Journal articles on the topic 'CRISPR-associated protein 9'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CRISPR-associated protein 9.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chaturvedi, Sarika, and Jinny Tomar. "CRISPR/CAS 9 Mediated Treatment for UTIs." International Journal for Modern Trends in Science and Technology 6, no. 5 (May 31, 2020): 82–94. http://dx.doi.org/10.46501/ijmtst060515.
Full textGong, Yan, Siyu Tian, Yang Xuan, and Shubiao Zhang. "Lipid and polymer mediated CRISPR/Cas9 gene editing." Journal of Materials Chemistry B 8, no. 20 (2020): 4369–86. http://dx.doi.org/10.1039/d0tb00207k.
Full textNomura, Toshihisa, Mizuki Yoshikawa, Kengo Suzuki, and Keiichi Mochida. "Highly Efficient CRISPR-Associated Protein 9 Ribonucleoprotein-Based Genome Editing in Euglena gracilis." STAR Protocols 1, no. 1 (June 2020): 100023. http://dx.doi.org/10.1016/j.xpro.2020.100023.
Full textAalipour, Amin, Jonathan C. Dudley, Seung-min Park, Surya Murty, Jacob J. Chabon, Evan A. Boyle, Maximilian Diehn, and Sanjiv S. Gambhir. "Deactivated CRISPR Associated Protein 9 for Minor-Allele Enrichment in Cell-Free DNA." Clinical Chemistry 64, no. 2 (February 1, 2018): 307–16. http://dx.doi.org/10.1373/clinchem.2017.278911.
Full textKato-Inui, Tomoko, Gou Takahashi, Szuyin Hsu, and Yuichiro Miyaoka. "Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair." Nucleic Acids Research 46, no. 9 (April 17, 2018): 4677–88. http://dx.doi.org/10.1093/nar/gky264.
Full textLentsch, Eva, Lifei Li, Susanne Pfeffer, Arif B. Ekici, Leila Taher, Christian Pilarsky, and Robert Grützmann. "CRISPR/Cas9-Mediated Knock-Out of KrasG12D Mutated Pancreatic Cancer Cell Lines." International Journal of Molecular Sciences 20, no. 22 (November 14, 2019): 5706. http://dx.doi.org/10.3390/ijms20225706.
Full textLone, Bilal Ahmad, Shibendra Kumar Lal Karna, Faiz Ahmad, Nerina Shahi, and Yuba Raj Pokharel. "CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering." Genetics Research International 2018 (September 18, 2018): 1–17. http://dx.doi.org/10.1155/2018/3797214.
Full textXia, An-Liang, Qi-Feng He, Jin-Cheng Wang, Jing Zhu, Ye-Qin Sha, Beicheng Sun, and Xiao-Jie Lu. "Applications and advances of CRISPR-Cas9 in cancer immunotherapy." Journal of Medical Genetics 56, no. 1 (July 3, 2018): 4–9. http://dx.doi.org/10.1136/jmedgenet-2018-105422.
Full textCao, Hieu X., Wenqin Wang, Hien T. T. Le, and Giang T. H. Vu. "The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding." International Journal of Genomics 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/5078796.
Full textHorodecka, Katarzyna, and Markus Düchler. "CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles." International Journal of Molecular Sciences 22, no. 11 (June 4, 2021): 6072. http://dx.doi.org/10.3390/ijms22116072.
Full textChu, Van Trung, Robin Graf, Tristan Wirtz, Timm Weber, Jeremy Favret, Xun Li, Kerstin Petsch, et al. "Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line." Proceedings of the National Academy of Sciences 113, no. 44 (October 11, 2016): 12514–19. http://dx.doi.org/10.1073/pnas.1613884113.
Full textSiew, Wei Sheng, Yin Quan Tang, Chee Kei Kong, Bey-Hing Goh, Serena Zacchigna, Kamal Dua, Dinesh Kumar Chellappan, et al. "Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications." International Journal of Molecular Sciences 22, no. 16 (August 5, 2021): 8422. http://dx.doi.org/10.3390/ijms22168422.
Full textAhmed, Temoor, Muhammad Noman, Muhammad Shahid, Sher Muhammad, Muhammad Tahir ul Qamar, Md Arshad Ali, Awais Maqsood, Rahila Hafeez, Solabomi Olaitan Ogunyemi, and Bin Li. "Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants." Protein & Peptide Letters 28, no. 8 (September 10, 2021): 861–77. http://dx.doi.org/10.2174/0929866528666210218220138.
Full textRibeiro, Lucas F., Liliane F. C. Ribeiro, Matheus Q. Barreto, and Richard J. Ward. "Protein Engineering Strategies to Expand CRISPR-Cas9 Applications." International Journal of Genomics 2018 (August 2, 2018): 1–12. http://dx.doi.org/10.1155/2018/1652567.
Full textGong, Chongzhi, Shengchan Huang, Rentao Song, and Weiwei Qi. "Comparative Study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 Systems for Multiplex Gene Editing in Maize." Agriculture 11, no. 5 (May 10, 2021): 429. http://dx.doi.org/10.3390/agriculture11050429.
Full textAhmad, Shakeel, Xiangjin Wei, Zhonghua Sheng, Peisong Hu, and Shaoqing Tang. "CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects." Briefings in Functional Genomics 19, no. 1 (January 2020): 26–39. http://dx.doi.org/10.1093/bfgp/elz041.
Full textGe, Huanhuan, and Mario Andrea Marchisio. "Aptamers, Riboswitches, and Ribozymes in S. cerevisiae Synthetic Biology." Life 11, no. 3 (March 17, 2021): 248. http://dx.doi.org/10.3390/life11030248.
Full textLi, Chenggong, Heng Mei, and Yu Hu. "Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy." Briefings in Functional Genomics 19, no. 3 (January 17, 2020): 175–82. http://dx.doi.org/10.1093/bfgp/elz042.
Full textSun, Jinyu, Jianchu Wang, Donghui Zheng, and Xiaorong Hu. "Advances in therapeutic application of CRISPR-Cas9." Briefings in Functional Genomics 19, no. 3 (November 26, 2019): 164–74. http://dx.doi.org/10.1093/bfgp/elz031.
Full textBhatta, Bed Prakash, and Subas Malla. "Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects." Plants 9, no. 10 (October 14, 2020): 1360. http://dx.doi.org/10.3390/plants9101360.
Full textHu, S., M. Yang, and I. Polejaeva. "360 DOUBLE KNOCKOUT OF GOAT MYOSTATIN AND PRION PROTEIN GENE USING CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEAT (CRISPR)/Cas9 SYSTEMS." Reproduction, Fertility and Development 27, no. 1 (2015): 268. http://dx.doi.org/10.1071/rdv27n1ab360.
Full textSeok, Heeyoung, Rui Deng, Douglas B. Cowan, and Da-Zhi Wang. "Application of CRISPR-Cas9 gene editing for congenital heart disease." Clinical and Experimental Pediatrics 64, no. 6 (June 15, 2021): 269–79. http://dx.doi.org/10.3345/cep.2020.02096.
Full textLiu, Wenlou, Chunsheng Yang, Yanqun Liu, and Guan Jiang. "CRISPR/Cas9 System and its Research Progress in Gene Therapy." Anti-Cancer Agents in Medicinal Chemistry 19, no. 16 (January 23, 2020): 1912–19. http://dx.doi.org/10.2174/1871520619666191014103711.
Full textBeneke, Tom, Ross Madden, Laura Makin, Jessica Valli, Jack Sunter, and Eva Gluenz. "A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids." Royal Society Open Science 4, no. 5 (May 2017): 170095. http://dx.doi.org/10.1098/rsos.170095.
Full textRatan, Zubair Ahmed, Young-Jin Son, Mohammad Faisal Haidere, Bhuiyan Mohammad Mahtab Uddin, Md Abdullah Yusuf, Sojib Bin Zaman, Jong-Hoon Kim, Laila Anjuman Banu, and Jae Youl Cho. "CRISPR-Cas9: a promising genetic engineering approach in cancer research." Therapeutic Advances in Medical Oncology 10 (January 1, 2018): 175883401875508. http://dx.doi.org/10.1177/1758834018755089.
Full textKorablev, Alexey, Varvara Lukyanchikova, Irina Serova, and Nariman Battulin. "On-Target CRISPR/Cas9 Activity Can Cause Undesigned Large Deletion in Mouse Zygotes." International Journal of Molecular Sciences 21, no. 10 (May 20, 2020): 3604. http://dx.doi.org/10.3390/ijms21103604.
Full textZhu, Shouhong, Xiuli Yu, Yanjun Li, Yuqiang Sun, Qianhao Zhu, and Jie Sun. "Highly Efficient Targeted Gene Editing in Upland Cotton Using the CRISPR/Cas9 System." International Journal of Molecular Sciences 19, no. 10 (October 1, 2018): 3000. http://dx.doi.org/10.3390/ijms19103000.
Full textXiao, Bo, Shigang Yin, Yang Hu, Maoxin Sun, Jieqiong Wei, Zhenghui Huang, Yuhao Wen, et al. "Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum." Proceedings of the National Academy of Sciences 116, no. 1 (December 24, 2018): 255–60. http://dx.doi.org/10.1073/pnas.1813542116.
Full textAmoasii, Leonela, Chengzu Long, Hui Li, Alex A. Mireault, John M. Shelton, Efrain Sanchez-Ortiz, John R. McAnally, et al. "Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy." Science Translational Medicine 9, no. 418 (November 29, 2017): eaan8081. http://dx.doi.org/10.1126/scitranslmed.aan8081.
Full textMa, Hanhui, Ardalan Naseri, Pablo Reyes-Gutierrez, Scot A. Wolfe, Shaojie Zhang, and Thoru Pederson. "Multicolor CRISPR labeling of chromosomal loci in human cells." Proceedings of the National Academy of Sciences 112, no. 10 (February 23, 2015): 3002–7. http://dx.doi.org/10.1073/pnas.1420024112.
Full textWang, Xing, Yu Wu, Zijin Liu, Tong Liu, Lamei Zheng, and Genfa Zhang. "The pip1s Quintuple Mutants Demonstrate the Essential Roles of PIP1s in the Plant Growth and Development of Arabidopsis." International Journal of Molecular Sciences 22, no. 4 (February 7, 2021): 1669. http://dx.doi.org/10.3390/ijms22041669.
Full textDing, Fei, Meiling Wang, and Shuoxin Zhang. "Sedoheptulose-1,7-Bisphosphatase is Involved in Methyl Jasmonate- and Dark-Induced Leaf Senescence in Tomato Plants." International Journal of Molecular Sciences 19, no. 11 (November 20, 2018): 3673. http://dx.doi.org/10.3390/ijms19113673.
Full textHiranniramol, Kasidet, Yuhao Chen, Weijun Liu, and Xiaowei Wang. "Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency." Bioinformatics 36, no. 9 (January 23, 2020): 2684–89. http://dx.doi.org/10.1093/bioinformatics/btaa041.
Full textWardhani, Bantari W. K., Meidi U. Puteri, Yukihide Watanabe, Melva Louisa, Rianto Setiabudy, and Mitsuyasu Kato. "TMEPAI genome editing in triple negative breast cancer cells." Medical Journal of Indonesia 26, no. 1 (May 16, 2017): 14–8. http://dx.doi.org/10.13181/mji.v26i1.1871.
Full textNakamura, Watanabe, Ando, Ishihara, and Sato. "Transplacental Gene Delivery (TPGD) as a Noninvasive Tool for Fetal Gene Manipulation in Mice." International Journal of Molecular Sciences 20, no. 23 (November 25, 2019): 5926. http://dx.doi.org/10.3390/ijms20235926.
Full textMa, Hanhui, Li-Chun Tu, Ardalan Naseri, Maximiliaan Huisman, Shaojie Zhang, David Grunwald, and Thoru Pederson. "CRISPR-Cas9 nuclear dynamics and target recognition in living cells." Journal of Cell Biology 214, no. 5 (August 22, 2016): 529–37. http://dx.doi.org/10.1083/jcb.201604115.
Full textWang, Yuanzheng, Yansha Li, Tabata Rosas-Diaz, Carlos Caceres-Moreno, Rosa Lozano-Duran, and Alberto P. Macho. "The IMMUNE-ASSOCIATED NUCLEOTIDE-BINDING 9 Protein Is a Regulator of Basal Immunity in Arabidopsis thaliana." Molecular Plant-Microbe Interactions® 32, no. 1 (January 2019): 65–75. http://dx.doi.org/10.1094/mpmi-03-18-0062-r.
Full textJing, Weixia, Xuewu Zhang, Wenyan Sun, Xiujuan Hou, Zhongqiang Yao, and Yuelan Zhu. "CRISPR/CAS9-Mediated Genome Editing of miRNA-155 Inhibits Proinflammatory Cytokine Production by RAW264.7 Cells." BioMed Research International 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/326042.
Full textYang Zhou, Jordi, Keittisak Suwan, and Amin Hajitou. "Initial Steps for the Development of a Phage-Mediated Gene Replacement Therapy Using CRISPR-Cas9 Technology." Journal of Clinical Medicine 9, no. 5 (May 16, 2020): 1498. http://dx.doi.org/10.3390/jcm9051498.
Full textCampbell, Amy E., and Daimark Bennett. "Targeting protein function: the expanding toolkit for conditional disruption." Biochemical Journal 473, no. 17 (August 30, 2016): 2573–89. http://dx.doi.org/10.1042/bcj20160240.
Full textYu, Hui-Chun, Chien-Hsueh Tung, Kuang-Yung Huang, Hsien-Bin Huang, and Ming-Chi Lu. "The Essential Role of Peptidylarginine Deiminases 2 for Cytokines Secretion, Apoptosis, and Cell Adhesion in Macrophage." International Journal of Molecular Sciences 21, no. 16 (August 10, 2020): 5720. http://dx.doi.org/10.3390/ijms21165720.
Full textNiu, Fengjuan, Qiyan Jiang, Rui Cheng, Xianjun Sun, Zheng Hu, Lixia Wang, and Hui Zhang. "CRISPR/Cas9-Mediated Targeted Mutagenesis of Wild Soybean (Glycine soja) Hairy Roots Altered the Transcription Profile of the Mutant." Journal of Agricultural Science 12, no. 9 (August 15, 2020): 14. http://dx.doi.org/10.5539/jas.v12n9p14.
Full textZhou, Shiwei, Honghao Yu, Xiaoe Zhao, Bei Cai, Qiang Ding, Yu Huang, Yaxin Li, et al. "Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9." Reproduction, Fertility and Development 30, no. 12 (2018): 1616. http://dx.doi.org/10.1071/rd18086.
Full textLong, Shaojun, Qiuling Wang, and L. David Sibley. "Analysis of Noncanonical Calcium-Dependent Protein Kinases in Toxoplasma gondii by Targeted Gene Deletion Using CRISPR/Cas9." Infection and Immunity 84, no. 5 (January 11, 2016): 1262–73. http://dx.doi.org/10.1128/iai.01173-15.
Full textMonsur, Mahmuda Binte, Gaoneng Shao, Yusong Lv, Shakeel Ahmad, Xiangjin Wei, Peisong Hu, and Shaoqing Tang. "Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants." Genes 11, no. 4 (April 24, 2020): 466. http://dx.doi.org/10.3390/genes11040466.
Full textZhu, Yu, Yu Lin, Yue He, Hanshu Wang, Shitao Chen, Zhenhua Li, Ning Song, and Fei Sun. "Deletion of lncRNA5512 has no effect on spermatogenesis and reproduction in mice." Reproduction, Fertility and Development 32, no. 7 (2020): 706. http://dx.doi.org/10.1071/rd19246.
Full textBusatto, Sara, Dalila Iannotta, Sierra A. Walker, Luisa Di Marzio, and Joy Wolfram. "A Simple and Quick Method for Loading Proteins in Extracellular Vesicles." Pharmaceuticals 14, no. 4 (April 13, 2021): 356. http://dx.doi.org/10.3390/ph14040356.
Full textKim, Brian H., and GuangJun Zhang. "Generating Stable Knockout Zebrafish Lines by Deleting Large Chromosomal Fragments Using Multiple gRNAs." G3: Genes|Genomes|Genetics 10, no. 3 (January 8, 2020): 1029–37. http://dx.doi.org/10.1534/g3.119.401035.
Full textKolb, Alexander L., Marinaliz Reynoso, and Ronald W. Matheny. "Comparison of CRISPR and adenovirus-mediated Myd88 knockdown in RAW 264.7 cells and responses to lipopolysaccharide stimulation." Journal of Biological Methods 8, no. 3 (July 15, 2021): e151. http://dx.doi.org/10.14440/jbm.2021.359.
Full textShahriar, Saleh Ahmed, M. Nazrul Islam, Charles Ng Wai Chun, Md Abdur Rahim, Narayan Chandra Paul, Jasim Uddain, and Shafiquzzaman Siddiquee. "Control of Plant Viral Diseases by CRISPR/Cas9: Resistance Mechanisms, Strategies and Challenges in Food Crops." Plants 10, no. 7 (June 22, 2021): 1264. http://dx.doi.org/10.3390/plants10071264.
Full text