Academic literature on the topic 'CRISPR'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CRISPR.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CRISPR"

1

Huescas, C. G. Y., R. I. Pereira, J. Prichula, P. A. Azevedo, J. Frazzon, and A. P. G. Frazzon. "Frequency of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in non-clinical Enterococcus faecalis and Enterococcus faecium strains." Brazilian Journal of Biology 79, no. 3 (2019): 460–65. http://dx.doi.org/10.1590/1519-6984.183375.

Full text
Abstract:
Abstract The fidelity of the genomes is defended by mechanism known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems. Three Type II CRISPR systems (CRISPR1- cas, CRISPR2 and CRISPR3-cas) have been identified in enterococci isolates from clinical and environmental samples. The aim of this study was to observe the distribution of CRISPR1-cas, CRISPR2 and CRISPR3-cas in non-clinical strains of Enterococcus faecalis and Enterococcus faecium isolates from food and fecal samples, including wild marine animals. The presence of CRISPRs was evaluated by PCR in 120 enterococ
APA, Harvard, Vancouver, ISO, and other styles
2

Horvath, Philippe, Dennis A. Romero, Anne-Claire Coûté-Monvoisin, et al. "Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus." Journal of Bacteriology 190, no. 4 (2007): 1401–12. http://dx.doi.org/10.1128/jb.01415-07.

Full text
Abstract:
ABSTRACT Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in prokaryotes that provide acquired immunity against foreign genetic elements. Here, we characterize a novel Streptococcus thermophilus locus, CRISPR3, and experimentally demonstrate its ability to integrate novel spacers in response to bacteriophage. Also, we analyze CRISPR diversity and activity across three distinct CRISPR loci in several S. thermophilus strains. We show that both CRISPR repeats and cas genes are locus specific and functionally coupled. A total of 124 strai
APA, Harvard, Vancouver, ISO, and other styles
3

Isachenko, Nadya, Gayane Aleksanyan, Paul Diehl, and Donato Tedesco. "Abstract 2950: CRISPR/saCas9 and CRISPR/spCas9 systems for combinatorial genetic screens (CRISPR-KO, CRISPRa, CRISPRi)." Cancer Research 84, no. 6_Supplement (2024): 2950. http://dx.doi.org/10.1158/1538-7445.am2024-2950.

Full text
Abstract:
Abstract This study explores the utilization of orthogonal CRISPR-based gene editing/modulation systems for combinatorial genetic screens using CRISPR knockout (CRISPR-KO), CRISPR activation (CRISPRa), and CRISPR interference (CRISPRi) functionalities. S. aureus (sa)Cas9 is an alternative nuclease to S. pyogenes (sp)Cas9 in scenarios where the latter cannot be used, or when multiple independent CRISPR systems need to be simultaneously expressed in the same cell. In this study we set out to explore the feasibility of utilizing different combinations of saCas9 and spCas9 CRISPR systems to achiev
APA, Harvard, Vancouver, ISO, and other styles
4

Toro, Magaly, Guojie Cao, Wenting Ju, et al. "Association of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Elements with Specific Serotypes and Virulence Potential of Shiga Toxin-Producing Escherichia coli." Applied and Environmental Microbiology 80, no. 4 (2013): 1411–20. http://dx.doi.org/10.1128/aem.03018-13.

Full text
Abstract:
ABSTRACTShiga toxin-producingEscherichia coli(STEC) strains (n= 194) representing 43 serotypes andE. coliK-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n= 81) was further analyzed for subtype I-Ecasand virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a
APA, Harvard, Vancouver, ISO, and other styles
5

Chapman, Brittany, Jeong Hoon Han, Hong Jo Lee, Isabella Ruud, and Tae Hyun Kim. "Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit." Genes 14, no. 4 (2023): 906. http://dx.doi.org/10.3390/genes14040906.

