Journal articles on the topic 'CRISPR/Cas 9'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CRISPR/Cas 9.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chaturvedi, Sarika, and Jinny Tomar. "CRISPR/CAS 9 Mediated Treatment for UTIs." International Journal for Modern Trends in Science and Technology 6, no. 5 (May 31, 2020): 82–94. http://dx.doi.org/10.46501/ijmtst060515.
Full textMali, Franc. "Is the Patent System the Way Forward with the CRISPR-Cas 9 Technology?" Science & Technology Studies 33, no. 4 (January 15, 2020): 2–23. http://dx.doi.org/10.23987/sts.70114.
Full textDriehuis, Else, and Hans Clevers. "CRISPR/Cas 9 genome editing and its applications in organoids." American Journal of Physiology-Gastrointestinal and Liver Physiology 312, no. 3 (March 1, 2017): G257—G265. http://dx.doi.org/10.1152/ajpgi.00410.2016.
Full textVasdev, Kavita. "CRISPR/Cas-9 System: Magnificent Tool for Genome Editing." International Journal of Biotechnology and Bioengineering 3, no. 9 (2017): 293–97. http://dx.doi.org/10.25141/2475-3432-2017-9.0293.
Full textMacena, Tharcilla Nascimento da Silva, Naiane Oliveira Santos, Matheus Almeida da Silva Gonçalves, and João Vitor de Andrade Alves. "Utilização do sistema CRISPR/CAS-9 no melhoramento vegetal:." Revista Mosaicum, no. 33 (June 10, 2021): 85–98. http://dx.doi.org/10.26893/rm.v33i33.479.
Full textHoffmann, Mareike D., Sabine Aschenbrenner, Stefanie Grosse, Kleopatra Rapti, Claire Domenger, Julia Fakhiri, Manuel Mastel, et al. "Cell-specific CRISPR–Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins." Nucleic Acids Research 47, no. 13 (April 15, 2019): e75-e75. http://dx.doi.org/10.1093/nar/gkz271.
Full textDayan, Fazli. "CRISPR Cas-9 genome editing and Islam: A religious perspective." Bangladesh Journal of Medical Science 18, no. 1 (December 30, 2018): 7–13. http://dx.doi.org/10.3329/bjms.v18i1.39540.
Full textMengstie, Misganaw Asmamaw, and Belay Zawdie Wondimu. "Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing." Biologics: Targets and Therapy Volume 15 (August 2021): 353–61. http://dx.doi.org/10.2147/btt.s326422.
Full textBriner, Alexandra E., and Rodolphe Barrangou. "Lactobacillus buchneri Genotyping on the Basis of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Locus Diversity." Applied and Environmental Microbiology 80, no. 3 (November 22, 2013): 994–1001. http://dx.doi.org/10.1128/aem.03015-13.
Full textSiew, Wei Sheng, Yin Quan Tang, Chee Kei Kong, Bey-Hing Goh, Serena Zacchigna, Kamal Dua, Dinesh Kumar Chellappan, et al. "Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications." International Journal of Molecular Sciences 22, no. 16 (August 5, 2021): 8422. http://dx.doi.org/10.3390/ijms22168422.
Full textEbrahimi, Saeedeh, Ali Teimoori, Hashem Khanbabaei, and Maryam Tabasi. "Harnessing CRISPR/Cas 9 System for manipulation of DNA virus genome." Reviews in Medical Virology 29, no. 1 (September 27, 2018): e2009. http://dx.doi.org/10.1002/rmv.2009.
Full textGupta, N., K. Polkoff, L. Qiao, K. Cheng, and J. Piedrahita. "200 Developing exosomes as a mediator for CRISPR/Cas-9 delivery." Reproduction, Fertility and Development 31, no. 1 (2019): 225. http://dx.doi.org/10.1071/rdv31n1ab200.
Full textRatan, Zubair Ahmed, Young-Jin Son, Mohammad Faisal Haidere, Bhuiyan Mohammad Mahtab Uddin, Md Abdullah Yusuf, Sojib Bin Zaman, Jong-Hoon Kim, Laila Anjuman Banu, and Jae Youl Cho. "CRISPR-Cas9: a promising genetic engineering approach in cancer research." Therapeutic Advances in Medical Oncology 10 (January 1, 2018): 175883401875508. http://dx.doi.org/10.1177/1758834018755089.
Full textLone, Bilal Ahmad, Shibendra Kumar Lal Karna, Faiz Ahmad, Nerina Shahi, and Yuba Raj Pokharel. "CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering." Genetics Research International 2018 (September 18, 2018): 1–17. http://dx.doi.org/10.1155/2018/3797214.
Full textZhu, Haocheng, Chao Li, and Caixia Gao. "Applications of CRISPR–Cas in agriculture and plant biotechnology." Nature Reviews Molecular Cell Biology 21, no. 11 (September 24, 2020): 661–77. http://dx.doi.org/10.1038/s41580-020-00288-9.
Full textDeğirmenci, Laura, Dietmar Geiger, Fábio Luiz Rogé Ferreira, Alexander Keller, Beate Krischke, Martin Beye, Ingolf Steffan-Dewenter, and Ricarda Scheiner. "CRISPR/Cas 9-Mediated Mutations as a New Tool for Studying Taste in Honeybees." Chemical Senses 45, no. 8 (September 24, 2020): 655–66. http://dx.doi.org/10.1093/chemse/bjaa063.
Full textDayan, Fazli. "Ethico-legal aspects of CRISPR Cas-9 genome editing: A balanced approach." Bangladesh Journal of Medical Science 19, no. 1 (November 3, 2019): 11–16. http://dx.doi.org/10.3329/bjms.v19i1.43869.
Full textKalidoss, Karthik. "CRISPR-Cas Genome Editing Tool: Mechanisms of Pathogen Resistance Plants – Review." Journal of Horticulture and Plant Research 7 (August 2019): 69–80. http://dx.doi.org/10.18052/www.scipress.com/jhpr.7.69.
Full textSingh, Desh D., Ravi Verma, Piyush Parimoo, Ashish Sahu, Vikram Kumar, Era Upadhyay, and Dharmendra K. Yadav. "Potential Therapeutic Relevance of CRISPR/Cas9 Guided Epigenetic Regulations for Neuropsychiatric Disorders." Current Topics in Medicinal Chemistry 21, no. 10 (June 17, 2021): 878–94. http://dx.doi.org/10.2174/1568026621666210317154502.
Full textBarakat, R. H., D. A. Habashy, A. Bahaa, and H. Adwan. "Impact of CCL4 knockout using CRISPR Cas-9 technology on colorectal tumour progression." Annals of Oncology 30 (October 2019): v242. http://dx.doi.org/10.1093/annonc/mdz246.120.
Full textHao, Min, Zhaoguan Wang, Hongyan Qiao, Peng Yin, Jianjun Qiao, and Hao Qi. "Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in Escherichia coli." Cells 9, no. 2 (February 18, 2020): 467. http://dx.doi.org/10.3390/cells9020467.
Full textMarkusková, Barbora, Aneta Lichvariková, Tomáš Szemes, Janka Koreňová, Tomáš Kuchta, and Hana Drahovská. "Genome analysis of lactic acid bacterial strains selected as potential starters for traditional Slovakian bryndza cheese." FEMS Microbiology Letters 366, Supplement_1 (October 22, 2018): i3—i9. http://dx.doi.org/10.1093/femsle/fny257s.
Full textLi, Rui, Xianyou Xia, Xing Wang, Xiaoyu Sun, Zhongye Dai, Dawei Huo, Huimin Zheng, Haiqing Xiong, Aibin He, and Xudong Wu. "Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model." PLOS Biology 18, no. 11 (November 30, 2020): e3000749. http://dx.doi.org/10.1371/journal.pbio.3000749.
Full textTorres, Cristiane Batista Bezerra, and Wagner Soares Pessoa. "Células-tronco pluripotentes induzidas e edição de genes: avanços tecnológicos da pesquisa em medicina regenerativa e terapia gênica." Jornal Interdisciplinar de Biociências 3, no. 1 (June 8, 2018): 56. http://dx.doi.org/10.26694/jibi.v3i1.6258.
Full textBehler, Juliane. "Kidnapping der wirtseigenen Nuklease RNase E durch ein CRISPR-Cas-System." BIOspektrum 25, no. 7 (November 2019): 790–91. http://dx.doi.org/10.1007/s12268-019-1310-9.
Full textMan, Dula, Brett Sansbury, Pawel Bialk, Kevin Bloh, E. Anders Kolb, and Eric Brian Kmiec. "Target Site Mutagenesis during Crispr/ Cas 9/Single-Stranded- Oligonucleotide Directed Gene Editing for Sickle Cell Anemia." Blood 128, no. 22 (December 2, 2016): 4706. http://dx.doi.org/10.1182/blood.v128.22.4706.4706.
Full textVaishnav, Radhika A. "Nanobyte." International Journal of Molecular and Immuno Oncology 3, no. 2 (July 25, 2018): 36. http://dx.doi.org/10.18203/issn.2456-3994.intjmolimmunooncol20183224.
Full textAnzalone, Andrew V., Luke W. Koblan, and David R. Liu. "Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors." Nature Biotechnology 38, no. 7 (June 22, 2020): 824–44. http://dx.doi.org/10.1038/s41587-020-0561-9.
Full textStoll, Britta, Lisa-Katharina Maier, Sita J. Lange, Jutta Brendel, Susan Fischer, Rolf Backofen, and Anita Marchfelder. "Requirements for a successful defence reaction by the CRISPR–Cas subtype I-B system." Biochemical Society Transactions 41, no. 6 (November 20, 2013): 1444–48. http://dx.doi.org/10.1042/bst20130098.
Full textBergel, Salvador Darío. "El impacto ético de las nuevas tecnologías de edición genética." Revista Bioética 25, no. 3 (December 2017): 454–61. http://dx.doi.org/10.1590/1983-80422017253202.
Full textLittler, S., H. Whalley, S. Sousa, and S. Taylor. "CRISPR/Cas-9-mediated targeting of TP53 and MYC to investigate antimitotic mode of action." European Journal of Cancer 61 (July 2016): S24. http://dx.doi.org/10.1016/s0959-8049(16)61073-0.
Full textMaria Hupffer, Haide, and Juliane Altmann Berwig. "A tecnologia CRISPR-CAS 9: da sua compreensão aos desafios éticos, jurídicos e de governança." Revista Pensar 25, no. 3 (2020): 1–16. http://dx.doi.org/10.5020/2317-2150.2018.9722.
Full textAl-Sammarraie, Nadia, and Swapan K. Ray. "Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme." Cells 10, no. 9 (September 7, 2021): 2342. http://dx.doi.org/10.3390/cells10092342.
Full textSampson, Timothy R., Sunil D. Saroj, Anna C. Llewellyn, Yih-Ling Tzeng, and David S. Weiss. "Author Correction: A CRISPR/Cas system mediates bacterial innate immune evasion and virulence." Nature 570, no. 7760 (May 24, 2019): E30—E31. http://dx.doi.org/10.1038/s41586-019-1253-9.
Full textHahn, Florian, and Vladimir Nekrasov. "CRISPR/Cas precision: do we need to worry about off-targeting in plants?" Plant Cell Reports 38, no. 4 (November 13, 2018): 437–41. http://dx.doi.org/10.1007/s00299-018-2355-9.
Full textCapdeville, Niklas, Patrick Schindele, and Holger Puchta. "Application of CRISPR/Cas-mediated base editing for directed protein evolution in plants." Science China Life Sciences 63, no. 4 (March 5, 2020): 613–16. http://dx.doi.org/10.1007/s11427-020-1655-9.
Full textDe, Aniket, and Dr Arup Ratan Biswas. "Elucidative PAM/Target Sequence for CRISPR/Cas- 9 Activity in Breast Cancer Using a Computational Approach." International Journal of Innovative Science and Research Technology 5, no. 7 (August 2, 2020): 872–76. http://dx.doi.org/10.38124/ijisrt20jul757.
Full textMeiliana, Anna, Nurrani Mustika Dewi, and Andi Wijaya. "Genome Editing with Crispr-Cas9 Systems: Basic Research and Clinical Applications." Indonesian Biomedical Journal 9, no. 1 (April 1, 2017): 1. http://dx.doi.org/10.18585/inabj.v9i1.272.
Full textVöneky, Silja. "International Standard Setting in Biomedicine – Foundations and New Challenges." Volume 61 · 2018 61, no. 1 (June 20, 2019): 131–51. http://dx.doi.org/10.3790/gyil.61.1.131.
Full textConnahs, Heidi, Jelle van Creij, Sham Tlili, Tirtha Banerjee, Timothy Saunders, and Antonia Monteiro. "Targeting two different exons of Distal-less using CRISPR cas-9 produces butterflies with opposite phenotypes." Mechanisms of Development 145 (July 2017): S105—S106. http://dx.doi.org/10.1016/j.mod.2017.04.277.
Full textWilding-Steele, Tom, Quentin Ramette, Paul Jacottin, and Philippe Soucaille. "Improved CRISPR/Cas9 Tools for the Rapid Metabolic Engineering of Clostridium acetobutylicum." International Journal of Molecular Sciences 22, no. 7 (April 2, 2021): 3704. http://dx.doi.org/10.3390/ijms22073704.
Full textMeliawati, Meliawati, Christoph Schilling, and Jochen Schmid. "Recent advances of Cas12a applications in bacteria." Applied Microbiology and Biotechnology 105, no. 8 (March 23, 2021): 2981–90. http://dx.doi.org/10.1007/s00253-021-11243-9.
Full textShirali, Akio, Wilson Minter Huijsmans, and Matteo Sottocornola. "Letter to the Editor: Genetic Editing of Secretory Pathway of Penicillium Chrysogenum After Observation of Increased Secretory Rates in an Increased Stress Environment (Microgravity), a Research Proposal by High School Students in Dubai." Fine Focus 4, no. 2 (December 21, 2018): 163–69. http://dx.doi.org/10.33043/ff.4.2.163-169.
Full textLiu, Qing, Chun Wang, Xiaozhen Jiao, Huawei Zhang, Lili Song, Yanxin Li, Caixia Gao, and Kejian Wang. "Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems." Science China Life Sciences 62, no. 1 (November 13, 2018): 1–7. http://dx.doi.org/10.1007/s11427-018-9402-9.
Full textElliott, Esther K., Larisa M. Haupt, and Lyn R. Griffiths. "Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological malignancy gene therapy." Transgenic Research 30, no. 2 (February 20, 2021): 129–41. http://dx.doi.org/10.1007/s11248-020-00232-9.
Full textStankovic, Tatjana, Nicholas Davies, Louise J. Tee, Andrew D. Beggs, and Malcolm Taylor. "Identification of Novel Therapeutic Targets in Atm-Deficient Lymphomas Using a Whole Genome CRISPR/CAS-9 Screen." Blood 134, Supplement_1 (November 13, 2019): 1504. http://dx.doi.org/10.1182/blood-2019-129974.
Full textZhao, Zhe, Rui-an Zhang, Ge-yi Fu, Ran Zhang, Yan-fang Nie, Cong Sun, and Min Wu. "The Complete Genome of Emcibacter congregatus ZYLT, a Marine Bacterium Encoding a CRISPR-Cas 9 Immune System." Current Microbiology 77, no. 5 (January 9, 2020): 762–68. http://dx.doi.org/10.1007/s00284-019-01867-6.
Full textZhou, Shiwei, Honghao Yu, Xiaoe Zhao, Bei Cai, Qiang Ding, Yu Huang, Yaxin Li, et al. "Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9." Reproduction, Fertility and Development 30, no. 12 (2018): 1616. http://dx.doi.org/10.1071/rd18086.
Full textXu, Q., D. J. Milner, and M. B. Wheeler. "144 Use of the CRISPR/CAS 9 system to produce porcine adipose-derived stem cells expressing enhanced green fluorescent protein." Reproduction, Fertility and Development 33, no. 2 (2021): 180. http://dx.doi.org/10.1071/rdv33n2ab144.
Full textXu, Q., D. J. Milner, and M. B. Wheeler. "144 Use of the CRISPR/CAS 9 system to produce porcine adipose-derived stem cells expressing enhanced green fluorescent protein." Reproduction, Fertility and Development 33, no. 2 (2021): 180. http://dx.doi.org/10.1071/rdv33n2ab144.
Full text