Journal articles on the topic 'Creep prediction models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Creep prediction models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Toland,, J., and T. Goswami,. "General Creep-Fatigue Life Prediction Models." Journal of the Mechanical Behavior of Materials 15, no. 1-2 (2004): 93–106. http://dx.doi.org/10.1515/jmbm.2004.15.1-2.93.
Full textLv, Yi Gang, Jian Ren Zhang, and Kang Xu. "Prediction Models of Shrinkage and Creep for Concrete Columns." Advanced Materials Research 243-249 (May 2011): 1583–88. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.1583.
Full textRamachandran, V., K. C. Wu, and K. N. Chiang. "Overview Study of Solder Joint Reliablity due to Creep Deformation." Journal of Mechanics 34, no. 5 (2018): 637–43. http://dx.doi.org/10.1017/jmech.2018.20.
Full textWypych, Agnieszka, Krzysztof Klempka, and Marek Jędrzejczak. "Creep of Concrete According to Creep Prediction Models and Own Research." MATEC Web of Conferences 196 (2018): 02024. http://dx.doi.org/10.1051/matecconf/201819602024.
Full textSTRAUSS, Alfred, Roman WAN-WENDNER, Anja VIDOVIC, et al. "Gamma prediction models for long-term creep deformations of prestressed concrete bridges." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 23, no. 6 (2017): 681–98. http://dx.doi.org/10.3846/13923730.2017.1335652.
Full textHe, Junjing, and Rolf Sandström. "Application of Fundamental Models for Creep Rupture Prediction of Sanicro 25 (23Cr25NiWCoCu)." Crystals 9, no. 12 (2019): 638. http://dx.doi.org/10.3390/cryst9120638.
Full textHe, Xiao Cong. "Life Prediction of Stainless Steels under Creep-Fatigue." Key Engineering Materials 413-414 (June 2009): 725–32. http://dx.doi.org/10.4028/www.scientific.net/kem.413-414.725.
Full textAsaad, Micheal, and George Morcous. "Evaluating Prediction Models of Creep and Drying Shrinkage of Self-Consolidating Concrete Containing Supplementary Cementitious Materials/Fillers." Applied Sciences 11, no. 16 (2021): 7345. http://dx.doi.org/10.3390/app11167345.
Full textGoswami, Tarun. "Development of generic creep–fatigue life prediction models." Materials & Design 25, no. 4 (2004): 277–88. http://dx.doi.org/10.1016/j.matdes.2003.11.001.
Full textZeng, Qing Xiang, and Da Jian Han. "Selection of Concrete Creep Analytical Models for Modern Prestressed Bridges." Applied Mechanics and Materials 90-93 (September 2011): 1023–26. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.1023.
Full textMei, Shengqi, Yuanfeng Wang, Ruofei Zou, Yunpeng Long, and Jiechao Zhang. "Creep of concrete-filled steel tube considering creep-recovery of the concrete core." Advances in Structural Engineering 23, no. 5 (2019): 997–1009. http://dx.doi.org/10.1177/1369433219886083.
Full textLiu, Ding, Hai Pu, Yang Ju, et al. "A new non-linear viscoelastic-plastic seepage-creep constitutive model considering the influence of confining pressure." Thermal Science 23, Suppl. 3 (2019): 821–28. http://dx.doi.org/10.2298/tsci180621116l.
Full textLei, Guo, and Yang Zi Sheng. "Study on the Model of Creep and the Calculation of Stress Field for Concrete." Open Civil Engineering Journal 9, no. 1 (2015): 990–96. http://dx.doi.org/10.2174/1874149501509010990.
Full textHalama, Radim, Jana Bartecká, and Petr Gál. "FE Prediction and Extrapolation of Multiaxial Ratcheting for R7T Steel." Key Engineering Materials 810 (July 2019): 76–81. http://dx.doi.org/10.4028/www.scientific.net/kem.810.76.
Full textXiong, Xue Yu, Li Jun Wang, Rong Jun Xue, and Sen Zhang. "Creep Behavior of High-Performance Concrete." Advanced Materials Research 919-921 (April 2014): 1885–89. http://dx.doi.org/10.4028/www.scientific.net/amr.919-921.1885.
Full textHe, Xiao Cong. "Sensitivity Study on Parameters for Fatigue-Creep Modeling of Stainless Steel Materials." Advanced Materials Research 628 (December 2012): 217–20. http://dx.doi.org/10.4028/www.scientific.net/amr.628.217.
Full textChen, Baochun, Zhichao Lai, Xiuying Lai, Amit H. Varma, and Xinmeng Yu. "Creep-Prediction Models for Concrete-Filled Steel Tube Arch Bridges." Journal of Bridge Engineering 22, no. 7 (2017): 04017027. http://dx.doi.org/10.1061/(asce)be.1943-5592.0001051.
Full textWu, Dongquan, Hongyang Jing, Lianyong Xu, Lei Zhao, and Yongdian Han. "Prediction models of creep crack initiation for different specimen geometry." Mechanics of Advanced Materials and Structures 27, no. 19 (2018): 1639–52. http://dx.doi.org/10.1080/15376494.2018.1523510.
