Academic literature on the topic 'CRISPR-Cas Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CRISPR-Cas Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CRISPR-Cas Systems"
Roslan, Rozieffa, Peer Mohamed Abdul, and Jamaliah Md Jahim. "Endogenous CRISPR/Cas Systems Prediction: A Glimpse towards Harnessing CRISPR/ Cas Machineries for Genetic Engineering." Jurnal Kejuruteraan si1, no. 7 (November 30, 2018): 1–9. http://dx.doi.org/10.17576/jkukm-2018-si1(7)-01.
Full textShmakov, Sergey A., Kira S. Makarova, Yuri I. Wolf, Konstantin V. Severinov, and Eugene V. Koonin. "Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis." Proceedings of the National Academy of Sciences 115, no. 23 (May 21, 2018): E5307—E5316. http://dx.doi.org/10.1073/pnas.1803440115.
Full textZhuang, Xiwei, Xueqiong Yang, Bo Cao, Haiming Sun, Xiaoyan Lv, Chijia Zeng, Fugang Li, et al. "Review—CRISPR/Cas Systems: Endless Possibilities for Electrochemical Nucleic Acid Sensors." Journal of The Electrochemical Society 169, no. 3 (March 1, 2022): 037522. http://dx.doi.org/10.1149/1945-7111/ac5cec.
Full textLi, Ming, Luyao Gong, Feiyue Cheng, Haiying Yu, Dahe Zhao, Rui Wang, Tian Wang, et al. "Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems." Science 372, no. 6541 (April 29, 2021): eabe5601. http://dx.doi.org/10.1126/science.abe5601.
Full textShehreen, Saadlee, Te-yuan Chyou, Peter C. Fineran, and Chris M. Brown. "Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species." Philosophical Transactions of the Royal Society B: Biological Sciences 374, no. 1772 (March 25, 2019): 20180384. http://dx.doi.org/10.1098/rstb.2018.0384.
Full textYang, Shanshan, Jian Huang, and Bifang He. "CASPredict: a web service for identifying Cas proteins." PeerJ 9 (July 30, 2021): e11887. http://dx.doi.org/10.7717/peerj.11887.
Full textBurmistrz, Michał, and Krzysztof Pyrc. "CRISPR-Cas Systems in Prokaryotes." Polish Journal of Microbiology 64, no. 3 (September 18, 2015): 193–202. http://dx.doi.org/10.5604/01.3001.0009.2114.
Full textLi, Junwei, Yuexia Wang, Bin Wang, Juan Lou, Peng Ni, Yuefei Jin, Shuaiyin Chen, Guangcai Duan, and Rongguang Zhang. "Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases." Diagnostics 12, no. 10 (October 11, 2022): 2455. http://dx.doi.org/10.3390/diagnostics12102455.
Full textYang, Hui, and Dinshaw J. Patel. "New CRISPR-Cas systems discovered." Cell Research 27, no. 3 (February 21, 2017): 313–14. http://dx.doi.org/10.1038/cr.2017.21.
Full textSternberg, Samuel H., Hagen Richter, Emmanuelle Charpentier, and Udi Qimron. "Adaptation in CRISPR-Cas Systems." Molecular Cell 61, no. 6 (March 2016): 797–808. http://dx.doi.org/10.1016/j.molcel.2016.01.030.
Full textDissertations / Theses on the topic "CRISPR-Cas Systems"
Bernheim, Aude. "The distribution of CRISPR-Cas systems is affected by interactions with DNA repair pathways." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB070/document.
Full textCRISPR-Cas systems confer bacteria and archea an adaptative immunity against phages and other invading genetic elements playing an important role in bacterial evolution. Only 47% of bacterial genomes harbor a CRISPR-Cas system despite their high rate of horizontal transfer. Hypothesis such as the cost of autoimmu- nity or the trade off between a constitutive or an inducible defense system have been put forward to explain this paradox. I propose that the genetic background plays an important role in the process of maintaining a CRISPR-Cas system af- ter its transfer. More precisely I hypothesized that CRISPR-Cas systems interact with DNA repair pathways. To test this idea, we detected DNA repair pathways and CRISPR-Cas systems in bacterial genomes and studied their co-occurences. We report both positive and negative associations that we interpret as poten- tial antagonistic or synergistic interactions. We then focused on one interaction to validate our result experimentally and explored molecular mechanisms behind those interactions. My findings give insights on the complex interactions between CRISPR-Cas systems and DNA repair mechanisms in bacteria and provide a first example on the necessity of accommodation of CRISPR-Cas systems to a specific genetic context to be selected and maintained in bacterial genomes
Vyhovskyi, Danylo. "In vivo studies of CRISPR adaptation mechanism and specificity." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS729.
Full textThis thesis investigates the mechanisms of the CRISPR-Cas adaptive immunity in prokaryotes, primarily using the type I-E system in Escherichia coli, focusing on the spacer acquisition process and the system's specificity. It sheds light on the dynamics of spacers generation and integration into CRISPR arrays, comparing naive and primed adaptation modes. The study reveals that a particular PAM (protospacer adjacent motif) - proximal sequence impedes spacer acquisition in the primed mode, providing a distinct identifier for naturally acquired spacers. The study further reveals the role of non-Cas enzymes, linked to DNA repair pathways, in spacer generation and processing, contributing to CRISPR adaptation and interference.Another course of the study identifies potential hazards posed by off-target effects caused by Cas9 (dCas9) RNA-guided enzyme that can inadvertently silence genes. This occurs when there's a minimal match of just four nucleotides between the gRNA and the target within the PAM-proximal sequence, emphasizing the need for careful experimental design in CRISPR-Cas research.Overall, the thesis expands understanding of the complex molecular mechanisms behind CRISPR adaptation, highlighting the role of non-Cas proteins and the significance of a specific genetic context of seed sequences, leading to the development of more precise and efficient genetic engineering tools
Alkhnbashi, Omer S. [Verfasser], and Rolf [Akademischer Betreuer] Backofen. "Computational characterisation of genomic CRISPR-Cas systems in archaea and bacteria." Freiburg : Universität, 2017. http://d-nb.info/1139210904/34.
Full textAnsai, Satoshi. "Targeted mutagenesis in medaka using targetable nuclease systems." Kyoto University, 2016. http://hdl.handle.net/2433/215591.
Full text0048
新制・課程博士
博士(農学)
甲第19765号
農博第2161号
新制||農||1039(附属図書館)
学位論文||H28||N4981(農学部図書室)
32801
京都大学大学院農学研究科応用生物科学専攻
(主査)教授 佐藤 健司, 教授 澤山 茂樹, 准教授 田川 正朋
学位規則第4条第1項該当
Zhu, Houxiang. "Optimal gRNA design of different CRISPR-Cas systems for DNA and RNA editing." Miami University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=miami1556307865151938.
Full textBrendel, Jutta [Verfasser]. "Charakterisierung der Prozessierungs-und Interferenzaktivität des CRISPR/Cas-Systems in Haloferax volcanii / Jutta Brendel." Ulm : Universität Ulm. Fakultät für Naturwissenschaften, 2014. http://d-nb.info/1053705611/34.
Full textHille, Frank [Verfasser]. "Investigation of Spacer Acquisition Mechanisms in Type V-A CRISPR-Cas Systems / Frank Hille." Berlin : Humboldt-Universität zu Berlin, 2020. http://d-nb.info/1215570341/34.
Full textStaub, Dillon. "Bio-Inspired Hardware Security Defenses: A CRISPR-Cas-Based Approach for Detecting Trojans in FPGA Systems." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563872470616901.
Full textSilva, Caroline Caetano da. "O nr2e1 influencia o comportamento exploratório, mas não é necessário para a diferenciação hormonal hipofisária no zebrafish (Danio rerio)." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/5/5135/tde-16082017-133351/.
Full textCongenital hypopituitarism is characterized by multiple hormone deficiencies due to mutations in transcription factors involved in pituitary embryogenesis. Stem cells, which by definition can each give rise to a progenitor and an undifferentiated cell by asymmetric division, are present in the pituitary gland and are important during periods of high metabolic demand in different phases of life. In previous studies, the accumulation of the stem cell markers Sox2 and Nr2e1 was observed in the Ames mouse, which harbors a mutation in Prop1. Sox2 is the consensus stem cell marker in the pituitary gland, while the role of Nr2e1 in the pituitary development has not been characterized although it is essential for neural stem cell maintenance and neogenesis in the brain and its loss of function causes pathological aggression and lack of maternal instinct in mice. In this project, the zebrafish animal model was used to characterize the role of nr2e1, to confirm whether this gene can be involved in the pituitary terminal differentiation, and to determine the effects of this gene on animal behavior. The zebrafish is a particularly appropriate model for use in this project because it is easy to maintain, is economical, and has a rapid metabolism and growth rate. In the present study, we created 2 zebrafish models by knocking out prop1 and nr2e1 using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) genome-editing technique. This technique enables highly specific gene/reading frame interruption and/or base substitution in the genome, with low cellular toxicity and high heritability. Zebrafish with homozygous nr2e1 mutations develop and reproduce similarly to wild-type zebrafish, but present a more exploratory behavioral pattern compared to wild-type and heterozygous zebrafish. Based on immunofluorescence, Sox2 expression was higher in the mutant zebrafish than in the wild type and was not co-localized with Nr2e1 expression. Hormone expression did not differ between wild-type and mutant zebrafish. We conclude that nr2e1 is not crucial in the terminal differentiation of the hormone-forming pituitary gland; however, it induces a distinct behavioral phenotype at the larval stage. Analyses of zebrafish harboring a prop1 mutation are ongoing owing to issues with the establishment of the lineage
Zhu, Jiang. "PART I CRYSTAL STRUCTURE OF A DIMERIZATION DOMAIN OF DROSOPHILA CAPRIN. PART II CHARACTERIZATION OF TWO CAS13B CRISPR-CAS SYSTEMS FROM PORPHYROMONAS GINGIVALIS." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1503.
Full textBooks on the topic "CRISPR-Cas Systems"
Barrangou, Rodolphe, and John van der Oost, eds. CRISPR-Cas Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-662-45794-8.
Full textBarrangou, Rodolphe, and John van der Oost, eds. CRISPR-Cas Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34657-6.
Full textOost, John van der, and Rodolphe Barrangou. CRISPR-Cas systems: RNA-mediated adaptive immunity in bacteria and archaea. Heidelberg: Springer, 2013.
Find full textSaunders, Sita Johanna. CRISPRmap: An automated classification of repeat conservation in prokaryotic adaptive immune systems. Freiburg: Universität, 2013.
Find full textHalpin-Healy, Tyler Sheehan. Structure and Function of a Transposon-Encoded CRISPR-Cas System. [New York, N.Y.?]: [publisher not identified], 2021.
Find full textDoudna, Jennifer A., and Prashant Mali. CRISPR-Cas. Cold Spring Harbor Laboratory Press, 2016.
Find full textKamruzzaman, Muhammad, Graciela Castro Escarpulli, and Aixin Yan, eds. CRISPR-Cas Systems in Bacteria and Archaea. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-963-8.
Full textOost, John van der, and Rodolphe Barrangou. CRISPR-Cas Systems: RNA-mediated Adaptive Immunity in Bacteria and Archaea. Springer, 2012.
Find full textOost, John van der, and Rodolphe Barrangou. CRISPR-Cas Systems: RNA-mediated Adaptive Immunity in Bacteria and Archaea. Springer, 2015.
Find full textTechnikfolgenabschätzung des CRISPR/Cas-Systems: Über Die Anwendung in der Menschlichen Keimbahn. De Gruyter, Inc., 2019.
Find full textBook chapters on the topic "CRISPR-Cas Systems"
Mojica, Francisco J. M., and Roger A. Garrett. "Discovery and Seminal Developments in the CRISPR Field." In CRISPR-Cas Systems, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_1.
Full textAmitai, Gil, and Rotem Sorek. "Roles of CRISPR in Regulation of Physiological Processes." In CRISPR-Cas Systems, 251–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_10.
Full textHorvath, Philippe, Giedrius Gasiunas, Virginijus Siksnys, and Rodolphe Barrangou. "Applications of the Versatile CRISPR-Cas Systems." In CRISPR-Cas Systems, 267–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_11.
Full textBanfield, Jillian F. "CRISPRs in the Microbial Community Context." In CRISPR-Cas Systems, 287–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_12.
Full textPourcel, Christine, and Christine Drevet. "Occurrence, Diversity of CRISPR-Cas Systems and Genotyping Implications." In CRISPR-Cas Systems, 33–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_2.
Full textMakarova, Kira S., and Eugene V. Koonin. "Evolution and Classification of CRISPR-Cas Systems and Cas Protein Families." In CRISPR-Cas Systems, 61–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_3.
Full textArslan, Zihni, Edze R. Westra, Rolf Wagner, and Ümit Pul. "Regulation of CRISPR-Based Immune Responses." In CRISPR-Cas Systems, 93–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_4.
Full textCharpentier, Emmanuelle, John van der Oost, and Malcolm F. White. "crRNA Biogenesis." In CRISPR-Cas Systems, 115–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_5.
Full textStaals, Raymond H. J., and Stan J. J. Brouns. "Distribution and Mechanism of the Type I CRISPR-Cas Systems." In CRISPR-Cas Systems, 145–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_6.
Full textDupuis, Marie-Ève, and Sylvain Moineau. "Type II: Streptococcus thermophilus." In CRISPR-Cas Systems, 171–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34657-6_7.
Full textConference papers on the topic "CRISPR-Cas Systems"
Sakr, N. "CONTROL OF GENE EXPRESSION BY CRISPR-CAS SYSTEMS." In Конференция «Перспективы применения генной терапии и биомедицинского клеточного продукта» с блоком летней школы для молодых ученых. Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр эндокринологии» Министерства здравоохранения Российской Федерации, 2022. http://dx.doi.org/10.14341/gnct-2022-50.
Full textPotyseva, A. S., A. N. Arseniev, P. A. Selkova, A. A. Vasilieva, A. S. Melnikov, P. Yu Serdobintsev, and M. A. Khodorkovskii. "COMPARISON OF COLLATERAL ACTIVITY OF CRISPR CS12A ORTHOLOGS FOR THE DEVELOPMENT OF NOVEL DIAGNOSTIC SYSTEMS." In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-361.
Full textTyumentseva, M. A., A. I. Tyumentsev, and V. G. Akimkin. "DEVELOPMENT OF APPROACHES FOR DETECTION OF GENOME-INTEGRATED PROVIRAL DNA OF THE HUMAN IMMUNODEFICIENCY VIRUS (HIV-1) IN ULTRA LOW CONCENTRATIONS USING THE CRISPR/CAS SYSTEM." In Molecular Diagnostics and Biosafety. Federal Budget Institute of Science 'Central Research Institute for Epidemiology', 2020. http://dx.doi.org/10.36233/978-5-9900432-9-9-118.
Full textPernak, Elizaveta, Mariia Vladimirova, Viktoria Muntyan, Alexey Afonin, and Marina Roumiantseva. "ANALYSIS OF CRISPR CASSETTE ELEMENTS IN NATIVE ISOLATES OF SINORHIZOBIUM MELILOTI ISOLATED IN THE CENTRAL ASIAN ORIGIN OF PLANT DIVERSITY." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/6.1/s25.13.
Full textYu, Eun-Sil, Byoung-Hoon Kang, Hamin Na, and Ki-Hun Jeong. "Nanoplasmonic isothermal PCR assay with CRISPR/Cas for real-time SARS-CoV-2 detection." In MOEMS and Miniaturized Systems XXII, edited by Wibool Piyawattanametha, Yong-Hwa Park, and Hans Zappe. SPIE, 2023. http://dx.doi.org/10.1117/12.2650879.
Full textKapitonova, M. A., A. V. Shabalina, V. G. Dedkov, and A. S. Dolgova. "DEVELOPMENT OF CRISPR-CAS12A BASED DIAGNOSTIC SYSTEM FOR GUANARITO VIRUS DETECTION COMBINED WITH ISOTHERMAL AMPLIFICATION IN ONE POT." In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-327.
Full text"Bioinformatics analysis of the structures of CRISPR/Cas-systems in the genomes of phytopathogenic bacteria." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-139.
Full textZhang, Liuyijia. "CRISPR/Cas system in human genetic diseases." In Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), edited by Alan Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3012830.
Full textMuntyan, Victoria S., Alla S. Saksaganskaia, Alexey N. Muntyan, Mariia E. Vladimirova, and Marina L. Roumiantseva. "STRESS AND IMMUNITY OF NODULE BACTERIA SINORHIZOBIUM MELILOTI: LOCALIZATION, POLYMORPHISM AND PHYLOGENY OF GENETIC DETERMINANTS." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/6.1/s25.15.
Full textZhang, Hanlin. "Therapeutic applications of CRISPR-Cas system in infectious diseases." In Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), edited by Alan Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3012858.
Full textReports on the topic "CRISPR-Cas Systems"
Sanford, Jack, and John Weldon. The Biology of Native and Adapted CRISPR-Cas Systems. Journal of Young Investigators, November 2018. http://dx.doi.org/10.22186/jyi.35.5.81-91.
Full textBagley, Margo. Genome Editing in Latin America: CRISPR Patent and Licensing Policy. Inter-American Development Bank, July 2021. http://dx.doi.org/10.18235/0003409.
Full textKuiken, Todd, and Jennifer Kuzma. Genome Editing in Latin America: Regional Regulatory Overview. Inter-American Development Bank, July 2021. http://dx.doi.org/10.18235/0003410.
Full textZarate, Sebastian, Ilaria Cimadori, Maria Mercedes Roca, Michael S. Jones, and Katie Barnhill-Dilling. Assessment of the Regulatory and Institutional Framework for Agricultural Gene Editing via CRISPR-based Technologies in Latin America and the Caribbean. Inter-American Development Bank, May 2023. http://dx.doi.org/10.18235/0004904.
Full textBurns, Malcom, and Gavin Nixon. Literature review on analytical methods for the detection of precision bred products. Food Standards Agency, September 2023. http://dx.doi.org/10.46756/sci.fsa.ney927.
Full text