Academic literature on the topic 'CRISPR / Cas9 editing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CRISPR / Cas9 editing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CRISPR / Cas9 editing"
Watters, Kyle E., Haridha Shivram, Christof Fellmann, Rachel J. Lew, Blake McMahon, and Jennifer A. Doudna. "Potent CRISPR-Cas9 inhibitors fromStaphylococcusgenomes." Proceedings of the National Academy of Sciences 117, no. 12 (March 10, 2020): 6531–39. http://dx.doi.org/10.1073/pnas.1917668117.
Full textGong, Chongzhi, Shengchan Huang, Rentao Song, and Weiwei Qi. "Comparative Study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 Systems for Multiplex Gene Editing in Maize." Agriculture 11, no. 5 (May 10, 2021): 429. http://dx.doi.org/10.3390/agriculture11050429.
Full textSaranath, Dhananjaya, and Aparna Khanna. "CRISPR/Cas9 genome editing system." Biomedical Research Journal 4, no. 2 (2017): 116. http://dx.doi.org/10.4103/2349-3666.240595.
Full textDowdy, Steven F. "Controlling CRISPR-Cas9 Gene Editing." New England Journal of Medicine 381, no. 3 (July 18, 2019): 289–90. http://dx.doi.org/10.1056/nejmcibr1906886.
Full textWatters, Kyle E., Christof Fellmann, Hua B. Bai, Shawn M. Ren, and Jennifer A. Doudna. "Systematic discovery of natural CRISPR-Cas12a inhibitors." Science 362, no. 6411 (September 6, 2018): 236–39. http://dx.doi.org/10.1126/science.aau5138.
Full textKhan, Sikandar. "Recent Advancement and Innovations in CRISPR/Cas and CRISPR Related Technologies: A review." Biotechnology and Bioprocessing 2, no. 5 (June 24, 2021): 01–12. http://dx.doi.org/10.31579/2766-2314/042.
Full textAschenbrenner, Sabine, Stefan M. Kallenberger, Mareike D. Hoffmann, Adrian Huck, Roland Eils, and Dominik Niopek. "Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity." Science Advances 6, no. 6 (February 2020): eaay0187. http://dx.doi.org/10.1126/sciadv.aay0187.
Full textDesai, Devam, Hiral Panchal, Shivani Patel, and Ketul Nayak. "CRISPR - CAS9 GENE EDITING: A REVIEW." International Journal of Advanced Research 8, no. 10 (October 31, 2020): 1127–32. http://dx.doi.org/10.21474/ijar01/11943.
Full textPreece, Roland, and Christos Georgiadis. "Emerging CRISPR/Cas9 applications for T-cell gene editing." Emerging Topics in Life Sciences 3, no. 3 (April 2, 2019): 261–75. http://dx.doi.org/10.1042/etls20180144.
Full textVaishnav, Radhika A. "The emerging role of CRISPR-Cas9 in molecular oncology." International Journal of Molecular and Immuno Oncology 2, no. 2 (June 24, 2017): 45. http://dx.doi.org/10.18203/issn.2456-3994.intjmolimmunooncol20172641.
Full textDissertations / Theses on the topic "CRISPR / Cas9 editing"
Roidos, Paris. "Genome editing with the CRISPR Cas9 system." Thesis, KTH, Skolan för bioteknologi (BIO), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-163694.
Full textCullot, Grégoire. "Génotoxicité des systèmes CRISPR-Cas9." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0344.
Full textGene therapy is a promising therapeutic strategy for the monogenic diseases treatment. If the first approaches, called additive, have relied on the use of viral vectors, a growing share is now turning to gene editing. Less than a decade after its characterization, the CRISPR-Cas9 system has moved gene editing to a clinical stage. However, in the same period of time, several questions have been raised regarding the genotoxicity that can be induced by Cas9. An emerging literature points to the risk of genotoxicity at the targeted site. The thesis work presented here is part of this theme. The first part of the study aimed to describe the genotoxicity induced by a single double-stranded break made by Cas9. Characterization of the effects was done both at the nucleotide level, by monitoring the HDR / InDels balance, but also at the chromosome scale. The monitoring of chromosomal integrity has brought to light a new risk of genotoxicity that was not characterized. A sensitive and specific detection system for this risk has been developed to further characterize it. The second objective was to address the limitations of unwanted genotoxicity by developing a safer and more efficient gene editing method through the use of a single single-stranded breakage by Cas9D10A-nickase
Sousa, Maria Cristina Ferreira de. "Targeted gene editing in Neospora caninum using CRISPR/Cas9." Master's thesis, Universidade de Évora, 2021. http://hdl.handle.net/10174/29205.
Full textCastanon, velasco Oscar. "Targeting the transposable elements of the genome to enable large-scale genome editing and bio-containment technologies." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX006.
Full textProgrammable and site-specific nucleases such as CRISPR-Cas9 have started a genome editing revolution, holding hopes to transform human health. Multiplexing or the ability to simultaneously introduce many distinct modifications in the genome will be required for basic and applied research. It will help to probe the physio-pathological functions of complex genetic circuits and to develop improved cell therapies or anti-viral treatments. By pushing the boundaries of genome engineering, we may reach a point where writing whole mammalian genomes will be possible. Such a feat may lead to the generation of virus-, cancer- or aging- free cell lines, universal donor cell therapies or may even open the way to de-extinction. In this doctoral research project, I outline the current state-of-the-art of multiplexed genome editing, the current limits and where such technologies could be headed in the future. We leveraged this knowledge as well as the abundant transposable elements present in our DNA to build an optimization pipeline and develop a new set of tools that enable large-scale genome editing. We achieved a high level of genome modifications up to three orders of magnitude greater than previously recorded, therefore paving the way to mammalian genome writing. In addition, through the observation of the cytotoxicity generated by multiple double-strand breaks within the genome, we developed a bio-safety switch that could potentially prevent the adverse effects of current and future cell therapies. Finally, I lay out the potential concerns and threats that such an advance in genome editing technology may be bringing and point out possible solutions to mitigate the risks
Ran, Fei Ann. "CRISPR-Cas: Development and applications for mammalian genome editing." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11610.
Full textValladares, Rodrigo, and Hanna Briheim. "Metoder och tillämpningar av CRISPR-Cas9 i cancerforskning. : Samt hur CRISPR-Cas9 kan implementeras i skolundervisningen." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166140.
Full textCRISPR-Cas9 has recently emerged as an effective genome editing tool. The tool derives from an adaptive immune system in prokaryotes. The technology is used for modification of DNA in plants, animals and humans in a simple and inexpensive way. CRISPR-Cas9 has shown great potential in fighting different diseases like cancer which today is a global health issue. It is seen as a promising tool for cancer research when it comes to cancer therapy and drug development. Here we summarize current methods and applications of CRISPR-Cas9 for cancer research. Furthermore, we explore the possibilities of introducing and applying this kind of genetic engineering in biology teaching.
Framläggning, opponering och respondering skedde skriftligt till följd av covid19.
Lin, ChieYu. "Characterization and Optimization of the CRISPR/Cas System for Applications in Genome Engineering." Thesis, Harvard University, 2014. http://etds.lib.harvard.edu/hms/admin/view/61.
Full textRodríguez, José A. "Genetic editing with CRISPR/Cas9: A scientific, ethical, and pastoral approach." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108890.
Full textThesis advisor: Colleen M. Griffith
Thesis (STL) — Boston College, 2019
Submitted to: Boston College. School of Theology and Ministry
Discipline: Sacred Theology
Cui, Xiucheng. "Targeted Gene Editing Using CRISPR/Cas9 in a Wheat Protoplast System." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36543.
Full textHirosawa, Moe. "Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch." Kyoto University, 2019. http://hdl.handle.net/2433/242421.
Full textBooks on the topic "CRISPR / Cas9 editing"
Bhattacharya, Anjanabha, Vilas Parkhi, and Bharat Char, eds. CRISPR/Cas Genome Editing. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42022-2.
Full textModern Prometheus: Editing the Human Genome with Crispr-Cas9. Cambridge University Press, 2018.
Find full textYamamoto, Takashi. Targeted Genome Editing Using Site-Specific Nucleases: ZFNs, TALENs, and the CRISPR/Cas9 System. Springer, 2016.
Find full textYamamoto, Takashi. Targeted Genome Editing Using Site-Specific Nucleases: ZFNs, TALENs, and the CRISPR/Cas9 System. Springer, 2015.
Find full textYamamoto, Takashi. Targeted Genome Editing Using Site-Specific Nucleases: ZFNs, TALENs, and the CRISPR/Cas9 System. Springer, 2015.
Find full textParens, Erik, and Josephine Johnston, eds. Human Flourishing in an Age of Gene Editing. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190940362.001.0001.
Full textBern, Christina Gabriele. Genome Editing in Zeiten Von CRISPR/Cas: Eine Rechtliche Analyse. Lang GmbH, Internationaler Verlag der Wissenschaften, Peter, 2020.
Find full textBhattacharya, Anjanabha, Vilas Parkhi, and Bharat Char. CRISPR/Cas Genome Editing: Strategies And Potential For Crop Improvement. Springer, 2021.
Find full textBern, Christina Gabriele. Genome Editing in Zeiten Von CRISPR/Cas: Eine Rechtliche Analyse. Lang GmbH, Internationaler Verlag der Wissenschaften, Peter, 2020.
Find full textBern, Christina Gabriele. Genome Editing in Zeiten Von CRISPR/Cas: Eine Rechtliche Analyse. Lang GmbH, Internationaler Verlag der Wissenschaften, Peter, 2020.
Find full textBook chapters on the topic "CRISPR / Cas9 editing"
Hoof, Jakob B., Christina S. Nødvig, and Uffe H. Mortensen. "Genome Editing: CRISPR-Cas9." In Methods in Molecular Biology, 119–32. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7804-5_11.
Full textSeruggia, Davide, and Lluis Montoliu. "CRISPR/Cas9 Approaches to Investigate the Noncoding Genome." In Genome Editing, 31–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34148-4_2.
Full textRazzaq, Ali, Ghulam Mustafa, Muhammad Amjad Ali, Muhammad Sarwar Khan, and Faiz Ahmad Joyia. "CRISPR-mediated genome editing in maize for improved abiotic stress tolerance." In Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield, 405–20. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789245431.0023.
Full textVelusamy, Thilaga, Anjali Gowripalan, and David C. Tscharke. "CRISPR/Cas9-Based Genome Editing of HSV." In Methods in Molecular Biology, 169–83. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9814-2_9.
Full textTong, Yaojun, Helene Lunde Robertsen, Kai Blin, Tilmann Weber, and Sang Yup Lee. "CRISPR-Cas9 Toolkit for Actinomycete Genome Editing." In Methods in Molecular Biology, 163–84. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7295-1_11.
Full textTripathi, Leena, Valentine Otang Ntui, and Jaindra Nath Tripathi. "CRISPR-Cas9-Based Genome Editing of Banana." In Springer Protocols Handbooks, 223–36. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0616-2_14.
Full textBao, Aili, Lam-Son Phan Tran, and Dong Cao. "CRISPR/Cas9-Based Gene Editing in Soybean." In Legume Genomics, 349–64. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0235-5_19.
Full textNadakuduti, Satya Swathi, Colby G. Starker, Daniel F. Voytas, C. Robin Buell, and David S. Douches. "Genome Editing in Potato with CRISPR/Cas9." In Methods in Molecular Biology, 183–201. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8991-1_14.
Full textLiu, Junqi, Samatha Gunapati, Nicole T. Mihelich, Adrian O. Stec, Jean-Michel Michno, and Robert M. Stupar. "Genome Editing in Soybean with CRISPR/Cas9." In Methods in Molecular Biology, 217–34. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8991-1_16.
Full textVachey, Gabriel, and Nicole Déglon. "CRISPR/Cas9-Mediated Genome Editing for Huntington’s Disease." In Methods in Molecular Biology, 463–81. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7825-0_21.
Full textConference papers on the topic "CRISPR / Cas9 editing"
Rastogi, Khushboo. "Rice Biofortification through CRISPR/Cas9-Multiplex Genome Editing." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1383191.
Full textBridgeland, Aya. "Geme Editing Optimization in Cowpea (Vigna unguiculata) using CRISPR/Cas9." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1007286.
Full textShima, K., T. Suzuki, Y. Ma, C. Mayhew, A. Sallese, B. C. Carey, P. Arumugam, and B. C. Trapnell. "CRISPR/Cas9 Genome Editing Therapy for Hereditary Pulmonary Alveolar Proteinosis." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a4004.
Full textKershanskaya, O. I., Zh Kuli, A. Maulenbay, D. Nelidova, S. N. Nelidov, and J. Stephens. "NEW CRISPR/CAS9 GENE EDITING TECHNOLOGY FOR DEVELOPMENT OF AGRICULTURAL BIOTECHNOLOGY." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1434-1437.
Full textКершанская, О. И., Г. Л. Есенбаева, Д. С. Нелидова, З. Н. Садуллаева, and С. Н. Нелидов. "PERSPECTIVES OF BREEDING DEVELOPMENT IN BARLEY THROUGH CRISPR/CAS9 GENOME EDITING." In Материалы I Всероссийской научно-практической конференции с международным участием «Геномика и современные биотехнологии в размножении, селекции и сохранении растений». Crossref, 2020. http://dx.doi.org/10.47882/genbio.2020.48.47.015.
Full textCrawford, Jack. "Targeted editing of Tobacco with Cas-CLOVER™: the clean alternative to CRISPR/Cas9 for plant geme editing." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053452.
Full textBanyuls, Lucia, Daniel Pellicer, Silvia Castillo, María Magallón, María Mercedes Navarro, Amparo Escribano, and Francisco Dasí. "In vitro genome editing using CRISPR/Cas9 to edit SERPINA1 PiZ mutation." In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.pa5411.
Full textZheng, Qi, Ling-Jie Kong, Huanyu Jin, Jinling Li, and Ruby Yanru Chen-Tsai. "Abstract 663: Factors affecting genome editing using CRISPR/Cas9 in mouse model." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-663.
Full textLi, Xi, Wanbing Tang, Chenjie Zhou, Yulin Yang, Zhengang Peng, Wenrong Zhou, Qunsheng Ji, and Yong Cang. "Abstract 785: Application of CRISPR/Cas9 gene editing to primary T cells." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-785.
Full text"CRISPR/Cas9 – mediated genome editing of bread wheat to modulate heading time." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-135.
Full textReports on the topic "CRISPR / Cas9 editing"
Bagley, Margo. Genome Editing in Latin America: CRISPR Patent and Licensing Policy. Inter-American Development Bank, July 2021. http://dx.doi.org/10.18235/0003409.
Full textKuiken, Todd, and Jennifer Kuzma. Genome Editing in Latin America: Regional Regulatory Overview. Inter-American Development Bank, July 2021. http://dx.doi.org/10.18235/0003410.
Full text