des installations existantes : à ce titre, les transferts au niveau de la paroi du séchoir sont pris en compte, ainsi que la variabilité des particules de bois. Parallèlement, un second dispositif expérimental original est conçu et construit pour l'étude du séchage de particules disposées en lit. Les données recueillies sont alors confrontées aux simulations du modèle double-échelle.La validation du modèle s'étant révélée probante tant à l'échelle de la particule qu'à celle du séchoir, une utilisation du code pour l'aide à la conception et à l'optimisation d'installations industrielles a pu être envisagée. Ainsi, ce travail s'achève-t-il par deux études de cas à travers lesquelles nous explorons le potentiel du modèle pour maximiser le flux matière tout en garantissant la qualité du produit et l'efficacité énergétique du séchoir.
APA, Harvard, Vancouver, ISO, and other styles
36

Al, Hazzouri Naim. "Etude analytique du comportement de consommation des ménages syriens." Clermont-Ferrand 1, 1986. http://www.theses.fr/1986CLF10024.

Full text
Abstract:
Le but de cette recherche est d’étudier les effets des différents facteurs socio-économiques sur le comportement de la consommation des ménages en Syrie. Les données de base sont fournies par deux enquêtes sur la structure des budgets familiaux réalisés en 1981 et 1984. Cette étude est composée de trois parties. La première s’attache à présenter la méthodologie de l’étude des budgets familiaux et les moyens d’évaluation de la consommation familiale. La deuxième partie décrit le champ et la méthodologie des enquêtes sur les budgets familiaux réalisées en 1981 et 1984 en deux chapitres : la situation socio-économique de la population étudiée et la méthodologie utilisée au cours de la réalisation de ces deux enquêtes. La dernière partie est consacrée à la modélisation et à l’interprétation de l’effet des variables socio-économiques sur la structures des différents postes de consommation composant les budgets des ménages. Par ailleurs, la comparaison entre les résultats de ces deux enquêtes a permis d’étudier l’évolution de la consommation à moyen terme. Enfin, les résultats obtenus sont comparés avec d’autres statistiques semblables concernant : la France, l’Italie, la R. F. A et l’Egypte.
APA, Harvard, Vancouver, ISO, and other styles
37

Bretin, Elie. "Mouvements par courbure moyenne et méthode de champs de phase." Phd thesis, 2009. http://tel.archives-ouvertes.fr/tel-00995323.

Full text
Abstract:
Cette thèse s'intéresse aux méthodes de champs de phase pour l'approximation de mouvements par courbure moyenne. En particulier, nous proposons de nouveaux modèles pour prendre en compte des contraintes de volumes, des tensions de surfaces anisotropes et des angles de contact au bord du domaine d'évolution.
APA, Harvard, Vancouver, ISO, and other styles
38

Polette, Arnaud. "Analyse de maillages surfaciques par construction et comparaison de modèles moyens et par décomposition par graphes s’appuyant sur les courbures discrètes : application à l’étude de la cornée humaine." Thèse, 2015. http://hdl.handle.net/1866/13715.

Full text
Abstract:
Réalisé en cotutelle avec Aix Marseille Université.
Cette thèse se découpe en trois parties. Les deux premières portent sur le développement de méthodes pour la construction de modèles géométriques moyens et pour la comparaison de modèles. Ces approches sont appliquées à la cornée humaine pour l’élaboration d’atlas et pour l’étude biométrique robuste. La troisième partie porte sur une méthode générique d'extraction d'informations dans un maillage en s'appuyant sur des propriétés différentielles discrètes afin de construire une structure par graphe permettant l'extraction de caractéristiques par une description sémantique. Les atlas anatomiques conventionnels (papier ou CD-ROM) sont limités par le fait qu'ils montrent généralement l'anatomie d'un seul individu qui ne représente pas nécessairement bien la population dont il est issu. Afin de remédier aux limitations des atlas conventionnels, nous proposons dans la première partie d’élaborer un atlas numérique 3D contenant les caractéristiques moyennes et les variabilités de la morphologie d'un organe, plus particulièrement de la cornée humaine. Plusieurs problématiques sont abordées, telles que la construction d'une cornée moyenne et la comparaison de cornées. Il existe à ce jour peu d'études ayant ces objectifs car la mise en correspondance de surfaces cornéennes est une problématique non triviale. En plus d'aider à développer une meilleure connaissance de l'anatomie cornéenne, la modélisation 3D de la cornée normale permet de détecter tout écart significatif par rapport à la "normale" permettant un diagnostic précoce de pathologies ou anomalies de la forme de la cornée. La seconde partie a pour objectif de développer une méthode pour reconnaître une surface parmi un groupe de surfaces à l’aide de leurs acquisitions 3D respectives, dans le cadre d’une application de biométrie sur la cornée. L’idée est de quantifier la différence entre chaque surface et une surface donnée, et de déterminer un seuil permettant la reconnaissance. Ce seuil est dépendant des variations normales au sein d’un même sujet, et du bruit inhérent à l’acquisition. Les surfaces sont rognées et trouées de façon imprévisible, de plus il n’y a pas de point de mise en correspondance commun aux surfaces. Deux méthodes complémentaires sont proposées. La première consiste à calculer le volume entre les surfaces après avoir effectué un recalage, et à utiliser ce volume comme un critère de similarité. La seconde approche s’appuie sur une décomposition en harmoniques sphériques en utilisant les coefficients comme des descripteurs de forme, qui permettront de comparer deux surfaces. Des résultats sont présentés pour chaque méthode en les comparant à la méthode la plus récemment décrite dans la littérature, les avantages et inconvénients de chacune sont détaillés. Une méthodologie en cascade utilisant ces deux méthodes afin de combiner les avantages de chacune est aussi proposée. La troisième et dernière partie porte sur une nouvelle méthode de décomposition en graphes de maillages 3D triangulés. Nous utilisons des cartes de courbures discrètes comme descripteur de forme afin de découper le maillage traité en huit différentes catégorie de carreaux (ou peak, ridge, saddle ridge, minimal, saddle valley, valley, pit et flat). Ensuite, un graphe d'adjacence est construit avec un nœud pour chaque carreau. Toutes les catégories de carreaux ne pouvant pas être adjacentes dans un contexte continu, des jonctions intermédiaires sont ajoutées afin d'assurer une cohérence continue entre les zones. Ces graphes sont utilisés pour extraire des caractéristiques géométriques décrites par des motifs (ou patterns), ce qui permet de détecter des régions spécifiques dans un modèle 3D, ou des motifs récurrents. Cette méthode de décomposition étant générique, elle peut être appliquée à de nombreux domaines où il est question d’analyser des modèles géométriques, en particulier dans le contexte de la cornée.
This thesis comprises three parts. The first two parts concern the development of methods for the construction of mean geometric models and for model comparison. These approaches are applied to the human cornea for the construction of atlases and a robust biometric study. The third part focuses on a generic method for the extraction of information in a mesh. This approach is based on discrete differential properties for building a graph structure to extract features using a semantic description. Conventional anatomical atlases (paper or CD-ROM) are limited by the fact they generally show the anatomy of a single individual who does not necessarily represent the population from which they originate. To address the limitations of conventional atlases, we propose in the first part of this thesis to construct a 3D digital atlas containing the average characteristics and variability of the morphology of an organ, especially that of the human cornea. Several issues are addressed, such as the construction of an average cornea and the comparison of corneas. Currently, there are few studies with these objectives because the matching of corneal surfaces is a non-trivial problem. In addition to help to develop a better understanding of the corneal anatomy, 3D models of normal corneas can be used to detect any significant deviation from the norm, thereby allowing for an early diagnosis of diseases or abnormalities using the shape of the cornea. The second part of this thesis aims to develop a method for recognizing a surface from a group of surfaces using their 3D acquisitions in a biometric application pertinent to the cornea. The concept behind this method is to quantify the difference between each surface and a given surface and to determine the threshold for recognition. This threshold depends on normal variations within the same subject and noise due to the acquisition system. The surfaces are randomly trimmed and pierced ; moreover, there is no common landmark on the surfaces. Two complementary methods are proposed. The first method consists of the computation of the volume between the surfaces after performing geometrical matching and the use of this volume as a criterion of similarity. The second approach is based on a decomposition of the surfaces into spherical harmonics using the coefficients as shape descriptors to compare the two surfaces. Each result of the proposed methods is compared to the most recent method described in the literature, with the benefits and disadvantages of each one described in detail. A cascading methodology using both methods to combine the advantages of each method is also proposed. The third and final part of this thesis focuses on a new method for decomposing 3D triangulated meshes into graphs. We use discrete curvature maps as the shape descriptor to split the mesh in eight different categories (peak, ridge, saddle ridge, minimal, saddle valley, valley, pit and flat). Next, an adjacency graph is built with a node for each patch. Because all categories of patches cannot be adjacent in a continuous context, intermediate junctions are added to ensure the continuous consistency between patches. These graphs are used to extract geometric characteristics described by patterns that allow for the detection of specific regions in a 3D model or recurrent characteristics. This decomposition method, being generic, can be used in many applications to analyze geometric models, especially in the context of the cornea.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography