Journal articles on the topic 'Crowd, Pedestrian, Proxemics, Simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Crowd, Pedestrian, Proxemics, Simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Jun, and Haoxiang Zhang. "Crowd Evacuation Simulation Research Based on Improved Reciprocal Velocity Obstacles (RVO) Model with Path Planning and Emotion Contagion." Transportation Research Record: Journal of the Transportation Research Board 2676, no. 3 (2021): 740–57. http://dx.doi.org/10.1177/03611981211056910.
Full textSarmady, Siamak, Fazilah Haron, and Abdullah Zawawi Talib. "Simulation of pedestrian movements using a fine grid cellular automata model." IAES International Journal of Artificial Intelligence (IJ-AI) 11, no. 4 (2022): 1197. http://dx.doi.org/10.11591/ijai.v11.i4.pp1197-1212.
Full textSiamak, Sarmady, Haron Fazilah, and Zawawi Talib Abdullah. "Simulation of pedestrian movements using a fine grid cellular automata model." International Journal of Artificial Intelligence (IJ-AI) 11, no. 4 (2022): 1197–212. https://doi.org/10.11591/ijai.v11.i4.pp1197-1212.
Full textLi, Cuiling, Rongyong Zhao, Chuanfeng Han, Rahman Arifur, Yunlong Ma, and Qiong Liu. "Dynamic Disturbance Propagation Model of Pedestrian Panic Behaviors and Lyapunov-Based Crowd Stability Analysis." Applied Sciences 13, no. 21 (2023): 11762. http://dx.doi.org/10.3390/app132111762.
Full textZanlungo, Francesco, Zeynep Yucel, Claudio Feliciani, Katsuhiro Nishinari, and Takayuki Kanda. "Congestion Number Analysis of Cross-Flow Dynamics: Experimental Data and Simulations." Collective Dynamics 9 (May 17, 2024): 1–8. http://dx.doi.org/10.17815/cd.2024.153.
Full textVizzari, Giuseppe, and Thomas Cecconello. "Pedestrian Simulation with Reinforcement Learning: A Curriculum-Based Approach." Future Internet 15, no. 1 (2022): 12. http://dx.doi.org/10.3390/fi15010012.
Full textYasufuku, Kensuke, and Akira Takahashi. "Development of a Real-Time Crowd Flow Prediction and Visualization Platform for Crowd Management." Journal of Disaster Research 19, no. 2 (2024): 248–55. http://dx.doi.org/10.20965/jdr.2024.p0248.
Full textQiu, Fasheng, and Xiaolin Hu. "Modeling group structures in pedestrian crowd simulation." Simulation Modelling Practice and Theory 18, no. 2 (2010): 190–205. http://dx.doi.org/10.1016/j.simpat.2009.10.005.
Full textHayashida, Tomohiro, Shinya Sekizaki, Yushi Furuya, and Ichiro Nishizaki. "ACS2-Powered Pedestrian Flow Simulation for Crowd Dynamics." AppliedMath 5, no. 3 (2025): 88. https://doi.org/10.3390/appliedmath5030088.
Full textLiu, Yuanyuan, and Toshiyuki Kaneda. "Using agent-based simulation for public space design based on the Shanghai Bund waterfront crowd disaster." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 34, no. 2 (2020): 176–90. http://dx.doi.org/10.1017/s0890060420000049.
Full textAlrashed, Mohammed, and Jeff Shamma. "Agent Based Modelling and Simulation of Pedestrian Crowds in Panic Situations." Collective Dynamics 5 (August 12, 2020): A100. http://dx.doi.org/10.17815/cd.2020.100.
Full textJin, Lianghai, Mei Fang, Shu Chen, Wenfan Lei, and Yun Chen. "Tangential Change Behavior and Pedestrian Simulation of Multichannel Evacuation Crowd." Mathematical Problems in Engineering 2020 (October 21, 2020): 1–13. http://dx.doi.org/10.1155/2020/7649094.
Full textUsher, John M., Eric Kolstad, and Xuan Liu. "Simulation of Pedestrian Behavior in Intermodal Facilities." International Journal of Agent Technologies and Systems 2, no. 3 (2010): 66–82. http://dx.doi.org/10.4018/jats.2010070105.
Full textMuhammed, Danial A., Tarik A. Rashid, Abeer Alsadoon, et al. "An Improved Simulation Model for Pedestrian Crowd Evacuation." Mathematics 8, no. 12 (2020): 2171. http://dx.doi.org/10.3390/math8122171.
Full textQiu, Fasheng, and Xiaolin Hu. "Spatial activity-based modeling for pedestrian crowd simulation." SIMULATION 89, no. 4 (2012): 451–65. http://dx.doi.org/10.1177/0037549711435950.
Full textLiao, Can, Kejun Zhu, Haixiang Guo, and Jian Tang. "Simulation Research on Safe Flow Rate of Bidirectional Crowds Using Bayesian-Nash Equilibrium." Complexity 2019 (January 15, 2019): 1–15. http://dx.doi.org/10.1155/2019/7942483.