Full textHagin, Paul N., and Mark D. Zoback. "Viscous deformation of unconsolidated reservoir sands—Part 2: Linear viscoelastic models." GEOPHYSICS 69, no. 3 (2004): 742–51. http://dx.doi.org/10.1190/1.1759460.
Full textMsolli, S., Olivier Dalverny, Joël Alexis, and Moussa Karama. "Experimental and Mechanical Characterizations of a Lead Free Solder Alloy for Electronic Devices." Advanced Materials Research 423 (December 2011): 210–17. http://dx.doi.org/10.4028/www.scientific.net/amr.423.210.
Full textHu, Shi Xiang, Qiao Huang, and Shi Feng Lin. "A Revised the B3 Creep Prediction Model Based on Short-Time Tests." Advanced Materials Research 919-921 (April 2014): 529–32. http://dx.doi.org/10.4028/www.scientific.net/amr.919-921.529.
Full textKytölä, Ulla, and Anssi Laaksonen. "Prediction of Restraint Moments in Precast, Prestressed Structures Made Continuous." Nordic Concrete Research 59, no. 1 (2018): 73–93. http://dx.doi.org/10.2478/ncr-2018-0016.
Full textGuo, Fei, Hong Gen Qin, Peng Fei Cao, Guan Guo Liu, and Yun Sheng Zhang. "Analysis on Creep Property and Model of Bridge Girder Concrete with Various Mix Proportions." Applied Mechanics and Materials 368-370 (August 2013): 1487–94. http://dx.doi.org/10.4028/www.scientific.net/amm.368-370.1487.
Full textYang, Chunhao, Wuning Ma, Jianlin Zhong, and Zhendong Zhang. "Comparative Study of Machine Learning Approaches for Predicting Creep Behavior of Polyurethane Elastomer." Polymers 13, no. 11 (2021): 1768. http://dx.doi.org/10.3390/polym13111768.
Full textTakatera, Masayuki, Ken Ishizawa, and KyoungOk Kim. "Prediction of creep behavior of laminated woven fabric with adhesive interlining under low stress in the bias direction." Textile Research Journal 87, no. 3 (2016): 285–95. http://dx.doi.org/10.1177/0040517516629144.
Full textNicolas, L., P. Mongabure, L. Le Ber, J. Devos, S. Bhandari, and C. Messelier-Gouze. "Comparison of the Predictions Relying on Coupled/Uncoupled Damage-Viscoplasticity Models for Creep Test Analyses." Journal of Pressure Vessel Technology 123, no. 3 (2001): 298–304. http://dx.doi.org/10.1115/1.1372326.
Full textTaha, M. M. Reda, A. Noureldin, N. El-Sheimy, and N. G. Shrive. "Artificial neural networks for predicting creep with an example application to structural masonry." Canadian Journal of Civil Engineering 30, no. 3 (2003): 523–32. http://dx.doi.org/10.1139/l03-003.
Full textZgheib, E., and W. Raphael. "Study of the Admixtures Effect on Concrete Creep Using Bayesian Linear Regression." Archives of Civil Engineering 65, no. 3 (2019): 127–40. http://dx.doi.org/10.2478/ace-2019-0039.
Full textKan, Kevin, Ondrej Muránsky, Philip J. Bendeich, Richard N. Wright, Jamie J. Kruzic, and Warwick Payten. "Assessment of creep damage models in the prediction of high-temperature creep behaviour of Alloy 617." International Journal of Pressure Vessels and Piping 177 (November 2019): 103974. http://dx.doi.org/10.1016/j.ijpvp.2019.103974.
Full textWu, Dongquan, Hongyang Jing, Lianyong Xu, Lei Zhao, and Yongdian Han. "Enhanced models of creep crack initiation prediction coupled the stress-regime creep properties and constraint effect." European Journal of Mechanics - A/Solids 74 (March 2019): 145–59. http://dx.doi.org/10.1016/j.euromechsol.2018.11.010.
Full textGoel, Rajeev, Ram Kumar, and D. K. Paul. "Comparative Study of Various Creep and Shrinkage Prediction Models for Concrete." Journal of Materials in Civil Engineering 19, no. 3 (2007): 249–60. http://dx.doi.org/10.1061/(asce)0899-1561(2007)19:3(249).
Full textUsibe, Brian E. "Prediction of Creep Deformation in Concrete Using Some Design Code Models." IOSR Journal of Mechanical and Civil Engineering 4, no. 3 (2012): 49–53. http://dx.doi.org/10.9790/1684-0434953.
Full textYang, Mingfang, Song Jin, and Jinxin Gong. "Concrete Creep Analysis Method Based on a Long-Term Test of Prestressed Concrete Beam." Advances in Civil Engineering 2020 (February 24, 2020): 1–13. http://dx.doi.org/10.1155/2020/3825403.
Full textLeen, Sean B., Aditya A. Deshpande, and Thomas H. Hyde. "Finite Element Modelling and Experimental Testing of Thermomechanical Behaviour and Failure of Titanium Superplastic Forming Dies." Key Engineering Materials 433 (March 2010): 247–56. http://dx.doi.org/10.4028/www.scientific.net/kem.433.247.
Full textGuo, Jin Quan, Wei Zhang, and Xiao Hong Sun. "Stress Relaxation Continuum Damage Constitutive Equations for Relaxation Performance Prediction." Advanced Materials Research 455-456 (January 2012): 1434–37. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.1434.
Full textGriffin, D. S., A. K. Dhalla, and W. S. Woodward. "Validation of Inelastic Analysis by Full-Scale Component Testing." Journal of Pressure Vessel Technology 109, no. 1 (1987): 42–49. http://dx.doi.org/10.1115/1.3264854.
Full textBaraldi, Daniele, Stefan Holmström, Karl-Fredrik Nilsson, Matthias Bruchhausen, and Igor Simonovski. "316L(N) Creep Modeling with Phenomenological Approach and Artificial Intelligence Based Methods." Metals 11, no. 5 (2021): 698. http://dx.doi.org/10.3390/met11050698.
Full textSalifu, Smith, Dawood Desai, and Schalk Kok. "Prediction and Comparison of Creep Behavior of X20 Steam Plant Piping Network with Different Phenomenological Creep Models." Journal of Materials Engineering and Performance 29, no. 11 (2020): 7382–95. http://dx.doi.org/10.1007/s11665-020-05235-5.
Full textWang, De Xian, Dong Mei Ji, and Jian Xing Ren. "Research on Creep-Fatigue Life Prediction for P92 Steel under Stress-Controlled State." Advanced Materials Research 860-863 (December 2013): 972–77. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.972.
Full textZhang, Heng Liang, Dan Mei Xie, Chu Nie, and Yang Heng Xiong. "Online Fatigue and Creep Monitoring System for 2-D Axis-Symmetry Components in Power Plants." Applied Mechanics and Materials 130-134 (October 2011): 3866–69. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.3866.
Full textPramanick, A., and M. Sain. "Nonlinear Viscoelastic Creep Characterization of HDPE-Rice Husk Composites." Polymers and Polymer Composites 13, no. 6 (2005): 581–98. http://dx.doi.org/10.1177/096739110501300604.
Full textAdeleye, Olurotimi, Augustine Eloka, and Gbeminiyi Sobamowo. "Prediction of Creep Strain Relaxations in Biomaterials Using Differential Transformation Method." Journal of Biomimetics, Biomaterials and Biomedical Engineering 38 (August 2018): 11–22. http://dx.doi.org/10.4028/www.scientific.net/jbbbe.38.11.
Full textJi, Dong Mei. "Research on Application of Supported Vector Machine to Creep-Fatigue Lifetime Prediction of P91 Steel." Advanced Materials Research 616-618 (December 2012): 1787–96. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.1787.
Full textCHEN, Xuedong. "Comparison among three fatigue-creep interaction life prediction models and their applications." Chinese Journal of Mechanical Engineering 43, no. 01 (2007): 62. http://dx.doi.org/10.3901/jme.2007.01.062.
Full textSemenov, Artem S., and Sviatoslav Lobanov. "Comparison of Rate-Dependent Ferroelectroelastic Phenomenological Models for Prediction of PZT Creep." Applied Mechanics and Materials 725-726 (January 2015): 961–66. http://dx.doi.org/10.4028/www.scientific.net/amm.725-726.961.
Full textHowells, R. W., R. J. Lark, and B. I. G. Barr. "A sensitivity study of parameters used in shrinkage and creep prediction models." Magazine of Concrete Research 57, no. 10 (2005): 589–602. http://dx.doi.org/10.1680/macr.2005.57.10.589.
Full textZhang, Guobin, Huang Yuan, and Fuqing Li. "Analysis of creep–fatigue life prediction models for nickel-based super alloys." Computational Materials Science 57 (May 2012): 80–88. http://dx.doi.org/10.1016/j.commatsci.2011.07.034.
Full textShlyannikov, V. N. "Creep–fatigue crack growth rate prediction based on fracture damage zone models." Engineering Fracture Mechanics 214 (June 2019): 449–63. http://dx.doi.org/10.1016/j.engfracmech.2019.04.017.
Full textRouse, J. P., W. Sun, T. H. Hyde, and A. Morris. "Comparative assessment of several creep damage models for use in life prediction." International Journal of Pressure Vessels and Piping 108-109 (August 2013): 81–87. http://dx.doi.org/10.1016/j.ijpvp.2013.04.012.
Full textDong, Yi, Jianmin Liu, Yanbin Liu, Huaying Li, Xiaoming Zhang, and Xuesong Hu. "Creep–Fatigue Experiment and Life Prediction Study of Piston 2A80 Aluminum Alloy." Materials 14, no. 6 (2021): 1403. http://dx.doi.org/10.3390/ma14061403.
Full text