To see the other types of publications on this topic, follow the link: Cross-sectional scanning tunneling spectroscopy.

Journal articles on the topic 'Cross-sectional scanning tunneling spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cross-sectional scanning tunneling spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

GWO, Shangjr, and Hiroshi TOKUMOTO. "Cross-sectional Scanning Tunneling Microscopy and Spectroscopy of Compound Semiconductor Heterostructures." SHINKU 38, no. 12 (1995): 1009–19. http://dx.doi.org/10.3131/jvsj.38.1009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dong, Y., R. M. Feenstra, M. P. Semtsiv, and W. T. Masselink. "Cross-sectional scanning tunneling microscopy and spectroscopy of InGaP/GaAs heterojunctions." Applied Physics Letters 84, no. 2 (January 12, 2004): 227–29. http://dx.doi.org/10.1063/1.1638637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Teuschler, Thomas, Martin Hundhausen, and Lothar Ley. "Cross-sectional scanning-tunneling-spectroscopy of a-Si:H pn-doping superlattices." Superlattices and Microstructures 16, no. 3 (January 1994): 271–74. http://dx.doi.org/10.1016/s0749-6036(09)80013-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gwo, S., A. R. Smith, K. ‐J Chao, C. K. Shih, K. Sadra, and B. G. Streetman. "Cross‐sectional scanning tunneling microscopy and spectroscopy of passivated III–V heterostructures." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12, no. 4 (July 1994): 2005–8. http://dx.doi.org/10.1116/1.578997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cobley, R. J., K. S. Teng, T. G. G. Maffeïs, and S. P. Wilks. "Cross-sectional scanning tunneling microscopy and spectroscopy of strain in buried heterostructure lasers." Surface Science 600, no. 14 (July 2006): 2857–59. http://dx.doi.org/10.1016/j.susc.2006.05.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Aaron, and TeYu Chien. "Perspectives of cross-sectional scanning tunneling microscopy and spectroscopy for complex oxide physics." Physics Letters A 382, no. 11 (March 2018): 739–48. http://dx.doi.org/10.1016/j.physleta.2018.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thibado, Paul M. "Cross-sectional scanning tunneling spectroscopy of cleaved, silicon-based metal–oxide–semiconductor junctions." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 3 (May 1996): 1607. http://dx.doi.org/10.1116/1.589199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feenstra, R. M., E. T. Yu, J. M. Woodall, P. D. Kirchner, C. L. Lin, and G. D. Pettit. "Cross‐sectional imaging and spectroscopy of GaAs doping superlattices by scanning tunneling microscopy." Applied Physics Letters 61, no. 7 (August 17, 1992): 795–97. http://dx.doi.org/10.1063/1.107804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eisele, H., S. Borisova, L. Ivanova, M. Dähne, and Ph Ebert. "Cross-sectional scanning tunneling microscopy and spectroscopy of nonpolar GaN(11¯00) surfaces." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28, no. 4 (July 2010): C5G11—C5G18. http://dx.doi.org/10.1116/1.3456166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kawasaki, Jason K., Rainer Timm, Trevor E. Buehl, Edvin Lundgren, Anders Mikkelsen, Arthur C. Gossard, and Chris J. Palmstrøm. "Cross-sectional scanning tunneling microscopy and spectroscopy of semimetallic ErAs nanostructures embedded in GaAs." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, no. 3 (May 2011): 03C104. http://dx.doi.org/10.1116/1.3547713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kato, Takashi, and Ichiro Tanaka. "A scanning tunneling microscopy/spectroscopy system for cross‐sectional observations of epitaxial layers of semiconductors." Review of Scientific Instruments 61, no. 6 (June 1990): 1664–67. http://dx.doi.org/10.1063/1.1141129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Modesti, S., D. Furlanetto, M. Piccin, S. Rubini, and A. Franciosi. "High-resolution potential mapping in semiconductor nanostructures by cross-sectional scanning tunneling microscopy and spectroscopy." Applied Physics Letters 82, no. 12 (March 24, 2003): 1932–34. http://dx.doi.org/10.1063/1.1563310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Timm, Rainer, Holger Eisele, Andrea Lenz, Lena Ivanova, Vivien Vossebürger, Till Warming, Dieter Bimberg, Ian Farrer, David A. Ritchie, and Mario Dähne. "Confined States of Individual Type-II GaSb/GaAs Quantum Rings Studied by Cross-Sectional Scanning Tunneling Spectroscopy." Nano Letters 10, no. 10 (October 13, 2010): 3972–77. http://dx.doi.org/10.1021/nl101831n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hasegawa, Shigehiko, Wataru Doi, Atsushi Yabuuchi, and Hajime Asahi. "Evaluation of Device Configurations through Cross-Sectional Planes along Gates of 0.1 µm Metal–Oxide–Semiconductor Field-Effect Transistors by Scanning Tunneling Microscopy/Scanning Tunneling Spectroscopy." Japanese Journal of Applied Physics 45, no. 3B (March 27, 2006): 2033–36. http://dx.doi.org/10.1143/jjap.45.2033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Johnson, M. B. "Scanning tunneling microscopy and spectroscopy for studying cross-sectioned Si(100)." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 1 (January 1992): 508. http://dx.doi.org/10.1116/1.586384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

