Academic literature on the topic 'Cowpea (vigna unguiculata (l.)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cowpea (vigna unguiculata (l.).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cowpea (vigna unguiculata (l.)"
Ehlers, J. D., and A. E. Hall. "Cowpea (Vigna unguiculata L. Walp.)." Field Crops Research 53, no. 1-3 (July 1997): 187–204. http://dx.doi.org/10.1016/s0378-4290(97)00031-2.
Full textKongjaimun, Alisa, Akito Kaga, Norihiko Tomooka, Prakit Somta, Takehiko Shimizu, Yujian Shu, Takehisa Isemura, Duncan A. Vaughan, and Peerasak Srinives. "An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length." Genome 55, no. 2 (February 2012): 81–92. http://dx.doi.org/10.1139/g11-078.
Full textOgunkanmi, Adebayo, Oluwatoyin Ogundipe, Luky Omoigui, Adebola Odeseye, and Christian Fatokun. "Morphological and SSR marker characterization of wild and cultivated cowpeas (Vigna unguiculata L. Walp)." Journal of Agricultural Sciences, Belgrade 64, no. 4 (2019): 367–80. http://dx.doi.org/10.2298/jas1904367o.
Full textHa, Tae Joung, Myoung-Hee Lee, Yu Na Jeong, Jin Hwan Lee, Sang-Ik Han, Chang-Hwan Park, Suk-Bok Pae, Chung-Dong Hwang, In-Youl Baek, and Keum-Yong Park. "Anthocyanins in cowpea [Vigna unguiculata (L.) Walp. ssp. unguiculata]." Food Science and Biotechnology 19, no. 3 (June 2010): 821–26. http://dx.doi.org/10.1007/s10068-010-0115-x.
Full textUgale, PN, MP Wankhade, and JD Deshmukh. "Correlation studies in cowpea (Vigna unguiculata L.)." International Journal of Chemical Studies 8, no. 6 (November 1, 2020): 743–46. http://dx.doi.org/10.22271/chemi.2020.v8.i6k.10857.
Full textVaillancourt, R. E., and N. F. Weeden. "Lack of isozyme similarity between Vigna unguiculata and other species of subgenus Vigna (Leguminosae)." Canadian Journal of Botany 71, no. 4 (April 1, 1993): 586–91. http://dx.doi.org/10.1139/b93-066.
Full textPal, A. K., B. Singh, and A. N. Maurya. "Inbreeding depression in cowpea (Vigna unguiculata (L.) Walp.)." Journal of Applied Horticulture 05, no. 02 (December 15, 2003): 105–7. http://dx.doi.org/10.37855/jah.2003.v05i02.25.
Full textCHANDRAKAR, RUPESH, ANNU VERMA, J. SINGH, and N. MEHTA. "Genetic divergence in vegetable cowpea (Vigna unguiculata L.)." ASIAN JOURNAL OF HORTICULTURE 11, no. 2 (December 15, 2016): 323–28. http://dx.doi.org/10.15740/has/tajh/11.2/323-328.
Full textLonardi, Stefano, María Muñoz‐Amatriaín, Qihua Liang, Shengqiang Shu, Steve I. Wanamaker, Sassoum Lo, Jaakko Tanskanen, et al. "The genome of cowpea (Vigna unguiculata[L.] Walp.)." Plant Journal 98, no. 5 (May 28, 2019): 767–82. http://dx.doi.org/10.1111/tpj.14349.
Full textBadhe, P. L., D. M. Raut, N. M. Magar, D. N. Borole, and V. Y. Pawar. "Diallel analysis in Cowpea (Vigna unguiculata (L.)Walp.)." Electronic Journal of Plant Breeding 7, no. 2 (2016): 291. http://dx.doi.org/10.5958/0975-928x.2016.00037.5.
Full textDissertations / Theses on the topic "Cowpea (vigna unguiculata (l.)"
Ishiyaku, Mohammad Faguji. "Inheritance of time to flowering in cowpea [Vigna unguiculata (L.) Walp]." Thesis, University of Reading, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360060.
Full textOmwenga, George Isanda. "Callus Development and Organogenesis in Cultured Explants of Cowpea (Vigna unguiculata (L.) Walp." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4655/.
Full textNgugi, Eliud Chege Kahiu. "The genetics of carbon isotope discrimination in cowpea (Vigna unguiculata L. Walp)." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239598.
Full textMarques, Marcelo Rodrigues. "Ação hipocolesterolêmica de hidrolisados de feijões caupi (Vigna unguiculata L. Walp)." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/6/6138/tde-09102013-152334/.
Full textIntroduction- The cardiovascular diseases, due to mortality and associated pathological damage, are considered a serious public health problem. Elevated plasma cholesterol levels are part of the most important risk factors for the development of these diseases. Recent research indicated that Cowpea protein promotes the reduction of cholesterol levels in hamsters and humans, possibly by the action of bioactive peptides from the diet. However, the route by which cholesterol is inhibited by peptides, as well as the processing effects on biological action are still unknown. Objective - To verify the hypocholesterolemic pathway of hydrolyzed cowpea and the effect of thermal processing on this property. Methods - Part of wholemeal flour was subjected to isolation of protein, and the remaining of the grains was subjected to retort and extrusion cooking processes. After autoclaving the grain, protein was also isolated from the flour. Subsequently, the isolated protein from wholemeal and cooked flour was subjected to in vitro hydrolysis. The extrusion process was optimized according to response surface methodology using the expansion ratio of extrudates as the dependent variable. The extruded bean flour was subjected to in vitro enzymatic hydrolysis without the isolation of the protein. The three hydrolysates were subjected to ultrafiltration and and fractions smaller than 3 kDa was used for inhibition assays of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and for inhibition assay of micellar solubilization of cholesterol to evaluate their effect on the liver and enteral cholesterol metabolism respectively. Results - The hydrolysates from the protein isolates showed similar. At higher doses of protein (above 70 mg/mL), the inhibition was stable at around 75 per cent. Regarding the hydrolyzate of bean flour extruded as it increases the amount of protein inhibitory capacity decreases. The hydrolysates were able to inhibit the micellar solubilization of cholesterol between 5 and 39 per cent. The thermal processing was the determining factor to decrease the solubility of cholesterol in vitro. Conclusion The hydrolysates of cowpea are able to inhibit the enzyme HMGR micellar solubilization and reducing cholesterol in vitro, even after being thermally processed beans. The ability of hydrolysates insolubilize cholesterol was improved by cooking in an autoclave and by extrusion
Mao, Jingqin. "Improved resistance to insects in maize (Zea mays L) and cowpea (Vigna unguiculata L)." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27152.
Full textNeto, Manoel C., and Paul G. Bartels. "Dry Matter Partitioning of Cowpea (Vigna Unguiculata (L.) Walp.) Under Water Deficit Conditions." College of Agriculture, University of Arizona (Tucson, AZ), 1992. http://hdl.handle.net/10150/214526.
Full textLegesse, Nigussu. "Genotypic comparisons of imbibition in chickpea (Cicer arietinum L.) and cowpea (Vigna unguiculata (L.) Walp.)." Thesis, University of Aberdeen, 1991. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU546773.
Full textChiulele, Rogerio Marcos. "Morphological and physiological responses of cowpea (Vigna unguiculata (L) Walp.) cultivars to induced water stress and phosphorus nutrition." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/49770.
Full textENGLISH ABSTRACT: Cowpeas are produced under low and irregular rainfall in most of arid and semi-arid areas of sub-Saharan Africa. Growth and yield are therefore reduced due to the occurrence of water stress during the growing season. Knowledge of the responses and adaptive mechanisms of cowpeas to water stress may help to improve the management practices for these areas. Therefore, three glasshouse experiments were conducted at Welgevallen Experimental Farm of the University of Stellenbosch to test the responses of two cowpea cultivars to water stress. In the first experiment, physiological responses were used to identify those physiological parameters, which can be used to distinguish between drought tolerant and susceptible cowpea cultivars. In the second experiment, some of the identified physiological parameters together with some morphological growth responses, yield and grain protein content of the same two cowpea cultivars were used to identify which is the more tolerant cultivar. Tn the third experiment, the hypothesis that increased phosphorus supply may improve the tolerance of cowpea plants to water stress and their ability of recover from the stress was tested. The results showed that water stress affected water relations, morphological growth parameters, yield and grain protein content, but increasing P supply reduced the effect of water stress and promoted more rapid recovery after re-watering. Water relations were affected by water stress because it reduced relative water content, which resulted in reduced water potential and increased leaf diffusive resistance and proline accumulation. Morphological growth responses and yields were affected because water stress reduced the leaf area, which resulted in reduced biomass production and seed yield. Lower leaf area under water stress was the result of the reduced number of leaves and leaf expansion rate, but the number of leaves was the most important parameter. Reduced seed yield was due to reduced number of pods. The responses of the two cultivars tested were different. AB Wit, which performed better under well-watered conditions was more affected by water stress due to its larger leaf area that resulted in excessive water loss by transpiration. ACH14 was more drought tolerant than AB Wit due to a combination of a more rapid stomatal closure and proline accumulation, which induced osmotic adjustment, and which in tum helped to maintain higher water potentials. The increased P supply reduced the effect of the water stress. High-P level plants showed higher root growth, which resulted in more water uptake and larger leaf area during the water stress period, and after re-watering these plants recovered more rapidly. The more rapid recovery from stress was the result of enhanced root growth and leaf expansion rate and most probably due to increased water uptake. High-P level plants also showed more rapid leaf appearance and plant growth at earlier stages compared to the low-P level plants.
AFRIKAANSE OPSOMMING: Akkerbone word onder toestande van lae en wisselvallige reenval in baie ariede en semi-ariede gebiede van Afrika verbou. In hierdie gebiede word groei en produksie dikwels beperk deur water tekorte gedurende die groei seisoen. Kennis van reaksies en aanpassingsmeganismes van akkerbone teenoor water tekorte mag dus help om produksietegnieke in bogenoemde gebiede te verbeter. Om hierdie rede is drie glashuiseksperimente onder gekontroleerde toestande op die Welgevallen Proefplaas van die Universiteit van Stellenbosch uitgevoer. In die eerste eksperiment is fisiologiese reaksies van twee cultivars gebruik om eienskappe te identifiseer wat gebruik kan word om tussen droogteweerstandbiedende en droogte gevoelige cultivars te onderskei. In die tweede eksperiment is sommige van die geidentifiseerde eienskappe asook morfologiese groei, opbrengs en kwaliteitsreaksies van dieselfde twee cultivars gebruik om die meer droogte weerstandbiedende cultivar te identifiseer. In die derde eksperiment is die hipotese dat P-bemesting die droogteweerstandbiedendheid teen en herstelvermoe na droogte kan verbeter, getoets. Die resultate toon dat water tekorte beide plantwaterverhoudings, morfologiese eienskappe asook opbrengs en proteieninhoud beinvloed, maar dat hoe P-peile die invloed van water tekorte verminder en herstelverrnoe na die droogte verbeter. Plant-waterverhoudings is bemvloed omdat water tekorte relatiewe waterinhoud van plante verlaag wat aanleiding gee tot verlaagde plantwaterpotensiale, verhoogde huidmondjie weerstand en 'n toename in prolien inhoud. Morfologiese eienskappe en opbrengs is benadeel weens 'n veri aging in blaaroppervlakte wat fotosintetiese vermoe en gevolglik ook biomassaproduksie en saad opbrengs benadeel. Verlaagde blaaroppervlakte tydens water tekorte was hoofsaaklik die gevolg van 'n vermindering in aantal blare, terwyl verlaagde saadopbrengs grootliks die resultaat van 'n vermindering in aantal peule was. Die cultivar AB Wit wat die hoogste opbrengs onder gunstige groeitoestande gelewer het, is die meeste bemvloed deur water tekorte omdat die welige blaargroei van hierdie cultivar, luukse waterverbruik en groter transpirasie verliese veroorsaak het. Die cultivar ACH 14 daarteenoor het waterverliese beperk deurdat die huidmondjies vinniger gesluit het en verhoogde prolien-inhoude, osmotiese aanpassings veroorsaak het. Dit het gehelp om waterpotensiale instand te hou. Hierdie cultivar was gevolglik meer droogte weerstandbiedend as AB Wit. Hoe vlakke van P-bemesting het die effek van water tekorte verminder weens verbeterde wortelgroei. Dit het wateropname gedurende en na die peri ode van water stremming verbeter sodat plante vinniger herstel het na die droe periode. Plante wat by hoe P-peile gegroei is het ook 'n verhoogde blaarverskyningstempo en 'n toename in groei tydens die vroee ontwikkelingstadiums getoon.