Full textWang, Hao, and Muzhou Xiong. "Towards modeling pedestrian’s invisible trail for simulating crowd movement." International Journal of Modeling, Simulation, and Scientific Computing 09, no. 02 (2018): 1850016. http://dx.doi.org/10.1142/s1793962318500162.
Full textHu, Qu Qiang, and Zhi Gang Song. "Modeling and Simulation on Unidirectional Pedestrian Flow Based on Cellular Automata." Applied Mechanics and Materials 482 (December 2013): 350–54. http://dx.doi.org/10.4028/www.scientific.net/amm.482.350.
Full textAleksandrov, Mitko, David J. Heslop, and Sisi Zlatanova. "3D Indoor Environment Abstraction for Crowd Simulations in Complex Buildings." Buildings 11, no. 10 (2021): 445. http://dx.doi.org/10.3390/buildings11100445.
Full textWu, Wenhan, Wenfeng Yi, Xiaolu Wang, and Xiaoping Zheng. "A force-based model for adaptively controlling the spatial configuration of pedestrian subgroups at non-extreme densities." Transportation Research Part C: Emerging Technologies 152 (May 11, 2023): 104154. https://doi.org/10.1016/j.trc.2023.104154.
Full textGödel, Marion, Rainer Fischer, and Gerta Köster. "Sensitivity Analysis for Microscopic Crowd Simulation." Algorithms 13, no. 7 (2020): 162. http://dx.doi.org/10.3390/a13070162.
Full textTogashi, Fumiya, Takashi Misaka, Rainald Löhner, and Shigeru Obayashi. "Using ensemble Kalman filter to determine parameters for computational crowd dynamics simulations." Engineering Computations 35, no. 7 (2018): 2612–28. http://dx.doi.org/10.1108/ec-03-2018-0115.
Full textYang, Shuo, Jianrong Yang, and Rui Li. "Evaluation of Pedestrian Comfort for a Footbridge with Hinged Piers." Sustainability 15, no. 13 (2023): 9851. http://dx.doi.org/10.3390/su15139851.
Full textFörster, Nick, Ivan Bratoev, Jakob Fellner, Gerhard Schubert, and Frank Petzold. "Collaborating with the crowd." International Journal of Architectural Computing 20, no. 1 (2022): 76–95. http://dx.doi.org/10.1177/14780771221082258.
Full textAbdelghany, Ahmed, Hani Mahmassani, Khaled Abdelghany, Hasan Al-Ahmadi, and Wael Alhalabi. "Incidents in high-volume elongated crowd facilities: A simulation-based study." SIMULATION 95, no. 9 (2018): 823–43. http://dx.doi.org/10.1177/0037549718794882.
Full textCOLOMBO, RINALDO M., MAURO GARAVELLO, and MAGALI LÉCUREUX-MERCIER. "A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC." Mathematical Models and Methods in Applied Sciences 22, no. 04 (2012): 1150023. http://dx.doi.org/10.1142/s0218202511500230.
Full textHuang, Peng, and Zhen Liu. "A Model of Pedestrian Crowd Behavior for Evacuation Simulation." Advanced Science Letters 7, no. 1 (2012): 404–7. http://dx.doi.org/10.1166/asl.2012.2723.
Full textSeitz, Michael J., Felix Dietrich, and Gerta Köster. "A Study of Pedestrian Stepping Behaviour for Crowd Simulation." Transportation Research Procedia 2 (2014): 282–90. http://dx.doi.org/10.1016/j.trpro.2014.09.054.
Full textHu, QingMei, WeiNing Fang, YuQuan Jia, and Ye Deng. "The simulation and analysis of pedestrian crowd and behavior." Science in China Series E: Technological Sciences 52, no. 6 (2008): 1762–67. http://dx.doi.org/10.1007/s11431-008-0211-9.
Full textParis, Sébastien, Julien Pettré, and Stéphane Donikian. "Pedestrian Reactive Navigation for Crowd Simulation: a Predictive Approach." Computer Graphics Forum 26, no. 3 (2007): 665–74. http://dx.doi.org/10.1111/j.1467-8659.2007.01090.x.
Full textAbdul Salam, Parveena Shamim, Wolfgang Bock, Axel Klar, and Sudarshan Tiwari. "Disease contagion models coupled to crowd motion and mesh-free simulation." Mathematical Models and Methods in Applied Sciences 31, no. 06 (2021): 1277–95. http://dx.doi.org/10.1142/s0218202521400066.
Full textKiyama, Masato, Motoki Amagasaki, and Toshiaki Okamoto. "Multi-Agent Reinforcement Learning-Based Control Method for Pedestrian Guidance Using the Mojiko Fireworks Festival Dataset." Electronics 14, no. 6 (2025): 1062. https://doi.org/10.3390/electronics14061062.
Full textLi, De Wei, and Bao Ming Han. "Modeling Queue Service System in Pedestrian Simulation." Advanced Materials Research 187 (February 2011): 1–6. http://dx.doi.org/10.4028/www.scientific.net/amr.187.1.
Full textPapadimitriou, E., J. M. Auberlet, G. Yannis, and S. Lassarre. "Simulation of Pedestrians and Motorised Traffic." International Journal of Interdisciplinary Telecommunications and Networking 6, no. 1 (2014): 57–73. http://dx.doi.org/10.4018/ijitn.2014010105.
Full textShibiao, Mu, and Chen Zhijun. "Crowd evacuation model based on bacterial foraging algorithm." International Journal of Modern Physics C 29, no. 03 (2018): 1850027. http://dx.doi.org/10.1142/s0129183118500274.
Full textMa, Yaping, Xiaoying Liu, Feizhou Huo, and Hui Li. "Analysis of Cooperation Behaviors and Crowd Dynamics during Pedestrian Evacuation with Group Existence." Sustainability 14, no. 9 (2022): 5278. http://dx.doi.org/10.3390/su14095278.
Full textLi, Ming Hua, Zhen Zhou Yuan, and Yan Xu. "Applied Technology in a Developed Simulation Model of Pedestrian Crowd Dynamics during Emergency Evacuation." Advanced Materials Research 1022 (August 2014): 223–28. http://dx.doi.org/10.4028/www.scientific.net/amr.1022.223.
Full textYan, Dapeng, Gangyi Ding, Kexiang Huang, Chongzhi Bai, Lian He, and Longfei Zhang. "Enhanced Crowd Dynamics Simulation with Deep Learning and Improved Social Force Model." Electronics 13, no. 5 (2024): 934. http://dx.doi.org/10.3390/electronics13050934.
Full textLuo, Wei, Yi Wang, Pengpeng Jiao, and Zehao Wang. "Improvement Strategy at Pedestrian Bottleneck in Subway Stations." Discrete Dynamics in Nature and Society 2022 (September 23, 2022): 1–12. http://dx.doi.org/10.1155/2022/7258907.
Full textChen, Hongyi, Jingtao Ding, Yong Li, Yue Wang, and Xiao-Ping Zhang. "Social Physics Informed Diffusion Model for Crowd Simulation." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 1 (2024): 474–82. http://dx.doi.org/10.1609/aaai.v38i1.27802.
Full textLi, Zhihong, Shiyao Qiu, Xiaoyu Wang, and Li Zhao. "Modeling and Simulation of Crowd Pre-Evacuation Decision-Making in Complex Traffic Environments." International Journal of Environmental Research and Public Health 19, no. 24 (2022): 16664. http://dx.doi.org/10.3390/ijerph192416664.
Full textSenasinghe, Asiri P., Willem Klumpenhouwer, Ahmed Labidi, and Lina Kattan. "An Agent-Based Crowd Dynamics Simulation that Considers Idling and Time-and-Distance-Conscious Optimising Behaviour." Journal of South Asian Logistics and Transport 4, no. 1 (2024): 119–44. http://dx.doi.org/10.4038/jsalt.v4i1.90.
Full textYue-wen, Fu, Li Meng, Liang Jia-hong, and Hu Xiao-qian. "Optimal Acceleration-Velocity-Bounded Trajectory Planning in Dynamic Crowd Simulation." Journal of Applied Mathematics 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/501689.
Full textZhu, Kongjin, Jun Wang, Ning Guo, Zhongjun Ding, and Peng Mei. "Simulation of pedestrian counter flow with conflicting preference using a lattice-based simulation model." International Journal of Modern Physics C 31, no. 09 (2020): 2050120. http://dx.doi.org/10.1142/s012918312050120x.
Full textChen, Tan, Wei Wang, Yu Tu, and Xuedong Hua. "Modelling Unidirectional Crowd Motion in a Corridor with Statistical Characteristics of Pedestrian Movements." Mathematical Problems in Engineering 2020 (June 30, 2020): 1–11. http://dx.doi.org/10.1155/2020/7483210.
Full textSung, Mankyu, and SeongKi Kim. "Crowd Simulation with Arrival Time Constraints." Symmetry 12, no. 11 (2020): 1804. http://dx.doi.org/10.3390/sym12111804.
Full textWang, Yiyu, Jiaqi Ge, and Alexis Comber. "Simulation model of pedestrian flow based on multi-agent system and Bayesian Nash equilibrium." AGILE: GIScience Series 2 (June 4, 2021): 1–7. http://dx.doi.org/10.5194/agile-giss-2-42-2021.
Full textShi, Xiaomeng, Zhirui Ye, Nirajan Shiwakoti, and Offer Grembek. "A State-of-the-Art Review on Empirical Data Collection for External Governed Pedestrians Complex Movement." Journal of Advanced Transportation 2018 (September 2, 2018): 1–42. http://dx.doi.org/10.1155/2018/1063043.
Full textHu, Jun, Zhongwen Li, Lei You, Hong Zhang, Juan Wei, and Mei Li. "Simulation of queuing time in crowd evacuation by discrete time loss queuing method." International Journal of Modern Physics C 30, no. 08 (2019): 1950057. http://dx.doi.org/10.1142/s0129183119500578.
Full textBao, Yushun. "The Effect of Herding Behavior on the Efficiency of Pedestrian Evacuation in Subway Stations." Scientific and Social Research 6, no. 5 (2024): 105–11. http://dx.doi.org/10.26689/ssr.v6i5.6897.
Full text