ARSEYEV, P. I., N. S. MASLOVA, V. I. PANOV, S. V. SAVINOV, and CHRIS VAN HAESENDONCK. "NONEQUILIBRIUM EFFECTS AND MANY-PARTICLE INTERACTION IN TUNNELING SPECTROSCOPY OF IMPURITY d-ORBITAL." International Journal of Nanoscience 02, no. 06 (December 2003): 575–84. http://dx.doi.org/10.1142/s0219581x03001693.

Full text
Abstract:
We report the direct observation by low temperature scanning tunneling microscopy and scanning tunneling spectroscopy of the d-orbital of a Mn p-type impurity appearing on a cleaved InAs (110) surface. STM images reveal remarkable cross-like protrusions and round depressions around isolated impurity atom on the surface at opposite polarity of tunneling bias voltage. By means of diagram technique for nonequilibrium processes we show that the crucial interplay between nonequilibrium charging effects and many-particle interaction leading to Coulomb singularities provides a consistent description of the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
17

Gao, Yang, and Kai-He Ding. "Scanning tunneling spectroscopy of a magnetic adatom on graphene." International Journal of Modern Physics B 28, no. 31 (December 8, 2014): 1450225. http://dx.doi.org/10.1142/s0217979214502257.

Full text
Abstract:
We present a theoretic study on scanning tunneling spectroscopy (STS) of a magnetic adatom on graphene. Three typical configurations of adatoms on graphene are considered explicitly: the adatom is on the top of a carbon atom (TC), in a substitutional site (SC), or above the center of the honeycomb hexagon (HC). Based on the nonequilibrium Green's function method, we derive the local density of state (LDOS) for the adatom and the differential conductance through the scanning tunneling microscopy (STM) device. Our results show that in comparison with the cases of the TC and SC, there exists an anomalous broadening of the local adatom energy level in the HC, which pushes the adatom energy to first cross the Fermi level, leading to the appearance of an antiresonance in the LDOS due to the interference between the Kondo resonance and the broadened adatom level. Correspondingly, the bias dependence of the differential conductance in the HC exhibits a more asymmetric sharp Kondo peak pinned to the gate voltage, and its height still remains significantly large compared to that for the other two cases. Additionally, with decreasing the gate voltage, the Kondo peak in the differential conductance gradually decays, and eventually vanishes in the absence of the gate voltage.
APA, Harvard, Vancouver, ISO, and other styles
18

Smith, A. R. "Comparative study of cross-sectional scanning tunneling microscopy/spectroscopy on III–V hetero- and homostructures: Ultrahigh vacuum-cleaved versus sulfide passivated." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, no. 4 (July 1994): 2610. http://dx.doi.org/10.1116/1.587218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Majzik, Zsolt, Martin Setvín, Andreas Bettac, Albrecht Feltz, Vladimír Cháb, and Pavel Jelínek. "Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique." Beilstein Journal of Nanotechnology 3 (March 15, 2012): 249–59. http://dx.doi.org/10.3762/bjnano.3.28.

Full text
Abstract:
We present the results of simultaneous scanning-tunneling and frequency-modulated dynamic atomic force microscopy measurements with a qPlus setup. The qPlus sensor is a purely electrical sensor based on a quartz tuning fork. If both the tunneling current and the force signal are to be measured at the tip, a cross-talk of the tunneling current with the force signal can easily occur. The origin and general features of the capacitive cross-talk will be discussed in detail in this contribution. Furthermore, we describe an experimental setup that improves the level of decoupling between the tunneling-current and the deflection signal. The efficiency of this experimental setup is demonstrated through topography and site-specific force/tunneling-spectroscopy measurements on the Si(111) 7×7 surface. The results show an excellent agreement with previously reported data measured by optical interferometric deflection.
APA, Harvard, Vancouver, ISO, and other styles
20

Bolotov, L., M. Nishizawa, T. Kanayama, and Y. Miura. "Carrier concentration profiling on oxidized surfaces of Si device cross sections by resonant electron tunneling scanning probe spectroscopy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 26, no. 1 (2008): 415. http://dx.doi.org/10.1116/1.2802103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hong, Ie-Hong, and Sheng-Wen Liu. "Observation of the Magnetization Reorientation in Self-Assembled Metallic Fe-Silicide Nanowires at Room Temperature by Spin-Polarized Scanning Tunneling Spectromicroscopy." Coatings 9, no. 5 (May 10, 2019): 314. http://dx.doi.org/10.3390/coatings9050314.

Full text
Abstract:
The quasi-periodic magnetic domains in metallic Fe-silicide nanowires self-assembled on the Si(110)-16 × 2 surface have been observed at room temperature by direct imaging of both the topographic and magnetic structures using spin-polarized scanning tunneling microscopy/spectroscopy. The spin-polarized differential conductance (dI/dV) map of the rectangular-sectional Fe-silicide nanowire with a width and height larger than 36 and 4 nm, respectively, clearly shows an array of almost parallel streak domains that alternate an enhanced (reduced) density of states over in-plane (out-of-plane) magnetized domains with a magnetic period of 5.0 ± 1.0 nm. This heterostructure of magnetic Fe-silicide nanowires epitaxially integrated with the Si(110)-16 × 2 surface will have a significant impact on the development of Si-based spintronic nanodevices.
APA, Harvard, Vancouver, ISO, and other styles
22

Ren, Ming-Qiang, Ya-Jun Yan, Tong Zhang, and Dong-Lai Feng. "Possible Nodeless Superconducting Gaps in Bi 2 Sr 2 CaCu 2 O 8+δ and YBa 2 Cu 3 O 7− x Revealed by Cross-Sectional Scanning Tunneling Spectroscopy." Chinese Physics Letters 33, no. 12 (December 2016): 127402. http://dx.doi.org/10.1088/0256-307x/33/12/127402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Batson, P. E. "Schottky barrier measurement by electron energy loss spectroscopy." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 376–77. http://dx.doi.org/10.1017/s0424820100153853.

Full text
Abstract:
It is difficult to imagine an electrical property which is more crucial to the success of modern device structures than the Schottky Barrier. In spite of this, the mechanism of barrier formation is still imperfectly understood, because the barrier formation is essentially a result of the details of the micro-structure of the metal/semiconductor interface. High resolution microscopy can obtain the microstructure of small regions of interfaces, but typical tools for measuring electronic structure have been able to measure only the bulk, or average, properties. Recently, scanning tunneling microscopy, using ballistically injected electrons, was used to obtain I-V characteristic of a buried junction. It was possible to image the junction in the plan-view geometry to show how the junction electrical properties change on a scale of 1 nm. These studies showed barrier changes with morphology and promise to provide useful insight into the problem. However, the studies do not obtain electrical properties as a function of distance away from the junction. This information is needed to help understand the underlying physics of the barrier formation. Thus, there is a need for an analytical tool which is compatible with the high resolution TEM imaging of interfaces in the cross-section geometry. Electron energy loss scattering can provide this tool if a small probe and a high energy resolution can be obtained.
APA, Harvard, Vancouver, ISO, and other styles
24

Yu, Edward T. "Cross-Sectional Scanning Tunneling Microscopy." Chemical Reviews 97, no. 4 (June 1997): 1017–44. http://dx.doi.org/10.1021/cr960084n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yu, Edward T. "Cross-Sectional Scanning Tunneling Microscopy of Semiconductor Heterostructures." MRS Bulletin 22, no. 8 (August 1997): 22–26. http://dx.doi.org/10.1557/s0883769400033765.

Full text
Abstract:
As characteristic dimensions in semiconductor devices continue to shrink and as advanced heterostructure devices increase in prominence, the ability to characterize structure and electronic properties in semiconductor materials and device structures at the atomic to nanometer scales has come to be of outstanding and immediate importance. Phenomena such as atomic-scale roughness of heterojunction interfaces, compositional ordering in semiconductor alloys, discreteness and spatial distribution of dopant atoms, and formation of self-assembled nanoscale structures can exert a profound influence on material properties and device behavior. The relationships between atomic-scale structure, epitaxial growth or processing conditions, and ultimately material properties and device behavior must be understood for realization and effective optimization of a wide range of semiconductor heterostructure and nanoscale devices.Cross-sectional scanning tunneling microscopy (STM) has emerged as a unique and powerful tool in the study of atomic-scale properties in III-V compound semiconductor heterostructures and of nanometer-scale structure and electronic properties in Si micro-electronic devices, offering unique capabilities for characterization that in conjunction with a variety of other, complementary experimental methods are providing new and important insights into material and device properties at the atomic to nanometer scale. In this article, we describe the basic experimental techniques involved in cross-sectional STM and give a few representative applications from our work that illustrate the ability, using cross-sectional STM in conjunction with other experimental techniques, to probe atomic-scale features in the structure of semiconductor heterojunctions and to correlate these features with epitaxial-growth conditions and device behavior.
APA, Harvard, Vancouver, ISO, and other styles
26

Johnson, M. B., and H. W. M. Salemink. "Cross-sectional scanning tunneling microscopy on semiconductor heterostructures." Materials Science and Engineering: B 24, no. 1-3 (May 1994): 213–17. http://dx.doi.org/10.1016/0921-5107(94)90330-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zuo, S. L., E. T. Yu, A. A. Allerman, and R. M. Biefeld. "Cross-sectional scanning tunneling microscopy of InAsSb/InAsP superlattices." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, no. 4 (1999): 1781. http://dx.doi.org/10.1116/1.590826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Cobley, R. J., K. S. Teng, M. R. Brown, and S. P. Wilks. "Cross-sectional scanning tunneling microscopy of biased semiconductor lasers." Journal of Applied Physics 102, no. 2 (July 15, 2007): 024306. http://dx.doi.org/10.1063/1.2757006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Vaterlaus, A. "Cross-sectional scanning tunneling microscopy of epitaxial GaAs structures." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 11, no. 4 (July 1993): 1502. http://dx.doi.org/10.1116/1.586959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Garleff, J. K., A. P. Wijnheijmer, and P. M. Koenraad. "Challenges in cross-sectional scanning tunneling microscopy on semiconductors." Semiconductor Science and Technology 26, no. 6 (March 29, 2011): 064001. http://dx.doi.org/10.1088/0268-1242/26/6/064001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

COBLEY, R. J., K. S. TENG, M. R. BROWN, T. G. G. MAFFEÏS, and S. P. WILKS. "CROSS-SECTIONAL SCANNING TUNNELING MICROSCOPY OF BURIED HETEROSTRUCTURE LASERS." International Journal of Nanoscience 03, no. 04n05 (August 2004): 525–31. http://dx.doi.org/10.1142/s0219581x04002334.

Full text
Abstract:
A single-mode buried heterostructure laser has been imaged using Cross-Sectional Scanning Tunneling Microscopy (X-STM). The problem of positioning the tip on the restricted active region on the (110) face has been overcome using combined Scanning Electron Microscopy (SEM). In order to understand the change in the STM scans when biased, particularly the physical change in surface step defects caused by commercial sample preparation, the experimental setup has been modified to allow the sample to be biased. A simpler double quantum well test structure has been biased and it has been demonstrated that it is possible to continue performing STM whilst the device is powered. The change in the relative contrast across the image has been shown to be unaffected by this external bias for the range scanned, as predicted by a fully-coupled Poison drift–diffusion model calculated using Fermi–Dirac statistics.
APA, Harvard, Vancouver, ISO, and other styles
32

Yu, EdwardT. "Cross-sectional scanning tunneling microscopy of mixed-anion semiconductor heterostructures." Micron 30, no. 1 (February 1999): 51–58. http://dx.doi.org/10.1016/s0968-4328(98)00042-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Eisele, H., O. Flebbe, T. Kalka, C. Preinesberger, F. Heinrichsdorff, A. Krost, D. Bimberg, and M. Dähne-Prietsch. "Cross-sectional scanning-tunneling microscopy of stacked InAs quantum dots." Applied Physics Letters 75, no. 1 (July 5, 1999): 106–8. http://dx.doi.org/10.1063/1.124290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Golden, T. D., R. P. Raffaelle, and J. A. Switzer. "Cross‐sectional scanning tunneling microscopy of electrodeposited metal oxide superlattices." Applied Physics Letters 63, no. 11 (September 13, 1993): 1501–3. http://dx.doi.org/10.1063/1.109669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chien, Te Yu, Jak Chakhalian, John W. Freeland, and Nathan P. Guisinger. "Cross-Sectional Scanning Tunneling Microscopy Applied to Complex Oxide Interfaces." Advanced Functional Materials 23, no. 20 (March 26, 2013): 2565–75. http://dx.doi.org/10.1002/adfm.201203430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Keizer, J. G., M. Bozkurt, J. Bocquel, P. M. Koenraad, T. Mano, T. Noda, K. Sakoda, et al. "Shape Control of QDs Studied by Cross-sectional Scanning Tunneling Microscopy." Journal of the Korean Physical Society 58, no. 5(1) (May 13, 2011): 1244–50. http://dx.doi.org/10.3938/jkps.58.1244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Blokland, J. H., M. Bozkurt, J. M. Ulloa, D. Reuter, A. D. Wieck, P. M. Koenraad, P. C. M. Christianen, and J. C. Maan. "Ellipsoidal InAs quantum dots observed by cross-sectional scanning tunneling microscopy." Applied Physics Letters 94, no. 2 (January 12, 2009): 023107. http://dx.doi.org/10.1063/1.3072366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zuo, S. L., Y. G. Hong, E. T. Yu, and J. F. Klem. "Cross-sectional scanning tunneling microscopy of GaAsSb/GaAs quantum well structures." Journal of Applied Physics 92, no. 7 (October 2002): 3761–70. http://dx.doi.org/10.1063/1.1501740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wierts, A., J. M. Ulloa, C. Çelebi, P. M. Koenraad, H. Boukari, L. Maingault, R. André, and H. Mariette. "Cross-sectional scanning tunneling microscopy study on II–VI multilayer structures." Applied Physics Letters 91, no. 16 (October 15, 2007): 161907. http://dx.doi.org/10.1063/1.2799254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Eisele, H., L. Ivanova, S. Borisova, M. Dähne, M. Winkelnkemper, and Ph Ebert. "Doping modulation in GaN imaged by cross-sectional scanning tunneling microscopy." Applied Physics Letters 94, no. 16 (April 20, 2009): 162110. http://dx.doi.org/10.1063/1.3123258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kim, Y. ‐C, M. J. Nowakowski, and D. N. Seidman. "Novelin situcleavage technique for cross‐sectional scanning tunneling microscopy sample preparation." Review of Scientific Instruments 67, no. 5 (May 1996): 1922–24. http://dx.doi.org/10.1063/1.1146997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pai, Woei Wu, T. Y. Wu, C. H. Lin, B. X. Wang, Y. S. Huang, and H. L. Chou. "A cross-sectional scanning tunneling microscopy study of IrO2 rutile single crystals." Surface Science 601, no. 12 (June 2007): L69—L72. http://dx.doi.org/10.1016/j.susc.2007.04.227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mikkelsen, A., and E. Lundgren. "Cross-sectional scanning tunneling microscopy studies of novel III–V semiconductor structures." Progress in Surface Science 80, no. 1-2 (January 2005): 1–25. http://dx.doi.org/10.1016/j.progsurf.2005.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Offermans, P., P. M. Koenraad, R. Nötzel, J. H. Wolter, and K. Pierz. "Formation of InAs wetting layers studied by cross-sectional scanning tunneling microscopy." Applied Physics Letters 87, no. 11 (September 12, 2005): 111903. http://dx.doi.org/10.1063/1.2042543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Khang, Yoonho, Yeonjoon Park, Miquel Salmeron, and Eicke R. Weber. "Low temperature ultrahigh vacuum cross-sectional scanning tunneling microscope for luminescence measurements." Review of Scientific Instruments 70, no. 12 (December 1999): 4595–99. http://dx.doi.org/10.1063/1.1150118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tsuruoka, T., N. Tachikawa, S. Ushioda, F. Matsukura, K. Takamura, and H. Ohno. "Local electronic structures of GaMnAs observed by cross-sectional scanning tunneling microscopy." Applied Physics Letters 81, no. 15 (October 7, 2002): 2800–2802. http://dx.doi.org/10.1063/1.1512953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Keizer, J. G., M. Bozkurt, J. Bocquel, T. Mano, T. Noda, K. Sakoda, E. C. Clark, et al. "Shape control of quantum dots studied by cross-sectional scanning tunneling microscopy." Journal of Applied Physics 109, no. 10 (May 15, 2011): 102413. http://dx.doi.org/10.1063/1.3577960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, N., C. K. Shih, J. Geisz, A. Mascarenhas, and J. M. Olson. "Alloy ordering in GaInP alloys: A cross-sectional scanning tunneling microscopy study." Applied Physics Letters 73, no. 14 (October 5, 1998): 1979–81. http://dx.doi.org/10.1063/1.122341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Huajie, H. A. McKay, R. M. Feenstra, G. C. Aers, P. J. Poole, R. L. Williams, S. Charbonneau, P. G. Piva, T. W. Simpson, and I. V. Mitchell. "InGaAs/InP quantum well intermixing studied by cross-sectional scanning tunneling microscopy." Journal of Applied Physics 89, no. 9 (May 2001): 4815–23. http://dx.doi.org/10.1063/1.1361237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hirayama, H., M. Koike, Y. Einaga, A. Shibata, and K. Takayanagi. "Cross-sectional scanning tunneling microscope study of a boron-implanted Si wafer." Physical Review B 56, no. 4 (July 15, 1997): 1948–57. http://dx.doi.org/10.1103/physrevb.56.1948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography