Journal articles on the topic 'CRISPR'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CRISPR.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huescas, C. G. Y., R. I. Pereira, J. Prichula, P. A. Azevedo, J. Frazzon, and A. P. G. Frazzon. "Frequency of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in non-clinical Enterococcus faecalis and Enterococcus faecium strains." Brazilian Journal of Biology 79, no. 3 (2019): 460–65. http://dx.doi.org/10.1590/1519-6984.183375.
Full textHorvath, Philippe, Dennis A. Romero, Anne-Claire Coûté-Monvoisin, et al. "Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus." Journal of Bacteriology 190, no. 4 (2007): 1401–12. http://dx.doi.org/10.1128/jb.01415-07.
Full textIsachenko, Nadya, Gayane Aleksanyan, Paul Diehl, and Donato Tedesco. "Abstract 2950: CRISPR/saCas9 and CRISPR/spCas9 systems for combinatorial genetic screens (CRISPR-KO, CRISPRa, CRISPRi)." Cancer Research 84, no. 6_Supplement (2024): 2950. http://dx.doi.org/10.1158/1538-7445.am2024-2950.
Full textToro, Magaly, Guojie Cao, Wenting Ju, et al. "Association of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Elements with Specific Serotypes and Virulence Potential of Shiga Toxin-Producing Escherichia coli." Applied and Environmental Microbiology 80, no. 4 (2013): 1411–20. http://dx.doi.org/10.1128/aem.03018-13.
Full textChapman, Brittany, Jeong Hoon Han, Hong Jo Lee, Isabella Ruud, and Tae Hyun Kim. "Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit." Genes 14, no. 4 (2023): 906. http://dx.doi.org/10.3390/genes14040906.
Full textLa Russa, Marie F., and Lei S. Qi. "The New State of the Art: Cas9 for Gene Activation and Repression." Molecular and Cellular Biology 35, no. 22 (2015): 3800–3809. http://dx.doi.org/10.1128/mcb.00512-15.
Full textSerbanescu, M. A., M. Cordova, K. Krastel, et al. "Role of the Streptococcus mutans CRISPR-Cas Systems in Immunity and Cell Physiology." Journal of Bacteriology 197, no. 4 (2014): 749–61. http://dx.doi.org/10.1128/jb.02333-14.
Full textAchigar, Rodrigo, Martina Scarrone, Geneviève M. Rousseau, et al. "Ectopic Spacer Acquisition in Streptococcus thermophilus CRISPR3 Array." Microorganisms 9, no. 3 (2021): 512. http://dx.doi.org/10.3390/microorganisms9030512.
Full textvan der Ploeg, Jan R. "Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages." Microbiology 155, no. 6 (2009): 1966–76. http://dx.doi.org/10.1099/mic.0.027508-0.
Full textYang, Caiting, Yu Lei, Tinglin Ren, and Mingze Yao. "The Current Situation and Development Prospect of Whole-Genome Screening." International Journal of Molecular Sciences 25, no. 1 (2024): 658. http://dx.doi.org/10.3390/ijms25010658.
Full textKarlson, Chou Khai Soong, Siti Nurfadhlina Mohd-Noor, Nadja Nolte, and Boon Chin Tan. "CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences." Plants 10, no. 10 (2021): 2055. http://dx.doi.org/10.3390/plants10102055.
Full textJurić, Ivana, Marko Jelić, Manda Markanović, et al. "CRISPR-Cas Dynamics in Carbapenem-Resistant and Carbapenem-Susceptible Klebsiella pneumoniae Clinical Isolates from a Croatian Tertiary Hospital." Pathogens 14, no. 6 (2025): 604. https://doi.org/10.3390/pathogens14060604.
Full textMariam, Mariam, Khizra Ikhlaq, Zulaikha Abid, et al. "Exploring CRISPR Cloning and Beyond Through a Biochemical Lens in Genetic Biotechnology." Scholars Academic Journal of Biosciences 13, no. 07 (2025): 867–76. https://doi.org/10.36347/sajb.2025.v13i07.001.
Full textYin, Shuang, Mark A. Jensen, Jiawei Bai, Chitrita DebRoy, Rodolphe Barrangou, and Edward G. Dudley. "The Evolutionary Divergence of Shiga Toxin-Producing Escherichia coli Is Reflected in Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Spacer Composition." Applied and Environmental Microbiology 79, no. 18 (2013): 5710–20. http://dx.doi.org/10.1128/aem.00950-13.
Full textLou, Kai-Jye. "Crisper results for CRISPR." Science-Business eXchange 6, no. 35 (2013): 950. http://dx.doi.org/10.1038/scibx.2013.950.
Full textYang, Jiayi. "Applications of the CRISPR-Cas9 system in cancer models." Theoretical and Natural Science 21, no. 1 (2023): 28–33. http://dx.doi.org/10.54254/2753-8818/21/20230804.
Full textBarrangou, Rodolphe, Anne-Claire Coûté-Monvoisin, Buffy Stahl, et al. "Genomic impact of CRISPR immunization against bacteriophages." Biochemical Society Transactions 41, no. 6 (2013): 1383–91. http://dx.doi.org/10.1042/bst20130160.
Full textYu, Jiaying, Xi Xiang, Jinrong Huang, et al. "Haplotyping by CRISPR-mediated DNA circularization (CRISPR-hapC) broadens allele-specific gene editing." Nucleic Acids Research 48, no. 5 (2020): e25-e25. http://dx.doi.org/10.1093/nar/gkz1233.
Full textEitzinger, Simon, Amina Asif, Kyle E. Watters, et al. "Machine learning predicts new anti-CRISPR proteins." Nucleic Acids Research 48, no. 9 (2020): 4698–708. http://dx.doi.org/10.1093/nar/gkaa219.
Full textVan Orden, Mason J., Peter Klein, Kesavan Babu, Fares Z. Najar, and Rakhi Rajan. "Conserved DNA motifs in the type II-A CRISPR leader region." PeerJ 5 (April 4, 2017): e3161. http://dx.doi.org/10.7717/peerj.3161.
Full textStanley, Sabrina Y., and Karen L. Maxwell. "Phage-Encoded Anti-CRISPR Defenses." Annual Review of Genetics 52, no. 1 (2018): 445–64. http://dx.doi.org/10.1146/annurev-genet-120417-031321.
Full textRousseau, C., M. Gonnet, M. Le Romancer, and J. Nicolas. "CRISPI: a CRISPR interactive database." Bioinformatics 25, no. 24 (2009): 3317–18. http://dx.doi.org/10.1093/bioinformatics/btp586.
Full textMai, Guoqin, Ruiquan Ge, Guoquan Sun, Qinghan Meng, and Fengfeng Zhou. "A Comprehensive Curation Shows the Dynamic Evolutionary Patterns of Prokaryotic CRISPRs." BioMed Research International 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/7237053.
Full textCai, Ruijie, Runyu Lv, Xin’e Shi, Gongshe Yang, and Jianjun Jin. "CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation." International Journal of Molecular Sciences 24, no. 19 (2023): 14865. http://dx.doi.org/10.3390/ijms241914865.
Full textZhang, Yunxi. "Application and Prospect of CRISPR System in Alzheimer's Disease Treatment Research." Theoretical and Natural Science 90, no. 1 (2025): 146–51. https://doi.org/10.54254/2753-8818/2025.gu20970.
Full textTong, Yaojun, Christopher M. Whitford, Kai Blin, Tue S. Jørgensen, Tilmann Weber, and Sang Yup Lee. "CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes." Nature Protocols 15, no. 8 (2020): 2470–502. http://dx.doi.org/10.1038/s41596-020-0339-z.
Full textShehreen, Saadlee, Te-yuan Chyou, Peter C. Fineran, and Chris M. Brown. "Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species." Philosophical Transactions of the Royal Society B: Biological Sciences 374, no. 1772 (2019): 20180384. http://dx.doi.org/10.1098/rstb.2018.0384.
Full textWang, Jiawei, Wei Dai, Jiahui Li, et al. "PaCRISPR: a server for predicting and visualizing anti-CRISPR proteins." Nucleic Acids Research 48, W1 (2020): W348—W357. http://dx.doi.org/10.1093/nar/gkaa432.
Full textWeiss, Simone, Allegra Lord, Bernhard Schmierer, et al. "Abstract 3778: Genome-Scale CRISPRa and CRISPRi screening for lncRNA drivers of prostate cancer progression." Cancer Research 83, no. 7_Supplement (2023): 3778. http://dx.doi.org/10.1158/1538-7445.am2023-3778.
Full textWatters, Kyle E., Christof Fellmann, Hua B. Bai, Shawn M. Ren, and Jennifer A. Doudna. "Systematic discovery of natural CRISPR-Cas12a inhibitors." Science 362, no. 6411 (2018): 236–39. http://dx.doi.org/10.1126/science.aau5138.
Full textHayes, Victoria M., Jun-Tao Zhang, Mark A. Katz, et al. "RNA-mediated CRISPR-Cas13 inhibition through crRNA structural mimicry." Science 388, no. 6745 (2025): 387–91. https://doi.org/10.1126/science.adr3656.
Full textWang, Kai, and Chun Liang. "CRF: detection of CRISPR arrays using random forest." PeerJ 5 (April 25, 2017): e3219. http://dx.doi.org/10.7717/peerj.3219.
Full textLin, Joseph, and Jun Yang. "CRISPR-Cas systems: A revolution in genome editing and its diverse applications." Journal of Biomed Research 5, no. 1 (2024): 108–14. http://dx.doi.org/10.46439/biomedres.5.050.