Masangwa, Johnny Isaac Gregorio. "The effect of plant extracts on anthracnose of Phaseolus vulgaris L. and Vigna unguiculata (L.) Walp." Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/31458.
Full textDissertation (MSc)--University of Pretoria, 2012.
Microbiology and Plant Pathology
Unrestricted
Thobatsi, Jacob Thobatsi. "Growth and yield responses of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in an intercropping system." Diss., Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-10122009-184005.
Full textBooks on the topic "Cowpea (vigna unguiculata (l.)"
Magalhães, Iracema Costa. Cowpeas (Vigna unguiculata (L.) Walp): Abstracts of Brazilian literature, 1903-1987. Ibadan, Nigéria: International Grain Legume Imformation [sic] Centre, 1988.
Find full textSaroj, Sardana, and National Bureau of Plant Genetic Resources (India), eds. Catalogue on cowpea (Vigna unguiculata (L.) walp.) germplasm. New Delhi: National Bureau of Plant Genetic Resources, 2000.
Find full textBashir, Muhammad. Serological and biological characterization of seed-borne isolates of blackeye cowpea mosaic and cowpea aphid-borne mosaic potyviruses in Vigna unguiculata (L.) Walp. 1992.
Find full textRyerson, Douglas Edward. A study of resistance to Uromyces vignae, race 1 (Barcl.) in cultivars of Vigna unguiculata (L.) Walp. 1998.
Find full textBook chapters on the topic "Cowpea (vigna unguiculata (l.)"
Behura, Ratikanta, Sanjeev Kumar, Bedabrata Saha, Manasa Kumar Panda, Mohitosh Dey, Ayan Sadhukhan, Sagarika Mishra, et al. "Cowpea [Vigna unguiculata (L.) Walp.]." In Methods in Molecular Biology, 255–64. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1695-5_20.
Full textNwokolo, E., and S. N. Ilechukwu. "Cowpea (Vigna unguiculata (L.) Walp.)." In Food and Feed from Legumes and Oilseeds, 229–42. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0433-3_26.
Full textBoukar, Ousmane, Abou Togola, Siva Chamarthi, Nouhoun Belko, Haruki Ishikawa, Kanako Suzuki, and Christian Fatokun. "Cowpea [Vigna unguiculata (L.) Walp.] Breeding." In Advances in Plant Breeding Strategies: Legumes, 201–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23400-3_6.
Full textHorst, W. J., C. Currle, and A. H. Wissemeier. "Differences in calcium efficiency between cowpea (Vigna unguiculata (L.) Walp.) cultivars." In Genetic Aspects of Plant Mineral Nutrition, 59–68. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1650-3_8.
Full textRajapakse, S., and J. C. Miller. "Intraspecific variability for VA mycorrhizal symbiosis in cowpea (Vigna unguiculata [L.] Walp.)." In Genetic Aspects of Plant Mineral Nutrition, 523–36. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3581-5_50.
Full textBrou, Y. C., M. Eyletters, and R. Lannoye. "Superoxide Dismutases Regulation in Cowpea (Vigna Unguiculata (L.) Walp.) Under Water Deficit Conditions." In Photosynthesis: Mechanisms and Effects, 1999–2002. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_467.
Full textThu, Pham Thi Anh, Sahsah Yamina, Roy-Macauley Harold, d’Arcy-Lameta Agnès, and Zuily-Fodil Yasmine. "Properties of a Purified Soluble MGDG-ACYL-Hydrolase from Cowpea (Vigna unguiculata L.) Leaves." In Plant Lipid Metabolism, 304–6. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8394-7_85.
Full textReddy, B. Rajasekhar, K. Nagendran, B. Singh, P. M. Singh, J. Singh, and Maneesh Pandey. "Accelerated Breeding of Cowpea [Vigna unguiculata (L.) Walp.] for Improved Yield and Pest Resistance." In Accelerated Plant Breeding, Volume 2, 397–415. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47298-6_15.
Full textGnanam, A., B. Muthukumar, Mariamma Mammen, and K. Veluthambi. "Genetic Transformation of Cowpea (Vigna Unguiculata L. Walp) by a. Tumefaciens Using Cotyledons as Explants." In Photosynthesis: from Light to Biosphere, 2647–50. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_624.
Full textPaula, Campos, and Pham Thi Anh Thu. "Effects of Drought Stress on Enzymatic Breakdown of Galactolipids in Cowpea (Vigna unguiculata L.) Leaves." In Plant Lipid Metabolism, 426–28. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8394-7_114.
Full textConference papers on the topic "Cowpea (vigna unguiculata (l.)"
Putri, Pratanti Haksiwi, and Novita Nugrahaeni. "Cowpea [Vigna unguiculata (L.) Walp.] Yield Variance and Supported Character." In 3rd KOBI Congress, International and National Conferences (KOBICINC 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210621.012.
Full text"Structural organization of TFL1-like genes of cowpea (Vigna unguiculata (L.) Walp.)." In SYSTEMS BIOLOGY AND BIOINFORMATICS (SBB-2020). Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences., 2020. http://dx.doi.org/10.18699/sbb-2020-18.
Full text"Genetic mechanisms associated with determinate growth habit in cowpea (Vigna unguiculata (L.) Walp.)." In SYSTEMS BIOLOGY AND BIOINFORMATICS. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/sbb-2019-19.
Full textLo, Sassoum. "Genetic and anatomical analysis of pod shattering in domesticated cowpea (Vigna unguiculata [L.] Walp)." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1332318.
Full textMatei, Gheorghe. "COWPEA (VIGNA UNGUICULATA L. WALP) A VALUABLE CROP FOR DROUGHT AREAS WITH SANDY SOILS." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2015. http://dx.doi.org/10.5593/sgem2015/b61/s25.052.
Full text"Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna Unguiculata L. [Walp.]) under Water Stress." In Nov. 19-20 2018 Cape Town (South Africa). Eminent Association of Pioneers, 2018. http://dx.doi.org/10.17758/eares4.eap1118103.
Full text"Genetic Variability Studies of Some Quantitative Traits in Cowpea (vigna unguiculata l. [walp.]) Under Water Stress." In Multi-Disciplinary Manila (Philippines) Conferences Jan. 23-24, 2017, Manila (Philippines). Universal Researchers (UAE), 2017. http://dx.doi.org/10.17758/uruae.ae0117603.
Full textHerniter, Ira. "Genetic, textual, and archaeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp)." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1052040.
Full text"Genetic variability studies of some quantitative traits in cowpea (vigna unguiculata l. [walp.] ) under water stress." In Budapest 2017 International Conferences. EAP, 2017. http://dx.doi.org/10.17758/eap.c0917032.
Full textOlajide, Amos Afolarin. "Estimates of genetic correlations of some important quantitative traits in cowpea,Vigna unguiculata(L.) Walp., under drought stress." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.104894.
Full text