Full text
Abstract:
Engineering of clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) system has enabled versatile applications of CRISPR beyond targeted DNA cleavage. Combination of nuclease-deactivated Cas9 (dCas9) and transcriptional effector domains allows activation (CRISPRa) or repression (CRISPRi) of target loci. To demonstrate the effectiveness of the CRISPR-mediated transcriptional regulation in chickens, three CRISPRa (VP64, VPR, and p300) and three CRISPRi (dCas9, dCas9-KRAB, and dCas9-KRAB-MeCP2) systems were tested in chicken DF-1 cells. By i
APA, Harvard, Vancouver, ISO, and other styles
6

La Russa, Marie F., and Lei S. Qi. "The New State of the Art: Cas9 for Gene Activation and Repression." Molecular and Cellular Biology 35, no. 22 (2015): 3800–3809. http://dx.doi.org/10.1128/mcb.00512-15.

Full text
Abstract:
CRISPR-Cas9 technology has rapidly changed the landscape for how biologists and bioengineers study and manipulate the genome. Derived from the bacterial adaptive immune system, CRISPR-Cas9 has been coopted and repurposed for a variety of new functions, including the activation or repression of gene expression (termed CRISPRa or CRISPRi, respectively). This represents an exciting alternative to previously used repression or activation technologies such as RNA interference (RNAi) or the use of gene overexpression vectors. We have only just begun exploring the possibilities that CRISPR technology
APA, Harvard, Vancouver, ISO, and other styles
7

Serbanescu, M. A., M. Cordova, K. Krastel, et al. "Role of the Streptococcus mutans CRISPR-Cas Systems in Immunity and Cell Physiology." Journal of Bacteriology 197, no. 4 (2014): 749–61. http://dx.doi.org/10.1128/jb.02333-14.

Full text
Abstract:
CRISPR-Cas systems provide adaptive microbial immunity against invading viruses and plasmids. The cariogenic bacteriumStreptococcus mutansUA159 has two CRISPR-Cas systems: CRISPR1 (type II-A) and CRISPR2 (type I-C) with several spacers from both CRISPR cassettes matching sequences of phage M102 or genomic sequences of otherS. mutans. The deletion of thecasgenes of CRISPR1 (ΔC1S), CRISPR2 (ΔC2E), or both CRISPR1+2 (ΔC1SC2E) or the removal of spacers 2 and 3 (ΔCR1SP13E) inS. mutansUA159 did not affect phage sensitivity when challenged with virulent phage M102. Using plasmid transformation experi
APA, Harvard, Vancouver, ISO, and other styles
8

Achigar, Rodrigo, Martina Scarrone, Geneviève M. Rousseau, et al. "Ectopic Spacer Acquisition in Streptococcus thermophilus CRISPR3 Array." Microorganisms 9, no. 3 (2021): 512. http://dx.doi.org/10.3390/microorganisms9030512.

Full text
Abstract:
Streptococcus thermophilus relies heavily on two type II-A CRISPR-Cas systems, CRISPR1 and CRISPR3, to resist siphophage infections. One hallmark of these systems is the integration of a new spacer at the 5′ end of the CRISPR arrays following phage infection. However, we have previously shown that ectopic acquisition of spacers can occur within the CRISPR1 array. Here, we present evidence of the acquisition of new spacers within the array of CRISPR3 of S. thermophilus. The analysis of randomly selected bacteriophage-insensitive mutants of the strain Uy01 obtained after phage infection, as well
APA, Harvard, Vancouver, ISO, and other styles
9

van der Ploeg, Jan R. "Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages." Microbiology 155, no. 6 (2009): 1966–76. http://dx.doi.org/10.1099/mic.0.027508-0.

Full text
Abstract:
Clustered regularly interspaced short palindromic repeats (CRISPR) consist of highly conserved direct repeats interspersed with variable spacer sequences. They can protect bacteria against invasion by foreign DNA elements. The genome sequence of Streptococcus mutans strain UA159 contains two CRISPR loci, designated CRISPR1 and CRISPR2. The aims of this study were to analyse the organization of CRISPR in further S. mutans strains and to investigate the importance of CRISPR in acquired immunity to M102-like phages. The sequences of CRISPR1 and CRISPR2 arrays were determined for 29 S. mutans stra
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Caiting, Yu Lei, Tinglin Ren, and Mingze Yao. "The Current Situation and Development Prospect of Whole-Genome Screening." International Journal of Molecular Sciences 25, no. 1 (2024): 658. http://dx.doi.org/10.3390/ijms25010658.

Full text
Abstract:
High-throughput genetic screening is useful for discovering critical genes or gene sequences that trigger specific cell functions and/or phenotypes. Loss-of-function genetic screening is mainly achieved through RNA interference (RNAi), CRISPR knock-out (CRISPRko), and CRISPR interference (CRISPRi) technologies. Gain-of-function genetic screening mainly depends on the overexpression of a cDNA library and CRISPR activation (CRISPRa). Base editing can perform both gain- and loss-of-function genetic screening. This review discusses genetic screening techniques based on Cas9 nuclease, including Cas
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "CRISPR"

1

Stens, Cassandra, Isabella Enoksson, and Sara Berggren. "The CRISPR-Cas system." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171997.

Full text
Abstract:
Derived from and inspired by the adaptive immune system of bacteria, CRISPR has gone from basic biology knowledge to a revolutionizing biotechnological tool, applicable in many research areas such as medicine, industry and agriculture. The full mechanism of CRISPR-Cas9 was first published in 2012 and various CRISPR-Cas systems have already passed the first stages of clinical trials as new gene therapies. The immense research has resulted in continuously growing knowledge of CRISPR systems and the technique seems to have the potential to greatly impact all life on our planet. Therefore, this li
APA, Harvard, Vancouver, ISO, and other styles
2

TAVELLA, SARA. "WEAPONIZING CRISPR/CAS9." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/908993.

Full text
Abstract:
One of the major limits of current therapies against cancer and viral infections is the nonspecific toxicity that they often cause on healthy tissues because of their impact on important cellular mechanisms shared, to different extents, between diseased and healthy cells. For this reason, there is an unmet need for more specific and more effective therapies. Wherefore, the aim of my project is the development of a novel strategy, with potential for therapy, that allows the induction of sequence-specific DNA lesions (DNA double-strand break, DSB), by the use of the CRISPR/Cas9 system targ
APA, Harvard, Vancouver, ISO, and other styles
3

Demozzi, Michele. "Identification of novel active Cas9 orthologs from metagenomic data." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/337709.

Full text
Abstract:
CRISPR-Cas is the state-of-the-art biological tool that allows precise and fast manipulation of the genetic information of cellular genomes. The translation of the CRISPR-Cas technology from in vitro studies into clinical applications highlighted a variety of limitations: the currently available systems are limited by their off-target activity, the availability of a Cas-specific PAM sequence next to the target and the size of the Cas protein. In particular, despite high levels of activity, the size of the CRISPR-SpCas9 editing machinery is not compatible with an all-in-one AAV delivery system
APA, Harvard, Vancouver, ISO, and other styles
4

Stachler, Aris-Edda [Verfasser]. "Das CRISPR-Cas-System von Haloferax volcanii: CRISPRi und Autoimmunität / Aris-Edda Stachler." Ulm : Universität Ulm, 2017. http://d-nb.info/1140118145/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vyhovskyi, Danylo. "In vivo studies of CRISPR adaptation mechanism and specificity." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS729.

Full text
Abstract:
Cette thèse examine les mécanismes de l'immunité adaptative CRISPR-Cas chez les procaryotes, en utilisant principalement le système de type I-E chez Escherichia coli, en se concentrant sur le processus d'acquisition de spacers et la spécificité du système. Elle éclaire la dynamique de génération de spacers et leur intégration dans les CRISPR-arrays, en comparant les modes d'adaptation naïve et primed. L'étude révèle qu'une séquence proximale à un PAM (protospacer adjacent motif) particulier entrave l'acquisition de spacers en mode primed, fournissant un identifiant distinct pour les spacers ac
APA, Harvard, Vancouver, ISO, and other styles
6

Cullot, Grégoire. "Génotoxicité des systèmes CRISPR-Cas9." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0344.

Full text
Abstract:
La thérapie génique est une stratégie thérapeutique prometteuse pour le traitement des maladies monogéniques. Si les premières approches, dites additives, ont reposées sur l’utilisation de vecteurs viraux, une part grandissante se tourne désormais vers l’édition génique. Celle-ci est permise par la mise au point de nouvelles générations d’endonucléases, et en particulier le système CRISPR-Cas9. Moins d’une décennie après sa caractérisation, le système CRISPR-Cas9 a permis de faire passer l’édition génique à un stade clinique. Toutefois, dans le même laps de temps, plusieurs interrogations ont
APA, Harvard, Vancouver, ISO, and other styles
7

Chew, Wei Leong. "Postnatal Genome Editing With CRISPR." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493352.

Full text
Abstract:
Targeted genome editing holds tremendous promise for permanent correction of many genetic diseases. The recently developed CRISPR/Cas9 genome-editing tool exhibits facile programmability and robust gene-editing efficiency, and has been applied in cell cultures and animal tissues. However, multi-organ gene-editing in live mammals has not been examined or achieved. This study demonstrates genetic modification in multiple organs of postnatal mice by systemic delivery of CRISPR with adeno-associated viruses (AAVs). I resolved the AAV payload limitation by splitting Cas9 and reconstituting the nati
APA, Harvard, Vancouver, ISO, and other styles
8

Medvedeva, Sofia. "Natural Diversity of CRISPR Spacers." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS538.

Full text
Abstract:
Le système CRISPR-Cas est un système immunitaire procaryote de type interférence ARN dirigé contre des éléments génétiques mobiles, tels que les virus et les plasmides. Le système consiste en un ou plusieurs loci CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats ; courtes répétitions palindromiques groupées et régulièrement espacées) associés à des protéines Cas (CRISPR-associated proteins) dont ils sont séparés par une séquence dite leader. Toutes les protéines Cas peuvent être fonctionnellement attribuées à des modules d'adaptation, d'expression et d'interférence. L’analyse d
APA, Harvard, Vancouver, ISO, and other styles
9

Vicencio, Jeremy 1990. "Optimizing CRISPR-Cas technologies in Caenorhabditis elegans : Nested CRISPR and expanded targeting with Cas variants." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/672604.

Full text
Abstract:
In this thesis, I present an alternative, cloning-free method for the generation of endogenous fluorescent reporters in the nematode Caenorhabditis elegans. I demonstrate that Nested CRISPR is an efficient method that can be customized for the insertion of a suite of fluorescent tags and epitopes at endogenous loci using a combination of single-stranded and double-stranded DNA repair templates. In this thesis, I also demonstrate the use of enzymes other than Cas9 to target non-NGG PAM sites. The results show that AsCas12a can perform efficient genome editing in TTTV PAMs. Furthermore, the stru
APA, Harvard, Vancouver, ISO, and other styles
10

ageely, Eman. "Chemical Tools for Potential Therapeutic Applications of CRISPR Systems." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1831.

Full text
Abstract:
Clustered regularly interspaced short palindromic repeats (CRISPR) are derived from a bacterial and archaeal adaptive immune system. The core enzymes of CRISPR are RNA-guided endonucleases that sequence-specifically cleave foreign double-stranded DNA. Improving and controling the properties of the CRISPR system is a crucial step in advancing the therapeutic potential of CRISPR technology. Several classes of these enzymes exist and are being adapted for biotechnology, such as genome engineering. Cas12a (Cpf1) is a Type V CRISPR-associated (Cas) enzyme that naturally uses only one guide RNA, in
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "CRISPR"

1

Zhang, Ziheng, Ping Wang, and Ji-Long Liu, eds. CRISPR. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8504-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lundgren, Magnus, Emmanuelle Charpentier, and Peter C. Fineran, eds. CRISPR. Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2687-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmad, Aftab, Sultan Habibullah Khan, and Zulqurnain Khan, eds. CRISPR Crops. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7142-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmad, Aftab, Sultan Habibullah Khan, and Zulqurnain Khan, eds. CRISPR Crops. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7142-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Islam, M. Tofazzal, and Kutubuddin Ali Molla, eds. CRISPR-Cas Methods. Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1657-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barrangou, Rodolphe, and John van der Oost, eds. CRISPR-Cas Systems. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-662-45794-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Islam, M. Tofazzal, Pankaj K. Bhowmik, and Kutubuddin A. Molla, eds. CRISPR-Cas Methods. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0616-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Luo, Yonglun, ed. CRISPR Gene Editing. Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9170-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barrangou, Rodolphe, and John van der Oost, eds. CRISPR-Cas Systems. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34657-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Islam, M. Tofazzal, Kutubuddin Molla, Pankaj Bhowmik, and Kabin Xie, eds. CRISPR-Cas Methods. Springer US, 2025. https://doi.org/10.1007/978-1-0716-4358-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "CRISPR"

1

Montoliu, Lluis. "CRISPR." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_5558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mudziwapasi, Reagan, Ringisai Chekera, Clophas Zibusiso Ncube, et al. "CRISPR." In Genome Editing Tools and Gene Drives. CRC Press, 2021. http://dx.doi.org/10.1201/9781003165316-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Montoliu, Lluis. "CRISPR." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_5558-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morelli, Eugenio, Annamaria Gulla’, Nicola Amodio, et al. "CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic lncRNA Network." In Long Non-Coding RNAs in Cancer. Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1581-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Ziheng, Ping Wang, and Ji-Long Liu. "Application of CRISPR-Based Technology in Medical Research and Disease Treatment." In CRISPR. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8504-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Ziheng, Ping Wang, and Ji-Long Liu. "Extension and Improvement of CRISPR-Based Technology." In CRISPR. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8504-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Ziheng, Ping Wang, and Ji-Long Liu. "Gene Editing Through CRISPR-Based Technology." In CRISPR. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8504-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Ziheng, Ping Wang, and Ji-Long Liu. "Application of CRISPR-Based Technology in Plant Gene Editing and Agricultural Engineering." In CRISPR. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8504-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Ziheng, Ping Wang, and Ji-Long Liu. "Development and Vision of CRISPR-Based Technology." In CRISPR. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8504-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Ziheng, Ping Wang, and Ji-Long Liu. "CRISPR Guides." In CRISPR. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8504-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "CRISPR"

1

Orlova, N. N., M. G. Gladkova, G. A. Ashniev, and A. V. Orlov. "Fluorescently controlled investigation of super-enhancers with CRISPR interference and CRISPR prime editing systems." In 2024 International Conference Laser Optics (ICLO). IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cao, Xinzhe, and Peter Minary. "CRISPR-DBA: a deep learning framework for uncertainty quantification of CRISPR off-target activities." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10821932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

S, Narendra Kumar, Arya Hariharan, Abhisha B. H, Bhumika K, and Pragathi Basavaraj. "CRISPR-Cas9 Guide RNA Designer using Python." In 2024 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS). IEEE, 2024. https://doi.org/10.1109/csitss64042.2024.10816736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ingersoll, Camden Black, and Jonathan Mwaura. "Towards a CRISPR Cas9 Enhanced Genetic Algorithm." In 2025 IEEE Symposium on Computational Intelligence in Artificial Life and Cooperative Intelligent Systems (ALIFE-CIS). IEEE, 2025. https://doi.org/10.1109/alife-cis64968.2025.10979841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Jiajie, Jianxing Zhou, Yonghong Shao, and Junle Qu. "Optothermal tweezers for biological manipulation and CRISPR biosensing." In Multiphoton Microscopy in the Biomedical Sciences XXV, edited by Ammasi Periasamy, Peter T. So, and Karsten König. SPIE, 2025. https://doi.org/10.1117/12.3037388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bao, Condy, and Fuxiao Liu. "Prediction of CRISPR On-Target Effects via Deep Learning." In Proceedings of the 1st Workshop on NLP for Science (NLP4Science). Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.nlp4science-1.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fröschl, Martina R., and Alfred Vendl. "CRISPR/Cas9-NHEJ." In SIGGRAPH '18: Special Interest Group on Computer Graphics and Interactive Techniques Conference. ACM, 2018. http://dx.doi.org/10.1145/3230744.3230747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Röcklinsberg, H., and M. Gjerris. "68. Potato crisps from CRISPR-Cas9 modification – aspects of autonomy and fairness." In 14th Congress of the European Society for Agricultural and Food Ethics. Wageningen Academic Publishers, 2018. http://dx.doi.org/10.3920/978-90-8686-869-8_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Janice. "The CRISPR platform for diagnostics." In Frontiers in Biological Detection: From Nanosensors to Systems XIII, edited by Benjamin L. Miller, Sharon M. Weiss, and Amos Danielli. SPIE, 2021. http://dx.doi.org/10.1117/12.2589026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jiang, Jiawen. "CRISPR-Cas9: Components and Application." In The International Conference on Biomedical Engineering and Bioinformatics. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0011294300003443.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "CRISPR"

1

Matthew Fischer, Matthew Fischer. CRISPR Cas9 testing model. Experiment, 2018. http://dx.doi.org/10.18258/11380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fleischmann, Sarah. Scientific Communication and CRISPR. Iowa State University, 2019. http://dx.doi.org/10.31274/cc-20240624-1260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rowe, Edward. CRISPR in Plant Breeding. Iowa State University, 2019. http://dx.doi.org/10.31274/cc-20240624-450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Montoliu, Lluís. Editando genomas con las herramientas CRISPR. Sociedad Española de Bioquímica y Biología Molecular (SEBBM), 2017. http://dx.doi.org/10.18567/sebbmdiv_rpc.2017.06.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Levesque-Tremblay, Gabriel. 2nd International Conference on CRISPR Technologies. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1592168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hull, Tiffani. CRISPR-Cas Technology for Plant Breeding. Iowa State University, 2019. http://dx.doi.org/10.31274/cc-20240624-451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gong, Ping. Invasive species management on military lands : clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9)-based gene drives. Environmental Laboratory (U.S.), 2017. http://dx.doi.org/10.21079/11681/22721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hansch, Heidi. Designing and Assessing the Efficacy of Protein Inhibitors of IscB Endonucleases. Montana State University, 2025. https://doi.org/10.15788/1751903932.

Full text
Abstract:
Many bacteria and archaea possess Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins, forming a CRISPR-Cas system that defends against viral infection. These microbes incorporate fragments of viral DNA as spacers between short DNA repeats, then transcribe these regions of alternating spacers and repeat units into guide RNA (gRNA) sequences that form complexes with Cas proteins. Upon subsequent viral attack, the gRNA sequences bind regions of complementary viral DNA, and the Cas proteins act as endonucleases, cleaving the DNA to curb the infe
APA, Harvard, Vancouver, ISO, and other styles
9

Morin, S., L. L. Walling, Peter W. Atkinson, J. Li, and B. E. Tabashnik. ets for CRISPR/Cas9-mediated gene drive in Bemisia tabaci. United States-Israel Binational Agricultural Research and Development Fund, 2021. http://dx.doi.org/10.32747/2021.8134170.bard.

Full text
Abstract:
The goal of our BARD proposal was to build both the necessary infrastructure and knowledge for using the CRISPR/Cas9-based gene drive system to control the whitefly Bemisia tabaci. Our research focused on achieving three main goals: (1) establishing a CRISPR/Cas9 gene-editing system for producing genetically-edited B. tabaci; (2) generating and testing CRISPR/Cas9-mediated mutations targeting genes that represent two gene drive strategies: population replacement and population suppression; (3) using computer modeling to optimize strategies for applying CRISPR/Cas9 to control B. tabaci populati
APA, Harvard, Vancouver, ISO, and other styles
10

Northwestern iGEM, Northwestern iGEM. CRISPR Capsules: Packaging Cas9 with bacterial outer membrane vesicles. Experiment, 2016. http://dx.doi.org/10.18258/7292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!