Academic literature on the topic 'Cross-Modal Retrieval and Hashing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cross-Modal Retrieval and Hashing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cross-Modal Retrieval and Hashing"

1

Liu, Huan, Jiang Xiong, Nian Zhang, Fuming Liu, and Xitao Zou. "Quadruplet-Based Deep Cross-Modal Hashing." Computational Intelligence and Neuroscience 2021 (July 2, 2021): 1–10. http://dx.doi.org/10.1155/2021/9968716.

Full text
Abstract:
Recently, benefitting from the storage and retrieval efficiency of hashing and the powerful discriminative feature extraction capability of deep neural networks, deep cross-modal hashing retrieval has drawn more and more attention. To preserve the semantic similarities of cross-modal instances during the hash mapping procedure, most existing deep cross-modal hashing methods usually learn deep hashing networks with a pairwise loss or a triplet loss. However, these methods may not fully explore the similarity relation across modalities. To solve this problem, in this paper, we introduce a quadruplet loss into deep cross-modal hashing and propose a quadruplet-based deep cross-modal hashing (termed QDCMH) method. Extensive experiments on two benchmark cross-modal retrieval datasets show that our proposed method achieves state-of-the-art performance and demonstrate the efficiency of the quadruplet loss in cross-modal hashing.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Xuanwu, Guoxian Yu, Carlotta Domeniconi, Jun Wang, Yazhou Ren, and Maozu Guo. "Ranking-Based Deep Cross-Modal Hashing." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4400–4407. http://dx.doi.org/10.1609/aaai.v33i01.33014400.

Full text
Abstract:
Cross-modal hashing has been receiving increasing interests for its low storage cost and fast query speed in multi-modal data retrievals. However, most existing hashing methods are based on hand-crafted or raw level features of objects, which may not be optimally compatible with the coding process. Besides, these hashing methods are mainly designed to handle simple pairwise similarity. The complex multilevel ranking semantic structure of instances associated with multiple labels has not been well explored yet. In this paper, we propose a ranking-based deep cross-modal hashing approach (RDCMH). RDCMH firstly uses the feature and label information of data to derive a semi-supervised semantic ranking list. Next, to expand the semantic representation power of hand-crafted features, RDCMH integrates the semantic ranking information into deep cross-modal hashing and jointly optimizes the compatible parameters of deep feature representations and of hashing functions. Experiments on real multi-modal datasets show that RDCMH outperforms other competitive baselines and achieves the state-of-the-art performance in cross-modal retrieval applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Xiaohan, Zhen Wang, Nannan Wu, Guokun Li, Chuang Feng, and Pingping Liu. "Unsupervised Deep Relative Neighbor Relationship Preserving Cross-Modal Hashing." Mathematics 10, no. 15 (2022): 2644. http://dx.doi.org/10.3390/math10152644.

Full text
Abstract:
The image-text cross-modal retrieval task, which aims to retrieve the relevant image from text and vice versa, is now attracting widespread attention. To quickly respond to the large-scale task, we propose an Unsupervised Deep Relative Neighbor Relationship Preserving Cross-Modal Hashing (DRNPH) to achieve cross-modal retrieval in the common Hamming space, which has the advantages of storage and efficiency. To fulfill the nearest neighbor search in the Hamming space, we demand to reconstruct both the original intra- and inter-modal neighbor matrix according to the binary feature vectors. Thus, we can compute the neighbor relationship among different modal samples directly based on the Hamming distances. Furthermore, the cross-modal pair-wise similarity preserving constraint requires the similar sample pair have an identical Hamming distance to the anchor. Therefore, the similar sample pairs own the same binary code, and they have minimal Hamming distances. Unfortunately, the pair-wise similarity preserving constraint may lead to an imbalanced code problem. Therefore, we propose the cross-modal triplet relative similarity preserving constraint, which demands the Hamming distances of similar pairs should be less than those of dissimilar pairs to distinguish the samples’ ranking orders in the retrieval results. Moreover, a large similarity marginal can boost the algorithm’s noise robustness. We conduct the cross-modal retrieval comparative experiments and ablation study on two public datasets, MIRFlickr and NUS-WIDE, respectively. The experimental results show that DRNPH outperforms the state-of-the-art approaches in various image-text retrieval scenarios, and all three proposed constraints are necessary and effective for boosting cross-modal retrieval performance.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Chao, Cheng Deng, Lei Wang, De Xie, and Xianglong Liu. "Coupled CycleGAN: Unsupervised Hashing Network for Cross-Modal Retrieval." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 176–83. http://dx.doi.org/10.1609/aaai.v33i01.3301176.

Full text
Abstract:
In recent years, hashing has attracted more and more attention owing to its superior capacity of low storage cost and high query efficiency in large-scale cross-modal retrieval. Benefiting from deep leaning, continuously compelling results in cross-modal retrieval community have been achieved. However, existing deep cross-modal hashing methods either rely on amounts of labeled information or have no ability to learn an accuracy correlation between different modalities. In this paper, we proposed Unsupervised coupled Cycle generative adversarial Hashing networks (UCH), for cross-modal retrieval, where outer-cycle network is used to learn powerful common representation, and inner-cycle network is explained to generate reliable hash codes. Specifically, our proposed UCH seamlessly couples these two networks with generative adversarial mechanism, which can be optimized simultaneously to learn representation and hash codes. Extensive experiments on three popular benchmark datasets show that the proposed UCH outperforms the state-of-the-art unsupervised cross-modal hashing methods.
APA, Harvard, Vancouver, ISO, and other styles
5

刘, 志虎. "Label Consistency Hashing for Cross-Modal Retrieval." Computer Science and Application 11, no. 04 (2021): 1104–12. http://dx.doi.org/10.12677/csa.2021.114114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yao, Tao, Xiangwei Kong, Haiyan Fu, and Qi Tian. "Semantic consistency hashing for cross-modal retrieval." Neurocomputing 193 (June 2016): 250–59. http://dx.doi.org/10.1016/j.neucom.2016.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Shubai, Song Wu, and Li Wang. "Hierarchical semantic interaction-based deep hashing network for cross-modal retrieval." PeerJ Computer Science 7 (May 25, 2021): e552. http://dx.doi.org/10.7717/peerj-cs.552.

Full text
Abstract:
Due to the high efficiency of hashing technology and the high abstraction of deep networks, deep hashing has achieved appealing effectiveness and efficiency for large-scale cross-modal retrieval. However, how to efficiently measure the similarity of fine-grained multi-labels for multi-modal data and thoroughly explore the intermediate layers specific information of networks are still two challenges for high-performance cross-modal hashing retrieval. Thus, in this paper, we propose a novel Hierarchical Semantic Interaction-based Deep Hashing Network (HSIDHN) for large-scale cross-modal retrieval. In the proposed HSIDHN, the multi-scale and fusion operations are first applied to each layer of the network. A Bidirectional Bi-linear Interaction (BBI) policy is then designed to achieve the hierarchical semantic interaction among different layers, such that the capability of hash representations can be enhanced. Moreover, a dual-similarity measurement (“hard” similarity and “soft” similarity) is designed to calculate the semantic similarity of different modality data, aiming to better preserve the semantic correlation of multi-labels. Extensive experiment results on two large-scale public datasets have shown that the performance of our HSIDHN is competitive to state-of-the-art deep cross-modal hashing methods.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Mingyong, Qiqi Li, Lirong Tang, Shuang Peng, Yan Ma, and Degang Yang. "Deep Unsupervised Hashing for Large-Scale Cross-Modal Retrieval Using Knowledge Distillation Model." Computational Intelligence and Neuroscience 2021 (July 17, 2021): 1–11. http://dx.doi.org/10.1155/2021/5107034.

Full text
Abstract:
Cross-modal hashing encodes heterogeneous multimedia data into compact binary code to achieve fast and flexible retrieval across different modalities. Due to its low storage cost and high retrieval efficiency, it has received widespread attention. Supervised deep hashing significantly improves search performance and usually yields more accurate results, but requires a lot of manual annotation of the data. In contrast, unsupervised deep hashing is difficult to achieve satisfactory performance due to the lack of reliable supervisory information. To solve this problem, inspired by knowledge distillation, we propose a novel unsupervised knowledge distillation cross-modal hashing method based on semantic alignment (SAKDH), which can reconstruct the similarity matrix using the hidden correlation information of the pretrained unsupervised teacher model, and the reconstructed similarity matrix can be used to guide the supervised student model. Specifically, firstly, the teacher model adopted an unsupervised semantic alignment hashing method, which can construct a modal fusion similarity matrix. Secondly, under the supervision of teacher model distillation information, the student model can generate more discriminative hash codes. Experimental results on two extensive benchmark datasets (MIRFLICKR-25K and NUS-WIDE) show that compared to several representative unsupervised cross-modal hashing methods, the mean average precision (MAP) of our proposed method has achieved a significant improvement. It fully reflects its effectiveness in large-scale cross-modal data retrieval.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhong, Fangming, Zhikui Chen, and Geyong Min. "Deep Discrete Cross-Modal Hashing for Cross-Media Retrieval." Pattern Recognition 83 (November 2018): 64–77. http://dx.doi.org/10.1016/j.patcog.2018.05.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qi, Xiaojun, Xianhua Zeng, Shumin Wang, Yicai Xie, and Liming Xu. "Cross-modal variable-length hashing based on hierarchy." Intelligent Data Analysis 25, no. 3 (2021): 669–85. http://dx.doi.org/10.3233/ida-205162.

Full text
Abstract:
Due to the emergence of the era of big data, cross-modal learning have been applied to many research fields. As an efficient retrieval method, hash learning is widely used frequently in many cross-modal retrieval scenarios. However, most of existing hashing methods use fixed-length hash codes, which increase the computational costs for large-size datasets. Furthermore, learning hash functions is an NP hard problem. To address these problems, we initially propose a novel method named Cross-modal Variable-length Hashing Based on Hierarchy (CVHH), which can learn the hash functions more accurately to improve retrieval performance, and also reduce the computational costs and training time. The main contributions of CVHH are: (1) We propose a variable-length hashing algorithm to improve the algorithm performance; (2) We apply the hierarchical architecture to effectively reduce the computational costs and training time. To validate the effectiveness of CVHH, our extensive experimental results show the superior performance compared with recent state-of-the-art cross-modal methods on three benchmark datasets, WIKI, NUS-WIDE and MIRFlickr.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography