Academic literature on the topic 'Crops – Physiology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crops – Physiology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Crops – Physiology"
Reid, M. S. "Post-harvest physiology of food crops." Scientia Horticulturae 29, no. 3 (July 1986): 291–92. http://dx.doi.org/10.1016/0304-4238(86)90072-5.
Full textTroyo-Diéguez, E., B. Murillo-Amador, E. O. Rueda-Puente, A. Nieto-Garibay, R. D. Valdez-Cepeda, H. C. Fraga-Palomino, and J. L. García-Hernández. "MÉTODOS FISIOTÉCNICOS PARA ESTUDIAR ESPECIES HORTÍCOLAS BAJO AGOBIO HÍDRICO: REVISIÓN CONCEPTUAL Y METODOLÓGICA." Revista Chapingo Serie Horticultura XIII, no. 2 (August 2007): 193–200. http://dx.doi.org/10.5154/r.rchsh.2006.12.064.
Full textBaligar, V. C., and N. K. Fageria. "Agronomy and Physiology of Tropical Cover Crops." Journal of Plant Nutrition 30, no. 8 (August 29, 2007): 1287–339. http://dx.doi.org/10.1080/01904160701554997.
Full textWolstenholme, B. Nigel. "Environmental physiology of fruit crops. Vol. I: Temperate crops. Vol. II: Sub-tropical and tropical crops." Scientia Horticulturae 62, no. 4 (June 1995): 273–75. http://dx.doi.org/10.1016/0304-4238(95)90007-1.
Full textGrusak, Michael A., J. N. Pearson, and Eduardo Marentes. "The physiology of micronutrient homeostasis in field crops." Field Crops Research 60, no. 1-2 (January 1999): 41–56. http://dx.doi.org/10.1016/s0378-4290(98)00132-4.
Full textShunmugam, Arun, Udhaya Kannan, Yunfei Jiang, Ketema Daba, and Linda Gorim. "Physiology Based Approaches for Breeding of Next-Generation Food Legumes." Plants 7, no. 3 (September 8, 2018): 72. http://dx.doi.org/10.3390/plants7030072.
Full textLópez-Marqués, Rosa L., Anton F. Nørrevang, Peter Ache, Max Moog, Davide Visintainer, Toni Wendt, Jeppe T. Østerberg, et al. "Prospects for the accelerated improvement of the resilient crop quinoa." Journal of Experimental Botany 71, no. 18 (June 18, 2020): 5333–47. http://dx.doi.org/10.1093/jxb/eraa285.
Full textJones, H. G., and J. E. Corlett. "Current topics in drought physiology." Journal of Agricultural Science 119, no. 3 (December 1992): 291–96. http://dx.doi.org/10.1017/s0021859600012144.
Full textSallam, Ahmed, Ahmad M. Alqudah, Mona F. A. Dawood, P. Stephen Baenziger, and Andreas Börner. "Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research." International Journal of Molecular Sciences 20, no. 13 (June 27, 2019): 3137. http://dx.doi.org/10.3390/ijms20133137.
Full textSummerfield, R. J., and R. J. Lawn. "Tropical Grain Legume Crops: A Commentary." Outlook on Agriculture 16, no. 4 (December 1987): 189–97. http://dx.doi.org/10.1177/003072708701600407.
Full textDissertations / Theses on the topic "Crops – Physiology"
Mditshwa, Sithembele. "Estimating maize grain yield from crop growth stages using remote sensing and GIS in the Free State Province, South Africa." Thesis, University of Fort Hare, 2017. http://hdl.handle.net/10353/6016.
Full textNasser, Mansour Mohamed. "Heritability and morpho-physiology of drought tolerance in lines of Middle Eastern wheat." Thesis, Bangor University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327347.
Full textAndrade, Maria Isabel. "PHYSIOLOGY OF SALT TOLERANCE IN GUAR, CYAMOPSIS TETRAGONOLOBA (L.) TAUB." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275416.
Full textOsman, Mohammed A. "Effect of water stress on the physiology, growth, and morphology of three pearl millet genotypes." Diss., The University of Arizona, 1988. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1988_11_sip1_w.pdf&type=application/pdf.
Full textHe, Xuefeng. "Effect of class IId Bacteriocins: thuricin 17 and bacthuricin F4 on crops growth under optimal and abiotic stress conditions." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66900.
Full textRÉSUMÉ Les bacteriocines sont les petits peptides produits par les bactéries qui ont des effets défavorables sur les microorganismes génétiquement proches de la souche productrice. Deux nouvelles bacteriocines de la classe IId, thuricin 17 et bacthuriocin F4, ont été isolées de bactéries présentes dans la rhizosphere et qui promouvoit la croissance des plantes (PGPR). Des études préalables ont démontré que ces deux bacteriocines peuvent promouvoir la croissance du soja. Mes résultats expérimentaux ont démontré que ces deux bacteriocines promouvoit la germination et l'émergence du maïs, du soja, du canola et du blé, mais n'ont pas d'effet sur l'orge, lorsque comparées aux contrôles sous des conditions optimales pour la croissance. Parmi les cultures testées, le maïs était le plus positivement affecté. Les expériences subséquentes sous stress abiotiques ont démontré que les deux bacteriocines ont augmenté l'émergence du maïs sous conditions de basse température, de salinité et de stress hydrique provoqué par le glycol de polyéthylène. Aussi, les expérimentations en champ ont démontré que le thuricin 17 peut promouvoir efficacement l'émergence du maïs dans le sud-ouest du Québec, où les températures printanières sont souvent fraîches.
Lunn, Daniel. "Role of Rab GTPase proteins in cell wall deposition and potential use of RabA mutants in bioenergy crops." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/14560/.
Full textBHATTARAI, SURYA PRASAD, and s. bhattarai@cqu edu au. "THE PHYSIOLOGY OF WATER USE EFFICIENCY OF CROPS SUBJECTED TO SUBSURFACE DRIP IRRIGATION, OXYGATION AND SALINITY IN A HEAVY CLAY SOIL." Central Queensland University. Biological and Environmental Sciences, 2005. http://library-resources.cqu.edu.au./thesis/adt-QCQU/public/adt-QCQU20050903.222650.
Full textViktor, Aleysia. "Physiological and metabolic factors determining nitrogen use efficiency of tomato seedlings grown with elevated dissolved inorganic carbon and different nitrogen sources." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52999.
Full textENGLISH ABSTRACT: The aim of this study was to determine (l) the influence of elevated dissolved inorganic carbon (DIC) on the nitrogen use efficiencies (NUE) of tomato seedlings grown with different nitrogen sources, (2) how changes in the regulation and activities of nitrate reductase (NR), phosphoenolpyruvate carboxylase (PEPc), carbonic anhydrase (CA) and subsequent changes in metabolites would account for observed changes in NUE, and (3) to what extent elevated DIC contributed to the carbon budget of plants grown with different nitrogen sources. Lycopersicon esculentum cv. Fl44 seedlings were grown in hydroponic culture (pH 5.8) with 2 mM of either N03- or NH4 + and the solutions were aerated with either 0 ppm or 5000 ppm CO2 concentrations. The similar NUEs of NH/-fed plants grown with either root-zone CO2 concentration were largely due to their similar RGRs and N uptake rates. Elevated root-zone DIC had an initial stimulatory effect on N~ + uptake rates, but it seems as if this effect of DIC physiological processes was cancelled out by the toxic effect of unassimilated NH/. The NUE for N03--fed plants supplied with 5000 ppm root-zone CO2 was higher relative to 0 ppm root-zone CO2 and it was possibly due to the higher relative growth rates for similar N uptake rates of 5000 ppm compared to 0 ppm root-zone CO2. Nitrate-fed plants grown with 5000 ppm compared to 0 ppm root-zone CO2 had higher in vivo NR and in vitro NR and PEPc activities. These increases in enzymes activities possibly lead to increases in organic acid synthesis, which could have been used for biomass accumulation. This would account for the increased relative growth rates of N03--fed plants grown with 5000 ppm compared to 0 ppm root-zone CO2. The increasing rootzone CO2 concentrations resulted in the Ó15N values of NH/-plants becoming more positive indicating an absence of enzymatic discrimination. This may have been due to the inhibitory effect of DIC on Nll,+ uptake, causing plants to utilise both internal isotopes equally. The Ól3C studies showed that PEPc contributed equally to both N03-- and NH/-fed plants over the long term. From this it can be concluded that the lower NUE of NH/-compared to N03--fed plants grown with 5000 ppm root-zone C02 was due to increased N uptake and exudation of organic compounds into the nutrient solution. Experiments with 813C also showed that at increasing rootzone CO2 concentrations, PEPc made a bigger contribution to the carbon budget via the anaplerotic reaction.
AFRIKAANSE OPSOMMING: Die doel van hierdie studie was om (1) die invloed van verhoogde opgeloste anorganiese koolstof dioksied (DIC) op die stikstofverbruiksdoeltreffenheid (NUE) van plante wat op verkillende stikstofbronne gekweek is, te bepaal. (2) Veranderinge in die regulering van nitraat reduktase (NR), fosfo-enolpirovaatkarboksilase (PEPc) en karboonsuuranhidrase (CA) is bestudeer en gekorreleer met waargeneemde verskille in NUE. (3) 'n Beraming van die mate waartoe verhoogde DIC bydra tot die koolstofbegroting van plante, gekweek op verskillende stikstofbronne, word bespreek. Lycopersicon esculentum cv. F144 saailinge is in waterkultuur (pH 5.8) met 2 mM N03- of NH/ gekweek en die oplossings is alternatiewelik met 0 ppm of 5000 ppm CO2 belug. Die NUEs van plante gekweek met NH/ en belug met albei C02 konsentrasies was vergelykbaar grootliks as gevolg van hulooreenkomstige relatiewe groeitempo's en Nopname. DIC het aanvanklik NH/ opname gestimuleer, maar enige latere stimulerende effek van DIC op fisiologiese prosesse was klaarblyklik uitgekanselleer deur N~ + toksiteit veroorsaak deur vertraagde assimilasie. Die NUE van plante gekweek met N03- en 5000 ppm CO2 was hoër as dié van plante gekweek met N03- en 0 ppm CO2. Dit is moontlik gekoppel aan hoër relatiewe groeitempo's teenoor onveranderde N opname tempo's. Plante gekweek met N03- en 5000 ppm CO2 het hoër in vivo NR en in vitro NR en PEPc aktiwiteite getoon as plante gekweek met N03- en 0 ppm CO2. Bogenoemde toenames in ensiem aktiwiteite word verbind met biomassa toename deur verhoogde organiese suur sintese. Dit bied 'n moontlike verklaring vir die hoër relatiewe groeitempo's van plante gekweek met N03- en 5000 ppm CO2 teenoor plante gegroei met N03- en 0 ppm CO2. Die 015N waardes van plante gekweek met NH/ en 5000 ppm CO2 was meer positief as dié van plante gekweek met Nl-l,+ en 0 ppm CO2 wat gedui het op die afwesigheid van ensiematiese diskriminasie. Dit kon as gevolg gewees het van die vertragende effek van DIC op Nl-la + opname wat daartoe sou lei dat die plante beide isotope eweveel inkorporeer. Eksperimente met ol3C het getoon dat PEPc oor 'n lang tydperk eweveel begedra het tot die koolstofbegroting van plante gekweek met beide N03- and N~+. Hiervan kan afgelei word dat die laer NUE van plante gekweek met NH4 + en 5000 ppm C02 in vergelyking met dié van plante gekweek met N03- en 5000 ppm CO2 die gevolg was van verhoogde NH/ opname en uitskeiding van aminosure in die voedingsoplossing. Eksperimente met 0"c het ook getoon dat verhoogde DIe konsentrasies die bydrae van PEPc tot die plant se koolstofbegroting laat toeneem.
Peterson, Kendra Leigh. "Effects of humic acids and soil symbionts on growth, physiology, and productivity of two crop species." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1501187076919492.
Full textHall, David Shane. "Soil-plant root relationships of herbaceous biomass crops grown on the Piedmont of Virginia." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-08182009-040419/.
Full textBooks on the topic "Crops – Physiology"
1936-, Pearce R. Brent, and Mitchell Roger L. 1932-, eds. Physiology of crop plants. Ames: Iowa State University Press, 1985.
Find full textSquire, G. R. The physiology of tropical crop production. Wallingford, Oxon, U.K: C.A.B. International for the Oversease Development Administration, 1990.
Find full text1951-, Walker Andrew J., ed. An introduction to the physiology of crop yield. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Find full textRemison, S. Uduzei. Basic principles of crop physiology. Benin City, Edo State: Sadoh Press, 2005.
Find full textRao, N. K. Srinivasa, K. S. Shivashankara, and R. H. Laxman, eds. Abiotic Stress Physiology of Horticultural Crops. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2725-0.
Full textSingh, B. P., ed. Biofuel crops: production, physiology and genetics. Wallingford: CABI, 2013. http://dx.doi.org/10.1079/9781845938857.0000.
Full textWeston, G. D. Crop physiology. Oxford: Butterworth-Heinemann on behalf of Open universiteit and University of Greenwich, 1994.
Find full textC, Baligar V., and Clark R. B, eds. Physiology of crop production. New York: Food Products Press, 2005.
Find full textPethő, Menyhért. Mezőgazdasági növények élettana. 2nd ed. Budapest: Akadémiai Kiadó, 1993.
Find full textBook chapters on the topic "Crops – Physiology"
Rabinowitch, H. D., and R. Kamenetsky Goldstein. "Allium crops." In The physiology of vegetable crops, 421–56. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781786393777.0421.
Full textIslam, M. Anowarul, and Augustine K. Obour. "Drought Physiology of Forage Crops." In Handbook of Plant and Crop Physiology, 567–78. 4th ed. 4th edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093640-35.
Full textSwadija, O. Kumari, Atul Jayapal, and V. B. Padmanabhan. "Tropical Tuber Crops." In Abiotic Stress Physiology of Horticultural Crops, 343–68. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2725-0_19.
Full textRao, N. K. Srinivasa. "Arid Zone Fruit Crops." In Abiotic Stress Physiology of Horticultural Crops, 223–34. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2725-0_13.
Full textTrípodi, Karina E. J., Bruno E. Rojas, Alberto A. Iglesias, and Florencio E. Podestá. "CAM Plants as Crops." In Handbook of Plant and Crop Physiology, 1083–98. 4th ed. 4th edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093640-59.
Full textTaylor, Alan G. "Seed storage, germination, quality, and enhancements." In The physiology of vegetable crops, 1–30. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781786393777.0001.
Full textLeskovar, D. I. "Transplanting." In The physiology of vegetable crops, 31–60. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781786393777.0031.
Full textWigge, Philip A., and Katja E. Jaeger. "Regulation of flowering in crop plants." In The physiology of vegetable crops, 61–70. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781786393777.0061.
Full textWien, H. C. "Abiotic stress effects on vegetable crops." In The physiology of vegetable crops, 71–93. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781786393777.0071.
Full textStützel, H., and T. W. Chen. "Models of vegetable growth and development." In The physiology of vegetable crops, 94–116. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781786393777.0094.
Full textConference papers on the topic "Crops – Physiology"
Lebedev, V. G., N. M. Subbotina, N. P. Kovalenko, and K. A. Shestibratov. "Marker selection of berry crops to improve nutritional properties." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-259.
Full textRzhevsky, S. G., T. A. Gorodetskaya, T. M. Tabatskaya, O. S. Mashkina, and T. P. Fedulova. "Molecular genetic analysis of forest tree crops obtained by microclonal propagation." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-374.
Full textReddy, K. R., S. Koti, V. G. Kakani, D. Zhao, and W. Gao. "Genotypic variation of soybean and cotton crops in their response to UV-B radiation for vegetative growth and physiology." In Optics & Photonics 2005, edited by Germar Bernhard, James R. Slusser, Jay R. Herman, and Wei Gao. SPIE, 2005. http://dx.doi.org/10.1117/12.619899.
Full textKershanskaya, O. I., G. S. Mukiyanova, D. S. Nelidova, G. L. Esenbaeva, S. N. Nelidov, K. R. Uteulin, and J. Stephens. "CRISPR/Cas9 editing the genome of crops in the development of biology and agriculture." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-207.
Full textPakhomova, V. M., A. I. Daminova, and I. A. Gaysin. "Cytogenetic analysis of the action of chelate microfertilizer brand ZhUSS-2 in the processing of seeds of grain crops." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-341.
Full textKalatskaya, J. N., O. V. Doroshchuk, N. A. Laman, and M. N. Mandrik-Litvinkovich. "The influence of bacteria of the genus Bacillus on the productivity of green crops and the quality of the resulting products." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-202.
Full textPradedova, E. V., O. D. Nimaeva, and R. K. Salyaev. "Redox systems of glutathione and ascorbic acid of central vacuole. Comparison of the redox systems of glutathione and ascorbic acid in vacuoles and plastids of beet root crops." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-364.
Full textAbendroth, Lori, Alison Robertson, Roger Elmore, and Matt Boyer. "Fungicides on Corn: Disease Control, Physiology of the Plant, and Yield." In Proceedings of the 16th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2007. http://dx.doi.org/10.31274/icm-180809-885.
Full textPrudnikov, Igor, Anton Smirnov, and Volodymyr Tsyvkin. "Apoptosomes and proteasomes from exosomes generated by human hematopoietic stem cells." In Cell-to-Cell Metabolic Cross-Talk in Physiology and Pathology. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/cells2020-08924.
Full textMat Nayan, Norazirah, Rosfaiizah Siran, Andrean Husin, and Siti Hamimah Sheikh Abd Kadir. "The Effects of Prenatal Bisphenol A exposure on Neural Signaling Activity in Male Rat Hippocampus and its Neurobehavioral Outcomes." In Cell-to-Cell Metabolic Cross-Talk in Physiology and Pathology. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/cells2020-08928.
Full textReports on the topic "Crops – Physiology"
Maxfield, Jason. Agricultural Management Decisions Impact Isoprene Emission and Physiology of Arundo donax, an Emerging Bioenergy Crop. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1641.
Full textKatz, Eric. Measurement of the Cross-Sectional Area of the Nasal Passages of Nine Species of Modern Odontoceti with Implications for Comparative Physiology and the Paleophysiology of the Dinosauria. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2244.
Full text