Full textDavidson, Alan R., Wang-Ting Lu, Sabrina Y. Stanley, et al. "Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems." Annual Review of Biochemistry 89, no. 1 (2020): 309–32. http://dx.doi.org/10.1146/annurev-biochem-011420-111224.
Full textBelato, Helen B., and George P. Lisi. "The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors." Biomolecules 13, no. 2 (2023): 264. http://dx.doi.org/10.3390/biom13020264.
Full textKiro, Ruth, Moran G. Goren, Ido Yosef, and Udi Qimron. "CRISPR adaptation in Escherichia coli subtypeI-E system." Biochemical Society Transactions 41, no. 6 (2013): 1412–15. http://dx.doi.org/10.1042/bst20130109.
Full textSyding, Linn Amanda, Petr Nickl, Petr Kasparek, and Radislav Sedlacek. "CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review." Cells 9, no. 4 (2020): 993. http://dx.doi.org/10.3390/cells9040993.
Full textChaturvedi, Sarika, and Jinny Tomar. "CRISPR/CAS 9 Mediated Treatment for UTIs." International Journal for Modern Trends in Science and Technology 6, no. 5 (2020): 82–94. http://dx.doi.org/10.46501/ijmtst060515.
Full textZegans, Michael E., Jeffrey C. Wagner, Kyle C. Cady, Daniel M. Murphy, John H. Hammond, and George A. O'Toole. "Interaction between Bacteriophage DMS3 and Host CRISPR Region Inhibits Group Behaviors of Pseudomonas aeruginosa." Journal of Bacteriology 191, no. 1 (2008): 210–19. http://dx.doi.org/10.1128/jb.00797-08.
Full textBrown, Rachel Anne, Andrew W. Dangel, Ankita Saini, and Eugene M. Oltz. "Regulators of Type III Cytokines in Type III Innate lymphoid Cells Identified by CRISPR Activation and Inhibition Screens." Journal of Immunology 206, no. 1_Supplement (2021): 106.04. http://dx.doi.org/10.4049/jimmunol.206.supp.106.04.
Full textHegde, Shivanand, Hallie E. Rauch, Grant L. Hughes, and Nikki Shariat. "Identification and characterization of two CRISPR/Cas systems associated with the mosquito microbiome." Access Microbiology 5, no. 8 (2023). http://dx.doi.org/10.1099/acmi.0.000599.v4.
Full textHoberecht, Luke, Pirunthan Perampalam, Aaron Lun, and Jean-Philippe Fortin. "A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-34320-7.
Full textHu, Shijie, Mailin Gan, Ziang Wei, et al. "Identification of host factors for livestock and poultry viruses: genome-wide screening technology based on the CRISPR system." Frontiers in Microbiology 15 (November 21, 2024). http://dx.doi.org/10.3389/fmicb.2024.1498641.
Full textDrobna-Śledzińska, Monika, Natalia Maćkowska-Maślak, Roman Jaksik, Paulina Dąbek, Michał Witt, and Małgorzata Dawidowska. "CRISPRi for specific inhibition of miRNA clusters and miRNAs with high sequence homology." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-10336-3.
Full textHorlbeck, Max A., Luke A. Gilbert, Jacqueline E. Villalta, et al. "Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation." eLife 5 (September 23, 2016). http://dx.doi.org/10.7554/elife.19760.
Full textMatsutani, Minenosuke, Takura Wakinaka, Jun Watanabe, Masafumi Tokuoka, and Akihiro Ohnishi. "Comparative Genomics of Closely Related Tetragenococcus halophilus Strains Elucidate the Diversity and Microevolution of CRISPR Elements." Frontiers in Microbiology 12 (June 18, 2021). http://dx.doi.org/10.3389/fmicb.2021.687985.
Full textShen, Qiqing, Haihua Ruan, Hongyang Zhang, et al. "Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality." Frontiers in Microbiology 15 (March 28, 2024). http://dx.doi.org/10.3389/fmicb.2024.1375120.
Full textMa, Shuai, Feiyu Wang, Zhang Xuejing, et al. "Repurposing endogenous type II CRISPR‐Cas9 system for genome editing in Streptococcus thermophilus." Biotechnology and Bioengineering, November 23, 2023. http://dx.doi.org/10.1002/bit.28608.
Full textDas, Ankita, Kamali Doss, and Jharna Mandal. "CRISPR-cas heterogeneity and plasmid incompatibility types in relation to virulence determinants of Shigella." Journal of Medical Microbiology 71, no. 10 (2022). http://dx.doi.org/10.1099/jmm.0.001607.
Full textFeng, Qing, Xiaoyu Ning, Lei Qin, Jun Li, and Chun Li. "Quantitative and modularized CRISPR/dCas9-dCpf1 dual function system in Saccharomyces cerevisiae." Frontiers in Bioengineering and Biotechnology 11 (October 18, 2023). http://dx.doi.org/10.3389/fbioe.2023.1218832.
Full text