To see the other types of publications on this topic, follow the link: Crop improvement.

Journal articles on the topic 'Crop improvement'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Crop improvement.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Choudhary, Mukesh, Vishal Singh, Vignesh Muthusamy, and Shabir Hussain Wani. "Harnessing Crop Wild Relatives for Crop Improvement." LS: International Journal of Life Sciences 6, no. 2 (2017): 73. http://dx.doi.org/10.5958/2319-1198.2017.00009.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Merchán, Kelly. "Crop Improvement ≠ Plant Breeding." CSA News 66, no. 5 (2021): 28–31. http://dx.doi.org/10.1002/csan.20445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

CLEGG, MICHAEL T. "Genetics of Crop Improvement." American Zoologist 26, no. 3 (1986): 821–34. http://dx.doi.org/10.1093/icb/26.3.821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gosal, Satbir S., Shabir H. Wani, and Manjit S. Kang. "Biotechnology and Crop Improvement." Journal of Crop Improvement 24, no. 2 (2010): 153–217. http://dx.doi.org/10.1080/15427520903584555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Evans, Adrian. "Innovations in crop improvement." Crop Protection 12, no. 3 (1993): 237. http://dx.doi.org/10.1016/0261-2194(93)90116-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Steven M. "Crop improvement utilizing biotechnology." Agricultural Systems 36, no. 2 (1991): 246–47. http://dx.doi.org/10.1016/0308-521x(91)90032-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Praveen Rao, V. "Breeding for Crop Improvement." Current Science 114, no. 02 (2018): 256. http://dx.doi.org/10.18520/cs/v114/i02/256-257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Springer, Nathan M. "Epigenetics and crop improvement." Trends in Genetics 29, no. 4 (2013): 241–47. http://dx.doi.org/10.1016/j.tig.2012.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ramulu, K. S., V. K. Sharma, T. N. Naumova, P. Dijkhuis, and M. M. van Lookeren Campagne. "Apomixis for crop improvement." Protoplasma 208, no. 1-4 (1999): 196–205. http://dx.doi.org/10.1007/bf01279090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sourdille, Pierre, and Pierre Devaux. "Crop Improvement: Now and Beyond." Biology 10, no. 5 (2021): 421. http://dx.doi.org/10.3390/biology10050421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Singh, Arvinder, and Muskan Bokolia. "CRISPR/Cas for Crop Improvement." Resonance 26, no. 2 (2021): 227–40. http://dx.doi.org/10.1007/s12045-021-1121-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Shigeoka, S. "Transgenic approaches to crop improvement." Japanese journal of crop science 71, Supplement2 (2002): 318–21. http://dx.doi.org/10.1626/jcs.71.supplement2_318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lai, Kaitao, Michał T. Lorenc, and David Edwards. "Genomic Databases for Crop Improvement." Agronomy 2, no. 1 (2012): 62–73. http://dx.doi.org/10.3390/agronomy2010062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cody, Jon, Nathan Swyers, Morgan McCaw, Nathaniel Graham, Changzeng Zhao, and James Birchler. "Minichromosomes: Vectors for Crop Improvement." Agronomy 5, no. 3 (2015): 309–21. http://dx.doi.org/10.3390/agronomy5030309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Shen, Lisha, and Hao Yu. "Epitranscriptome engineering in crop improvement." Molecular Plant 14, no. 9 (2021): 1418–20. http://dx.doi.org/10.1016/j.molp.2021.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kumari, Rima. "Allele Mining for Crop Improvement." International Journal of Pure & Applied Bioscience 6, no. 1 (2018): 1456–65. http://dx.doi.org/10.18782/2320-7051.6073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bevan, Michael W., Cristobal Uauy, Brande B. H. Wulff, Ji Zhou, Ksenia Krasileva, and Matthew D. Clark. "Genomic innovation for crop improvement." Nature 543, no. 7645 (2017): 346–54. http://dx.doi.org/10.1038/nature22011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Evans, L. T. "Is Crop Improvement Still Needed?" Journal of Crop Improvement 14, no. 1-2 (2005): 1–7. http://dx.doi.org/10.1300/j411v14n01_01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sneller, Clay H., Randall L. Nelson, T. E. Carter, and Zhanglin Cui. "Genetic Diversity in Crop Improvement." Journal of Crop Improvement 14, no. 1-2 (2005): 103–44. http://dx.doi.org/10.1300/j411v14n01_06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Jingyu, Xin-Min Li, Hong-Xuan Lin, and Kang Chong. "Crop Improvement Through Temperature Resilience." Annual Review of Plant Biology 70, no. 1 (2019): 753–80. http://dx.doi.org/10.1146/annurev-arplant-050718-100016.

Full text
Abstract:
Abnormal environmental temperature affects plant growth and threatens crop production. Understanding temperature signal sensing and the balance between defense and development in plants lays the foundation for improvement of temperature resilience. Here, we summarize the current understanding of cold signal perception/transduction as well as heat stress response. Dissection of plant responses to different levels of cold stresses (chilling and freezing) illustrates their common and distinct signaling pathways. Axillary bud differentiation in response to chilling is presented as an example of th
APA, Harvard, Vancouver, ISO, and other styles
21

Brennan, Charles. "Concise Encyclopaedia of Crop Improvement." International Journal of Food Science & Technology 44, no. 10 (2009): 2085. http://dx.doi.org/10.1111/j.1365-2621.2008.01771.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gepts, Paul. "Biocultural diversity and crop improvement." Emerging Topics in Life Sciences 7, no. 2 (2023): 151–96. http://dx.doi.org/10.1042/etls20230067.

Full text
Abstract:
Biocultural diversity is the ever-evolving and irreplaceable sum total of all living organisms inhabiting the Earth. It plays a significant role in sustainable productivity and ecosystem services that benefit humanity and is closely allied with human cultural diversity. Despite its essentiality, biodiversity is seriously threatened by the insatiable and inequitable human exploitation of the Earth's resources. One of the benefits of biodiversity is its utilization in crop improvement, including cropping improvement (agronomic cultivation practices) and genetic improvement (plant breeding). Crop
APA, Harvard, Vancouver, ISO, and other styles
23

Parry, M. A. J., P. J. Madgwick, C. Bayon, et al. "Mutation discovery for crop improvement." Journal of Experimental Botany 60, no. 10 (2009): 2817–25. http://dx.doi.org/10.1093/jxb/erp189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Burgess, Darren J. "Branching out for crop improvement." Nature Reviews Genetics 18, no. 7 (2017): 393. http://dx.doi.org/10.1038/nrg.2017.48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Martin, Gregory B. "Gene discovery for crop improvement." Current Opinion in Biotechnology 9, no. 2 (1998): 220–26. http://dx.doi.org/10.1016/s0958-1669(98)80119-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Dunwell, Jim M. "Transgenic approaches to crop improvement." Journal of Experimental Botany 51, suppl_1 (2000): 487–96. http://dx.doi.org/10.1093/jexbot/51.suppl_1.487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Verhage, Leonie. "The colour of crop improvement." Plant Journal 103, no. 6 (2020): 1965–66. http://dx.doi.org/10.1111/tpj.14971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Rafalski, Antoni. "Molecular techniques in crop improvement." Plant Science 163, no. 6 (2002): 1177. http://dx.doi.org/10.1016/s0168-9452(02)00330-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brown, D. C. W., and T. A. Thorpe. "Crop improvement through tissue culture." World Journal of Microbiology & Biotechnology 11, no. 4 (1995): 409–15. http://dx.doi.org/10.1007/bf00364616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rafalski, J. Antoni. "Association genetics in crop improvement." Current Opinion in Plant Biology 13, no. 2 (2010): 174–80. http://dx.doi.org/10.1016/j.pbi.2009.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Varshney, Rajeev K., Pallavi Sinha, Vikas K. Singh, Arvind Kumar, Qifa Zhang, and Jeffrey L. Bennetzen. "5Gs for crop genetic improvement." Current Opinion in Plant Biology 56 (August 2020): 190–96. http://dx.doi.org/10.1016/j.pbi.2019.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kerchev, Pavel, Barbara De Smet, Cezary Waszczak, Joris Messens, and Frank Van Breusegem. "Redox Strategies for Crop Improvement." Antioxidants & Redox Signaling 23, no. 14 (2015): 1186–205. http://dx.doi.org/10.1089/ars.2014.6033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

St. Martin, S. K. "Plant Adaption and Crop Improvement." Crop Science 38, no. 1 (1998): 274–75. http://dx.doi.org/10.2135/cropsci1998.0011183x003800010047x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lin, Rongshuang. "Concise Encyclopedia of Crop Improvement." Journal of Environmental Quality 38, no. 3 (2009): 1329. http://dx.doi.org/10.2134/jeq2008.0023br.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hussain,, G., M. S. Wani,, M. A. Mir,, Z. A. Rather, and K. M. Bhat,. "Micrografting for fruit crop improvement." African Journal of Biotechnology 13, no. 25 (2014): 2474–83. http://dx.doi.org/10.5897/ajb2013.13602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Heffner, Elliot L., Mark E. Sorrells, and Jean-Luc Jannink. "Genomic Selection for Crop Improvement." Crop Science 49, no. 1 (2009): 1–12. http://dx.doi.org/10.2135/cropsci2008.08.0512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

GOODMAN, R. M., H. HAUPTLI, A. CROSSWAY, and V. C. KNAUF. "Gene Transfer in Crop Improvement." Science 236, no. 4797 (1987): 48–54. http://dx.doi.org/10.1126/science.236.4797.48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sane, P. V., and U. C. Lavania. "Innovative Approaches to Crop Improvement." Proceedings of the Indian National Science Academy 80, no. 1 (2014): 17. http://dx.doi.org/10.16943/ptinsa/2014/v80i1/55082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

McCouch, Susan. "Wild Alleles for Crop Improvement." Nature Biotechnology 17, S5 (1999): 32. http://dx.doi.org/10.1038/70392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pauls, K. P. "Plant biotechnology for crop improvement." Biotechnology Advances 13, no. 4 (1995): 673–93. http://dx.doi.org/10.1016/0734-9750(95)02010-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Cramer, Rainer, Laurence Bindschedler, and Ganesh Agrawal. "Plant Proteomics in Crop Improvement." PROTEOMICS 13, no. 12-13 (2013): 1771. http://dx.doi.org/10.1002/pmic.201370104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cortés, Andrés J., María Ángeles Castillejo, and Roxana Yockteng. "‘Omics’ Approaches for Crop Improvement." Agronomy 13, no. 5 (2023): 1401. http://dx.doi.org/10.3390/agronomy13051401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Murín, Gustáv, and Karol Mičieta. "Improvement of Crop Production by Means of a Storage Effect." International Journal of Environmental and Agriculture Research 3, no. 5 (2017): 12–25. http://dx.doi.org/10.25125/agriculture-journal-ijoear-apr-2017-26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Goldman, I. L. "Principles of Crop Improvement. 2nd ed." HortTechnology 10, no. 3 (2000): 638b—640. http://dx.doi.org/10.21273/horttech.10.3.638b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ward, Richard W. "Principles of Crop Improvement, 2nd Edition." Crop Science 40, no. 2 (2000): 562–63. http://dx.doi.org/10.2135/cropsci2000.0006br.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kim, Hyeran, Sang-Tae Kim, Sang-Gyu Kim, and Jin-Soo Kim. "Targeted Genome Editing for Crop Improvement." Plant Breeding and Biotechnology 3, no. 4 (2015): 283–90. http://dx.doi.org/10.9787/pbb.2015.3.4.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Messina, Carlos D., Fred van Eeuwijk, Tom Tang, et al. "Crop Improvement for Circular Bioeconomy Systems." Journal of the ASABE 65, no. 3 (2022): 491–504. http://dx.doi.org/10.13031/ja.14912.

Full text
Abstract:
HighlightsWe describe and demonstrate a multidimensional framework to integrate environmental and genomic predictors to enable crop improvement for a circular bioeconomy.A model training procedure based on multiple phenotypes is shown to improve predictive skill.The decision set comprised of model outputs can inform selection for both productivity and circularity metrics.Abstract. Contemporary agricultural systems are poised to transition from linear to circular, adopting concepts of recycling, repurposing, and regeneration. This transition will require changing crop improvement objectives to
APA, Harvard, Vancouver, ISO, and other styles
48

Messina, Carlos D., Fred van Eeuwijk, Tom Tang, et al. "Crop Improvement for Circular Bioeconomy Systems." Journal of the ASABE 65, no. 3 (2022): 491–504. http://dx.doi.org/10.13031/ja.14912.

Full text
Abstract:
HighlightsWe describe and demonstrate a multidimensional framework to integrate environmental and genomic predictors to enable crop improvement for a circular bioeconomy.A model training procedure based on multiple phenotypes is shown to improve predictive skill.The decision set comprised of model outputs can inform selection for both productivity and circularity metrics.Abstract. Contemporary agricultural systems are poised to transition from linear to circular, adopting concepts of recycling, repurposing, and regeneration. This transition will require changing crop improvement objectives to
APA, Harvard, Vancouver, ISO, and other styles
49

Temesgen, Begna. "Speed breeding to accelerate crop improvement." International Journal of Agricultural Science and Food Technology 8, no. 2 (2022): 178–86. http://dx.doi.org/10.17352/2455-815x.000161.

Full text
Abstract:
Global food security has become a major issue as the human population grows and the environment changes, with the current rate of improvement of several important crops inadequate to meet future demand. Crop plants have extended generation times, which contributes to the slow rate of progress. However, speed breeding has revolutionized the entire world by reducing generation time and speeding up breeding and research programs to improve crop varieties. In the absence of an integrated pre-breeding program, breeding new and high-performing cultivars with market-preferred traits can take more tha
APA, Harvard, Vancouver, ISO, and other styles
50

Soriano, Jose Miguel. "Molecular Marker Technology for Crop Improvement." Agronomy 10, no. 10 (2020): 1462. http://dx.doi.org/10.3390/agronomy10101462.

Full text
Abstract:
Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming, due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!