To see the other types of publications on this topic, follow the link: Crude oil emulsion.

Dissertations / Theses on the topic 'Crude oil emulsion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Crude oil emulsion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Stoyel, Jason Alexander. "Fundamentals of drop coalescence in crude oil." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ligiero, Leticia. "Crude oil/water interface characterization and its relation to water-in-oil emulsion stability." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3048/document.

Full text
Abstract:
La formation d’émulsions stables eau/huile lors des processus de récupération et de raffinage du pétrole peut impacter défavorablement l’efficacité de ces opérations. Bien que résines et asphaltènes soient généralement tenus pour responsables de la stabilité des émulsions, la composition exacte des molécules présentes à l’interface eau/huile est en réalité assez mal connue. L’identification de ces molécules et la connaissance de leur influence sur la propriété des interfaces est une étape nécessaire pour mieux prédire les problèmes de stabilité des émulsions dans l’industrie pétrolière. Cette thèse présente des résultats de caractérisation analytique par GPC-ICP-HRMS et FTMS du matériel interfacial (IM) extrait de quatre bruts différents et des espèces transférées dans la phase aqueuse lorsque ces bruts contactent l’eau, ainsi que des propriétés rhéologiques en cisaillement et en dilatation des interfaces eau/huile en présence de ces composés. Les bruts ont été choisis en raison de leur capacité à former des émulsions eau-dans-huile de stabilités différentes. Les mesures d’élasticité de cisaillement ont montré que la majorité des interfaces eau/huile étudiées formaient une structure élastique susceptible de fausser la mesure du module dilatationnel de Gibbs par la méthode d’analyse du profil de goutte. Néanmoins, nous montrons à l’aide de simulations numériques que le module apparent Eapp mesuré dans un tel cas est proche de la somme du module de Gibbs et du module de cisaillement (G) multiplié par 2 du réseau interfacial dès lors que G reste petit (G < 10 mN/m), ce qui est très souvent le cas puisque nous observons que le réseau interfacial formé se rompt lors des expériences de dilatation. Une équation phénoménologique a été développée permettant d’attribuer un temps de relaxation unique aux processus de relaxation qui ont lieu aux interfaces eau/huile, ce qui nous permet de classer les différents systèmes entre eux. Nous avons également étudié les IM extraits des bruts selon la technique chromatographique dite « wet silica method » récemment développée par Jarvis et al. (Energy Fuels, 2015). Les expériences de rhéologie interfaciale confirment que cette méthode permet d’extraire les composés les plus tensioactifs présents aux interfaces eau-brut. Les analyses chimiques montrent que les IM sont partiellement composés d’asphaltènes et suggèrent que les composés contenant du soufre jouent un rôle important dans la stabilité des émulsions. Enfin, nous avons trouvé que les composés hydrosolubles transférés du brut à l’eau ont un comportement bénéfique, dans le sens où leur présence rend les émulsions eau-dans-brut moins stables. L’analyse FTMS de ces composés montre qu’ils appartiennent aux classes d’hétéroatomes suivant : O2, O3, S1, OS et O2S2 et qu’une partie de ces composés appartient à la classe des asphaltènes
Crude oil recovery and refining operations rely on high consumption water processes, which may induce the formation of stable water-in-oil emulsions. Although asphaltenes and resins are known to influence the stability of crude oil emulsions, much is still unknown about the real composition of the w/o interfacial layer. Therefore, identifying these molecules and understanding their impact on the w/o interfacial properties are key points for better predicting emulsion problems in the petroleum industry. This thesis presents results on water/oil (w/o) interface characterization using shear and dilatational interfacial rheology as well as results on molecular characterization (GPC-ICP-HRMS and FTMS) of the crude oil interfacial material (IM) and of the amphiphilic crude oil species, which are transferred to the aqueous phase during the emulsification process. Four crude oils forming w/o emulsions of different stability were used in this study. Shear interfacial rheology experiments showed that most of the studied w/o interfaces were capable of forming an elastic interfacial network exhibiting shear elasticity G. A non-null G value interferes on drop deformation and thus on drop shape analysis (DSA) results. Nevertheless, the dilatational elasticity modulus measured by DSA (Eapp) was found to be representative of the sum of the Gibbs modulus plus 2 times G, as long as G  10 mN/m. This condition is generally satisfied since the asphaltene network is broken during dilatational experiments. Consequently, Eapp gives a good approximation of the real Gibbs modulus of the interface. A new phenomenological equation was proposed to fit the dilatational Eapp experimental data, allowing the assignment of a unique characteristic time to describe the w/o interfacial relaxation process and thus sample comparison. The IM of the crude oils was extracted using the “wet silica method” recently developed by Jarvis et al. (Energy Fuels, 2015). Results showed that this method collects the most-surface active compounds that adsorb in the time frame of the extraction procedure. Successive extractions collected species that were larger and less concentrated in the crude oil, but with higher adsorption energies. Molecular characterization revealed that the IM was partially composed of asphaltene compounds, and suggested that sulfur-containing compounds may play a major role in emulsion stability. Lastly, the oil-to-water transferred species were proven to impact the w/o interfacial properties and emulsion stability. Interestingly, concentrating these water-soluble species led to more efficient crude oil dehydration. FTMS analysis of the transferred species revealed that part of the compounds belonged to O2, O3, S1, OS and O2S2 heteroatom classes, and some of them have an asphaltene-type of molecules classification
APA, Harvard, Vancouver, ISO, and other styles
3

Sinker, Alastair Brenton. "An experimental study droplet stability and separation performance in dewatering hydrocyclones." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Otaibi, Musleh B. "Modelling and optimising of crude oil desalting process." Thesis, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/8056.

Full text
Abstract:
The history of crude oil desalting/dehydration plant (DDP) has been marked in progressive phases-the simple gravity settling phase, the chemical treatment phase, the electrical enhancement phase and the dilution water phase. In recent times, the proper cachet would be the control-optimisation phase marked by terms such as "DDP process control", "desalter optimisation control" or "DDP automating technology". Another less perceptible aspect, but nonetheless important, has been both a punch listing of traditional plant boundaries and a grouping of factors that play the essential roles in a desalting/dehydration plant (DDP). Nowadays, modelling and optimising of a DDP performance has become more apparent in petroleum and chemical engineering, which has been traditionally concerned with production and refinery processing industries. Today's desalting/dehydration technology finds itself as an important factor in such diverse areas as petroleum engineering, environmental concerns, and advanced technology materials. The movement into these areas has created a need not only for sources useful for professionals but also for gathering relevant information essential in improving product quality and its impact on health, safety and environmental (HSE) aspects. All of the foregoing, clearly establishes the need for a comprehensive knowledge of DDP and emulsion theories, process modelling and optimisation techniques. The main objective of this work is to model and qualitatively optimise a desalting/dehydration plant. In due course, the contents of this thesis will cover in depth both the basic areas of emulsion treatment fundamentals, modelling desalting/dehydration processes and optimising the performance of desalting plants. In addition, emphasis is also placed on more advanced topics such as optimisation technology and process modifications. At the results and recommendation stage, the theme of this work-optimising desalting/dehydration plant will practically be furnished in an applicable scheme. Finally, a significant compendium of figures and experimental data are presented. This thesis, therefore, essentially presents the research and important principles of desalting/dehydration systems. It also gives the oil industry a wide breadth of important information presented in a concise and focused manner. In search of data quality and product on-line-improvement, this combination will be a powerful tool for operators and professionals in a decision support environment.
APA, Harvard, Vancouver, ISO, and other styles
5

Luz, Maciel Santos. "Elementos traço em óleo cru: determinação total e estudo de especiação." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-21032014-120013/.

Full text
Abstract:
O objetivo desta pesquisa foi o desenvolvimento de métodos para: determinação simultânea de Cr/Fe/Ni/V em óleo cru; determinação simultânea de Co/Cu/Pb/Se em óleo cru, gasolina e diesel; determinação monoelementar de Si em óleo cru, gasolina e diesel; e determinação de espécies porfirínicas de Fe/Ni/V em óleo cru, utilizando ultracentrifugação e extração em ponto nuvem, por espectrometria de absorção atômica com forno de grafite e detecção simultânea (SIMAAS). Foram estudadas as condições de preparo das amostras por emulsão, empregando Triton X-100® como surfactante e hexano ou clorofórmio como solventes diluentes do óleo cru. Nas melhores condições, as emulsões foram preparadas em 6% (m v-1) de Triton X-100® com o óleo cru previamente diluído com 125 µL de hexano (nos métodos para as determinações totais dos elementos) ou diluído com 400 µL de clorofórmio (no método para a determinação das espécies porfirínicas). No método envolvendo a determinação simultânea total de Cr/Fe/Ni/V não foi utilizada agitação ultrassônica devido à pequena massa de óleo necessária (50 mg) para análise. Por outro lado, a agitação ultrassônica foi essencial para possibilitar a estabilização de maiores massas de óleo cru (200 mg e 400 mg) na emulsão. A estabilidade da emulsão só foi melhorada com agitação ultrassônica, antes da etapa de diluição com água. Nessa condição, foi possível obter emulsões estáveis com 200 mg ou 400 mg de óleo cru, por 30 min ou mais de 8 h, respectivamente. O programa de aquecimento do forno de grafite foi avaliado em cada caso, com e sem uso de diferentes modificadores químicos (Pd e Mg), especialmente nos métodos de determinação simultânea, em que foi necessário adotar condições de compromisso. Para a determinação monoelementar de Si foi verificado melhora nos parâmetros analíticos (sensibilidade e repetibilidade) com o uso de NbC como modificador permanente combinado com 20 µg de Pd como modificador químico co-injetado. Os LODs estimados para Cr (0,07 µg g-1), Fe (2,15 µg g-1), Ni (1,25 µg g-1), V (1,25 µg g-1), Co (0,02 µg g-1), Cu (0,03 µg g-1), Pb (0,04 µg g-1), Se (0,11 µg g-1) e Si (0,16 µg g-1) foram suficientemente baixos para permitir as determinações dos elementos com boas precisão e exatidão. Análises de materiais de referência forneceram resultados a um nível de confiança de 95%, quando aplicado o teste t>/i> de Student. O fracionamento de porfirinas de Fe/Ni/V foi feito em emulsão de óleo cru combinando com a extração por ponto nuvem (CPE) e ultracentrifugação. Nesse estudo, foi verificado a necessidade do uso de 0,1 mol L-1 de HCl para extração dos elementos associados a espécies organometálicas não porfirínicas. Após a ultracentrifugação da emulsão de óleo cru, os alfaltenos e material particulado foram separados e no sobrenadante permaneceram espécies inorgânicas, compostos organometálicos leves e porfirinas de Fe, Ni e V. Após CPE de outra emulsão de óleo cru permaneceram na fase aquosa espécies inorgânicas e composto organometálicos leves. As concentrações das porfirinas de Fe, Ni e V foram determinadas após a subtração dos resultados obtidos no primeiro (ultracentrifugação) e segundo (CPE) procedimentos.
The objective of this research was the methods development for: simultaneous determination of Cr/Fe/Ni/V in crude oil; simultaneous determination of Co/Cu/Pb/Se in crude oil, gasoline and diesel; determination of Si in crude oil, gasoline and diesel; and determination of porphyrin species of Fe/Ni/V in crude oil using graphite furnace atomic absorption spectrometry with simultaneous detection (SIMAAS). It was studied the conditions for the emulsion sample preparation, employing Triton X-100® as surfactant and hexane or chloroform as diluent of the crude oil. Under the best conditions, the emulsions were prepared in 6% (m v-1) of Triton X-100® with crude oil previously diluted with 125 µl of hexane (in methods for total determination of elements) or diluted with 400 µl of chloroform (in the method for determination of porfhyrin species). In the method for the simultaneous determination of Cr/Fe/Ni/V it was not necessary to use ultrasonic agitation due to the small mass of oil needed (50 mg) for analysis. On the other hand, ultrasonic agitation was essential to enable the stabilization of larger masses of crude oil (200 mg and 400 mg) in emulsion. The emulsion stability was improved with ultrasonic agitation, before dilution step with water. In this condition, it was possible to obtain stable emulsions with 200 mg or 400 m;g of crude oil, for 30 min or more than 8 h, respectively. The heating program of graphite furnace was evaluated in each case, with and without use of different chemical modifiers (Pd and Mg), especially in the methods for simultaneous determination, in which was necessary to adopt compromise conditions. For Si determination, was verified significant improvement in analytical parameters (sensitivity and repeatability) with the use of NbC as permanent modifier, combined with co-injected 20 µg of Pd as chemical modifier. The LODs estimated for Cr (0.07 µg g-1), Fe (2.15 µg g-1), Ni (1.25 µg g-1), V (1.25 µg g-1), Co (0.03 µg g-1), Cu (0.03 µg g-1), Pb (0.04 µg g-1), Se (0.11 µg g-1) and Si (0.16 µg g-1) were low enough to allow measurements of the elements with great precision and accuracy. Analysis of reference materials provided results at confidence level of 95%, when applied to the Student\'s t-test. The Porphyrin fractionation of Fe/Ni/V was done on crude oil emulsion by combining cloud point extraction (CPE) and ultracentrifugation. In this method, 0.1 mol L-1 of HCl must be used for extraction of elements associated with the organometallic species different of porfhyrins. After the ultracentrifugation of crude oil emulsion, asfalthene and particulate matter were separated and in the supernatant remained inorganic species, organometallic compounds and porphyrins of Fe, Ni and V. After CPE of another emulsion of crude oil, remained in the aqueous phase only the inorganic and organometallic compound species. The porphyrin concentrations of Fe, Ni and V were determined after the subtraction of the results obtained in the supernatant from the first (centrifugation) and second (CPE) procedures.
APA, Harvard, Vancouver, ISO, and other styles
6

Xia, You. "Experiments on EHD injection, interaction and electrocoalescence of water droplet pairs in oil." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI039/document.

Full text
Abstract:
Lorsque des champs électriques sont appliqués à des mélanges eau-huile, les petites gouttelettes d'eau sont attirées entre elles et se regroupent en gouttes plus grosses. Ce processus d’électrocoalescence rend plus efficace la séparation huile-eau par sédimentation.Des données expérimentales sur l’électrocoalescence de très petites gouttelettes sont nécessaires pour améliorer la compréhension de la dynamique de l'interface eau-huile et pour valider les modèles numériques. La configuration simple étudiée dans ce travail de thèse concerne une petite paire de gouttelettes tombant dans une cuve d'huile modèle et soumise à un champ électrique aligné avec l’axe de symétrie des gouttes et la gravité.La première partie du travail a consisté à générer de façon contrôlée d’une paire de très petites gouttelettes (dans la gamme de diamètres 20-200 microns) alignée avec le champ électrique. La génération de goutte à la demande, par méthode éléctrohydrodynamique (EHD) a été améliorée pour un meilleur contrôle du diamètre et de la charge électrique des gouttelettes injectées à partir d'une aiguille métallique unique. Ceci a été obtenu en appliquant à un ménisque d'eau pendant à l’extrémité de l’aiguille des impulsions électriques de forme optimisée.La caractérisation électrique et hydrodynamique des paires de gouttelettes et leur coalescence sont alors principalement déduites de l'analyse des vitesses de chute, avec et sans application d’un champ électrique à courant continu. Des données complètes de positions des gouttelettes et de leur vitesse en fonction du temps sont déduites de prises de vues vidéo. Une attention particulière a été accordée aux visualisations de très petites gouttelettes tombant à petites vitesses, associant des angles multiples de prise de vue, de forts zooms et des vidéos à grande vitesse.La modélisation des différents termes d'interactions hydrodynamiques et électrostatiques entre les gouttelettes permet de déduire des vitesses enregistrées leur masse charge électrique respectives. Quand se produit une coalescence des deux gouttelettes, un enregistrement de la vitesse de la gouttelette résultante, avec et sans tension électrique appliquée, permet de contrôler la conservation de la masse et de la charge électrique, et la validation du procédé.Un premier ensemble de données est constitué d'environ 70 cas différents, avec différentes paire des gouttelettes (dans une plage de diamètre limitée de façon à ce que les vitesses de chute soient comprises entre 0,1 et 0,3 mm/s) et en faisant varier la tension appliquée à courant continu ou alternatif. L'analyse des résultats et des incertitudes expérimentales et un exemple de comparaison possible avec des simulations numériques utilisant le logiciel Comsol Multiphysics ™, permettent d'effectuer des recommandations pour les travaux futurs.Ce travail a été financé par le projet “Fundamental understanding of electrocoalescence in heavy crude oils”; coordonné par SINTEF Energy Research. Le projet a été soutenu par The Research Council of Norway, dans le cadre du contrat n °: 206976 / E30, et par les partenaires industriels suivants: Wärtsilä Oil & Gas Systems AS, Petrobras et Statoil ASA
When electric fields are applied in oil-water mixtures small water droplets are attracted to others and merge in larger drops. This electrocoalescence process makes more efficient the oil-water separation by sedimentation.Experimental data on the electrocoalescence of very small droplets will be useful to improve the understanding of the dynamics of water-oil interface and to validate numerical models. The simple configuration studied consists in a small droplet pair falling in stagnant model oil, under electric field aligned with the symmetry axis of the droplet pair and the direction of gravity.First part of the work consisted in the well-controlled generation of very small droplet pair (range 20-200 microns) aligned with electric field. Droplet-on-Demand generation by EHD method was improved for a better control of the diameter and electric charge of droplets injected from a single metallic needle. This was obtained by applying to a pendant water meniscus optimized multistage high voltage electric pulses.Electrical and hydrodynamic characterization of the droplet pairs and their coalescence are then mainly deduced from the analysis of falling velocities, with and without applied DC electric field. A complete data set of droplet position and velocity is deduced from video. A special attention was paid to the visualizations of very small droplet and small falling velocities, involving multiple angle of view, strong zooming and high speed video.Modelling the different terms of hydrodynamic and electrostatic interactions between droplets allows deducing from the recorded velocities their respective mass and electric charge. When coalescence occurs, a record of the resulting single droplet velocity, with and without applied voltage, allows controlling the mass and charge conservations and validating the method.A first data set was constituted of about 70 different cases, with varying droplets pair (with a limited diameter range to remain with falling velocities between 0.1 and 0.3 mm/s) and varying applied DC or AC voltage. Analyses of the results and experimental uncertainties, and example of possible comparison with numerical simulations using Comsol Multiphysics™ software, allow performing some recommendations for future work.This work was funded by the project “Fundamental understanding of electrocoalescence in heavy crude oils”; co-ordinated by SINTEF Energy Research. The project was supported by The Research Council of Norway, under the contract no: 206976/E30, and by the following industrial partners: Wärtsilä Oil & Gas Systems AS, Petrobras and Statoil ASA
APA, Harvard, Vancouver, ISO, and other styles
7

Flesinski, Lionel. "Étude de la stabilité des émulsions et de la rhéologie interfaciale des systèmes pétrole brut/eau : influence des asphaltènes et des acides naphténiques." Thesis, Pau, 2011. http://www.theses.fr/2011PAUU3022/document.

Full text
Abstract:
La formation d'émulsions eau-dans-huile stables est un problème majeur rencontré par les pétroliers au niveau de la production mais aussi du raffinage. Afin d'essayer de prévoir ce phénomène, Total a développé une méthode de classement des huiles qui permet, à partir de leurs propriétés physico-chimiques, de déterminer a priori leur capacité à former ou non des émulsions stables. Cependant, les mécanismes interfaciaux sous-jacents ainsi que l’influence des molécules tensioactives du brut sur la stabilité des émulsions n’est pas très clair. Notre travail a consisté à étudier la contribution des acides naphténiques et des asphaltènes dans les phénomènes observés. L’étude d’huiles réelles a permis d’établir un lien entre la stabilité des émulsions et la formation à l'interface d'un gel 2D. Les études menées sur les huiles réelles dont les acides naphténiques ont été extraits ont permis de montrer que ces derniers, en compagnie de leurs formes ionisées, les naphténates, ont la capacité de réduire la stabilité des émulsions en diminuant la résistance du gel interfacial, ou même en empêchant sa formation. Les expériences réalisées sur les huiles réelles dépourvues d’asphaltènes ont permis de confirmer le rôle stabilisant des asphaltènes. Les résultats obtenus suggèrent que les asphaltènes s’adsorbent sur le gel 2D déjà formé par des tensioactifs passés de l’huile vers l’eau et le rapprochent ainsi de sa transition vitreuse. La résistance du gel interfacial s'en trouve alors augmentée, ce qui conduit à la formation d'émulsions plus stables. En croisant le classement industriel des bruts opéré par Total et les résultats de l’étude, un mécanisme global, régi par la compétition entre les acides naphténiques, les naphténates et les asphaltènes à l’interface E/H est proposé pour expliquer les différences de stabilité observées avec les différentes huiles. Lorsque les acides et les naphténates sont suffisamment concentrés, ils empêchent la formation du gel interfacial et les émulsions sont peu stables. Lorsqu’ils sont moins concentrés le rôle des asphaltènes peut alors devenir prépondérant en donnant une cohésion plus importante au gel qui se rapproche de sa transition vitreuse, ce qui conduit en général au renforcement de la stabilité des émulsions formées
Water-in-crude oil emulsions are a major issue for oil companies in both production and refining facilities. Thanks to physical and chemical characterizations, Total set a classification which allows the decision of a crude oil ability to create stable emulsions. However the interfacial mechanisms implied and the influence of the indigenous surfactants of crude oil remain unclear. Our work consists in studying the naphthenic acids and asphaltenes contribution to the w/o emulsion stability. The study of realistic crude oils enabled the discovery of a link between the emulsion stability with the formation of a very particular interfacial behavior: a two-imensional gel. Experiments with desacidified oils have proven the destabilizing ability of naphthenic acids and their ionized form, naphthenates. They actually decrease the interfacial gel strength and can even prevent the gel formation. Asphaltenes-free crude oils have permitted to confirm the stabilizing role of asphaltenes. Rather than adsorbing directly on the interface, asphaltenes seem to adsorb on the interfacial gel already formed. The gel strength is thus increased and lead to higher emulsion stability. Thanks to these results and the industrial classification of crude oil developed by Total, a global mechanism explaining the emulsion stability process has been proposed. This mechanism is governed by the competition between asphaltenes, naphthenates and naphthenic acids at the water/oil interface. If the concentration of naphthenic acids and naphthenates is high enough, the interfacial gel cannot be formed and the emulsions are unstable. If the crude oil is not acidic enough, the asphaltenes influence increases dramatically and implies the strengthening of the gel which becomes closer to his glass transition. This generally leads to the formation of more stable emulsions
APA, Harvard, Vancouver, ISO, and other styles
8

Mehta, Shweta D. "Making and breaking of water in crude oil emulsions." Thesis, Texas A&M University, 2005. http://hdl.handle.net/1969.1/3286.

Full text
Abstract:
An understanding of the processes involved in oil spills, and how they interact to alter the composition and behavior of the oil with respect to time is essential to determine an effective oil spill response. The review of past research has shown more focus on the laboratory methods and computerized modeling schemes to estimate the formation and breaking of emulsions after an oil spill. However, relatively less effort has gone into the study of emulsions corresponding to actual field conditions. This research aims to simulate an oil spill at sea by developing a new technique to make water in oil emulsions, without disturbing the marine wildlife. Further, this research also attempts to analyze the viscosities of water in oil emulsions and determine appropriate emulsion breakers for different crude oil emulsions. The overall test design for the study includes a test apparatus for spreading and evaporation, three different crude oils, a mixing chamber to form the emulsion, and emulsion breakers. Experiments in this research attempt to gain a better understanding of the processes that occur after oil spills at sea. In particular, the rate of evaporation of different crude oils and the formation of crude oil emulsions on the sea surface have been investigated. It was observed that different crude oils behave differently when subjected to the same weathering procedure. Results indicate that the behavior of the crude oil on the sea surface, subjected to spreading, evaporation, and emulsification, can be predicted by using the new technique developed in this research. This technique can also assist the development of effective recovery equipments and materials.
APA, Harvard, Vancouver, ISO, and other styles
9

Koski, A. (Anna). "Applicability of crude tall oil for wood protection." Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514287237.

Full text
Abstract:
Abstract Moisture content control is a very effective way of protecting timber. Treatments with environment-friendly, biodegradable tall oil are known to reduce the capillary water uptake of pine sapwood greatly, but despite the good results achieved there have been two problems that limit the use of tall oil for wood protection, the large amount of oil needed and the tendency for the oil to exude from the wood. This work was undertaken in order to obtain an understanding of the mechanism of wood protection by means of crude tall oil (CTO) and to find technical solutions to the main problems limiting its use for industrial wood protection. It is shown that the emulsion technique is one way of solving the first problem, as it provides high water-repellent efficiency at considerably lower oil retention levels. The fact that water is used as a thinner in this technique instead of the commonly used organic solvents is beneficial from environmental, economic and safety points of view. It is also shown that although the drying properties of CTO are inadequate for use as such in wood preservation, its oxidation and polymerization can be accelerated considerably by means of iron catalysts, which prevent the oil from exuding out of the wood. This also increases the water repellent efficiency of CTO treatment. Most impregnation oils do not dry when applied in large quantities, because they hinder the diffusion of air through the wood, which supplies the necessary oxygen. Limiting of the oil uptake by the means of the emulsion technique disturbs the airflow to a lesser extent, and thus enhances the drying process. Hence, both the emulsion technique and the use of an iron catalyst improve both the water-repellent efficiency of tall oil treatment and the rate of drying of the oil, thus solving the two main problems related to wood impregnation with tall oil in one single-stage treatment which can be used in existing wood preservation plants. This is advantageous from both an industrial and an economic point of view.
APA, Harvard, Vancouver, ISO, and other styles
10

Shakorfow, Abdelmalik Milad. "Process intensification in the demulsification of water-in-crude oil emulsions via crossflow microfiltration through a hydrophilic polyHIPE polymer (PHP)." Thesis, University of Newcastle Upon Tyne, 2012. http://hdl.handle.net/10443/1745.

Full text
Abstract:
In petroleum industry, highly stable water-in-oil (w/o) emulsions are formed during extraction process and these emulsions are stabilized by the indigenous surface active species in the oil. The recovery of crude oil through emulsion breakdown and subsequent separation (demulsification) should be carried out at source in order to avoid costly pumping and cooling of emulsion which enhances emulsion stability. Although conventional methods available for emulsion breakdown using demulsifiers and electric field separation, in the case of viscous crude oils with large amounts of indigenous surfactants, such methods are not satisfactory to achieve on-site oil-water separation. Therefore, such emulsions may have to be chemically treated. It was previously shown that when hydrophilic micro-porous polymers, known as PolyHIPE Polymers (PHPs) were added to the emulsion, it caused emulsion to separate as a result of selective removal of surfactants. This separation process was further enhanced in the presence of electric field. This current study focuses on cross-flow microfiltration of w/o emulsions through a sulphonated hydrophilic microporous polymeric material in the absence or presence of electric field. However, sulphonated PHPs used in the experiments do not have an active membrane layer with pores at micron- or nano- scale. The thickness of the separation layer is ca. 4 mm and pore size is in 10 micrometer range. We used either 50 or 70 vol. % oil phase in the w/o emulsions. Effect of: pore size, crossflow velocity and electric field strength on permeate flux rate decay and separation efficiency of emulsions which are stable for more than 70 days otherwise was investigated. It was found that the permeate flux rate decayed rapidly with crossflow filtration time before the flux reached steady state. The application of electric field enhanced the permeate flux rate. Under steady state conditions, permeate flux rate was not significantly affected by the PHP pore size. Permeate from the crossflow filtration was collected in glass cylinders and allowed to separate under gravity as a function of time. It was found that the demulsification time was affected primarily by the applied electric field, emulsion water content, crossflow velocity and PHP pore size. Demulsification rate increased with increasing electric field and water fraction of emulsion and with decreasing pore size of PHP. Demulsification was achieved within 6-7 hr. The results were interpreted in terms of ‘confinement phenomenon’ in which it was postulated that the PHP filtration media selectively retained the surface active agents and; thus, causing the demulsification of the emulsions. The surface active agents were deposited within the pores of the separation media and; thus, causing flux decay. Although the deposits of surface active agents could break-up due to permeate flow through the separation media, they could not be re-distributed at the oil-water interface to re-stabilize the emulsion. However, some water can be trapped within the oil as oil-in-water-in-oil multiple emulsion which would be more resistant to demulsification.
APA, Harvard, Vancouver, ISO, and other styles
11

Karcher, Viviane. "Determinação da energia interfacial de emulsões de agua em oleo pesado." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265665.

Full text
Abstract:
Orientador: Antonio Carlos Bannwart
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica e Instituto de Geociencias
Made available in DSpace on 2018-08-12T08:12:48Z (GMT). No. of bitstreams: 1 Karcher_Viviane_M.pdf: 1731022 bytes, checksum: 355de3e34591ff15d14ab367330328f8 (MD5) Previous issue date: 2008
Resumo: Durante a produção de petróleo, é comum o aparecimento de água sob a forma de gotas finamente dispersas no óleo. A água pode ser oriunda de métodos de recuperação avançada e/ou do próprio reservatório (água conata). O cisalhamento turbulento produzido durante o escoamento destes fluidos através de dutos ou dispositivos, como bombas, ou até mesmo no reservatório, pode causar a formação de emulsões de água em óleo (A/O). Para os óleos pesados,estas emulsões permanecem estáveis por um período longo devido à presença de agentes emulsificantes naturais no petróleo cru. Por essa razão, a separação dessas emulsões necessita de equipamentos específicos, o que contribui para o aumento do custo do processo. O objetivo deste estudo é investigar as propriedades interfaciais de emulsões A/O compostas por água e petróleo pesado brasileiro. Para tanto, um aparato experimental foi construído com o objetivo de calcular a energia interfacial dessas emulsões. As emulsões A/O foram geradas através de um aparelho homogeneizador rotativo imerso em um vaso calorimétrico. Dois métodos foram empregados: o método calorimétrico, baseado no balanço de energia da emulsificação, e o método padrão, baseado na medida do tamanho e distribuição das gotas através da técnica de microscopia óptica. As incertezas nas medidas experimentais, em ambos os métodos, foram estudadas a fim de avaliar a viabilidade de cada um. Como principais resultados deste estudo, as magnitudes relativas dos termos do balanço de energia durante a emulsificação foram obtidas. O comportamento reológico destas emulsões também foi estudado.
Abstract: In petroleum production operations, water is commonly present within the oil phase as a finely dispersed phase. This situation originates from enhanced oil recovery methods and/or the presence of connate water inside the own reservoir. The turbulent shear associated with fluid flow during of heavy crude transportation through pipelines may cause the formation of water-in-oil emulsions (W/O). These remain stable for a long time, due the presence of naturally emulsifying agents in the crude oil phase. Therefore, emulsion separation requires specific equipments which contribute to increase the processes costs. The main purpose of this study is to investigate the interfacial properties of W/O emulsions composed by water and a Brazilian heavy crude oil. For that purpose an experimental set-up was built in order to measure the interfacial energy of the emulsions. The W/O emulsions were prepared in a calorimeter vessel by using a rotating impeller. Two methods were used, namely, the calorimetric method based on the energy balance for the emulsification and the standard method of the droplet size and distribution by means of a digital microscope. The uncertainty in experimental measurements was determined for both methods, in order to evaluate their feasibility. The main result of this research is the determination of the relative magnitudes of the different terms in the energy balance during emulsification. Results for the rheological behavior of W/O emulsions are also reported.
Mestrado
Explotação
Mestre em Ciências e Engenharia de Petróleo
APA, Harvard, Vancouver, ISO, and other styles
12

Bresciani, Antonio Esio. "Análise do processo de dessalgação de petróleo - otimização do uso de água." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-20072009-101225/.

Full text
Abstract:
Este trabalho visa o estudo da viabilidade da redução do uso de água no processo de dessalgação em refinarias de petróleo. Em uma primeira fase, foi necessário o estudo teórico da separação das emulsões água/óleo. Em seguida, foi desenvolvido um modelo matemático baseado nas forças atuantes nas gotas de água, o que possibilitou a determinação do tempo entre as colisões de pares de gotas e o estabelecimento do critério para que ocorra o fenômeno de coalescência. Esse modelo foi empregado em um sistema desenvolvido com base em autômatos celulares, o qual possibilitou o acompanhamento do processo micro e macroscópico, através do cálculo para o conjunto das gotas, e o acompanhamento visual até a separação da fase contínua. Os experimentos de laboratório, para os quais foi usado equipamento ótico para a medição da intensidade de luz transmitida ou espalhada pelas gotas, possibilitaram avaliar a influência da qualidade da água de mistura no tempo de separação das emulsões. Na unidade industrial, foram realizados testes que permitiram analisar o desempenho das dessalgadoras em diferentes situações operacionais. Os resultados obtidos através dos experimentos de laboratório e da simulação usando o modelo matemático desenvolvido mostraram-se compatíveis com os dados obtidos nos testes na unidade industrial. O trabalho mostrou ser possível alterar os esquemas de usos de água nas dessalgadoras, aumentando a taxa de reciclagem e possibilitando a otimização do consumo de água fresca neste processo, o que resultaria em redução substancial no consumo geral de água na refinaria.
The aim of this work is the study of the reduction of water consumption in petroleum desalting processes. The study of the attraction forces acting on the droplets was necessary to know how the emulsion water/oil is separated. A mathematical model based upon these forces was built to calculate the time between each droplets collision and to establish criteria for their coalescence. This model was applied to a system developed based on cellular automata, which allows to follow the process micro and macroscopically. Computations were carried out to the ensemble of droplets and the visual progression, from the start of droplets separation of the continuous phase to the end of the process could be visualized. Laboratory experiments, in which optical equipment was used to measure the light intensity transmitted or scattered by the droplets, allowed to evaluate the influence of the type of mixing water in the separation time of the emulsions. Tests in the industrial unity allowed evaluating the performance of the desalting units at different operating conditions. Conclusions of the laboratory experiments and the results of the mathematical model were compared with results of the industrial tests, showing coherence between them. The work shows that it is possible to simulate the effect of the operating variables and to alter schemes of water use in desalting units, increasing the water recycling rate, allowing optimization of fresh water consumption in this process and reducing the total water consumption in the refinery.
APA, Harvard, Vancouver, ISO, and other styles
13

Luzinova, Yuliya. "Mid-infrared sensors for hydrocarbon analysis in extreme environments." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41156.

Full text
Abstract:
A number of MIR sensing platforms and methods were developed in this research work demonstrating potential applicability of MIR spectroscopy for studying hydrocarbon systems in extreme environments. First of all, the quantitative determination of the diamondoid compound adamantane in organic media utilizing IR-ATR spectroscopy at waveguide surfaces was established. The developed analytical strategy further enabled the successful detection of adamantane in real world crude oil samples. These reported efforts provide a promising outlook for detection and monitoring of diamondoid constituents in naturally occurring crudes and petroleum samples. IR-ATR spectroscopy was further utilized for evaluating and characterizing distribution, variations, and origin of carbonate minerals within sediment formations surrounding a hydrocarbon seep site - MC 118 in the Gulf of Mexico. An analytical model for direct detection of 13C-depleted authigenic carbonates associated with cold seep ecosystems was constructed. Potential applicability of IR-ATR spectroscopy as direct on-ship - and in future in situ - analytical tool for characterizing hydrocarbon seep sites was demonstrated. MIR evanescent field absorption spectroscopy was also utilized to expand the understanding on the role of surfactants during gas hydrate formation at surfaces. This experimental method allowed detailed spectroscopic observations of detergent-related surface processes during SDS mediated gas hydrate formation. The obtained IR data enabled proposing a mechanism by which SDS decreases the induction time for hydrate nucleation, and promotes hydrate formation. Potential of MIR fiberoptic evanescent field spectroscopy for studying surface effects during gas hydrate nucleation and growth was demonstrated. Next, quantifying trace amounts of water content in hexane using MIR evanescent field absorption spectroscopy is presented. The improvement in sensitivity and of limit of detection was obtained by coating an optical fiber with layer of a hydrophilic polymer. The application of the polymer layer has enabled the on-line MIR detection of water in hexane at low ppm levels. These results indicate that the MIR evanescent filed spectroscopy method shows potential for in-situ detection and monitoring of water in industrial oils and petroleum products. Finally, quantification of trace amounts of oil content in water using MIR evanescent field absorption spectroscopy is reported. Unmodified and modified with grafted hydrophobic polymer layer silver halide optical fibers were employed for the measurements. The surface modification of the fiber has enabled the on-line MIR analysis of crude oil in water at the low ppb level. Potential application of MIR fiber-optic evanescent field spectroscopy using polymer modified waveguides toward in-situ low level detection of crude oil in open waters was demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
14

Sehlake, Portia Boitumelo. "Experimental assessment of heavy crude oil production using emulsion flooding." Thesis, 2017. https://hdl.handle.net/10539/24970.

Full text
Abstract:
A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering (Metallurgy and Materials Engineering), October 2017
In many crude oil exploitation oil cannot be produced using its own natural drive after many years due to pressure depletion. In order to maintain the reservoir pressure and optimize the oil production, secondary oil recovery methods are usually used i.e. water injection, gas lift and reinjection of natural gas. Although, secondary oil recovery methods increase hydrocarbon production by about 35 - 45 %, they do not provide a definitive solution due to continuous pressure decrease and the excessive amount of water required. An alternative recovery technique known as tertiary recovery or enhanced oil recovery is usually used at this stage and focuses on increasing the mobility of the oil. Chemicals such as surfactants, polymers and nanoparticles are injected to improve recovery. These chemicals help improve properties of the injected fluid and its interactions with the rocks. Surfactants are well known for reducing interfacial tension formed between oil and water and polymers for improving sweep efficiency. Moreover, addition of nanoparticle is said to further reduce interfacial tension between water and oil and help reduce the capillary pressure. This study looked at emulsion stability of crude oil with cationic surfactants and non-ionic surfactants. The objective was to analyse how stable the solution with surfactants only is and also how the stability is affected by temperatures, nanoparticles and stirring mechanism. It further investigates which surfactant type is best suitable to stabilise emulsions and whether or not the combination of surfactant and nanoparticle can provide a more stable emulsion than surfactants only In the study, experiments were conducted to test emulsion stability based on temperature variation, water to oil ratios differences and droplet size formation. Cationic dodecyl trimethyl ammonium bromide (DTAB) and non-ionic Triton®X-100 surfactants were used; nanoparticle zinc oxide (ZnO) was later added into the two types of surfactants aqueous solutions and emulsion stability tests conducted. Temperature was raised from 250C to 60C to look at the effect this will have on emulsion stability. Water/ Oil ratios were analyse the effect/impact the different ratios had on emulsion stability. Droplet size distribution was analysed using a microscope to see how tight the emulsions are. The experimental results suggest that cationic DTAB is not a good candidate for emulsion stability especially at 600C. The potential application of non-ionic surfactant Triton®X-100 alone gave better stability. Addition of nanoparticle ZnO to DTAB did not help stability and when ZnO is added to non-ionic surfactant Triton®X-100 the stability was good at all temperatures but did not last for a longer periods vs having non-ionic surfactant Triton®X-100 only , suggesting that Triton®X-100 is best suitable to keep emulsions formed stable and further microscopic work supported this finding.
XL2018
APA, Harvard, Vancouver, ISO, and other styles
15

Ilkhaani, Shahrokh. "MODELING AND OPTIMIZATION OF CRUDE OIL DESALTING." Thesis, 2009. http://hdl.handle.net/10012/4215.

Full text
Abstract:
When first received by a refinery, the crude oil usually contains some water, mineral salts, and sediments. The salt appears in different forms, most often times it is dissolved in the formation water that comes with the crude i.e. in brine form, but it could also be present as solid crystals, water-insoluble particles of corrosion products or scale and metal-organic compounds such as prophyrins and naphthenates. The amount of salt in the crude can vary typically between 5 to 200 PTB depending on the crude source, API, viscosity and other properties of the crude. For the following reasons, it is of utmost importance to reduce the amount of salt in the crude before processing the crude in the Crude Distillation Unit and consequently downstream processing units of a refinery. 1. Salt causes corrosion in the equipment. 2. Salt fouls inside the equipment. The fouling problem not only negatively impacts the heat transfer rates in the exchangers and furnace tubes but also affects the hydraulics of the system by increasing the pressure drops and hence requiring more pumping power to the system. Salt also plugs the fractionator trays and causes reduced mass transfer i.e. reduced separation efficiency and therefore need for increased re-boiler/condenser duties. 3. The salt in the crude usually has a source of metallic compounds, which could cause poisoning of catalyst in hydrotreating and other refinery units. Until a few years ago, salt concentrations as high as 10 PTB (1 PTB = 1 lb salt per 1000 bbl crude) was acceptable for desalted crude; However, most of the refineries have adopted more stringent measures for salt content and recent specs only allow 1 PTB in the desalted crude. This would require many existing refineries to improve their desalting units to achieve the tighter salt spec. This study will focus on optimizing the salt removal efficiency of a desalting unit which currently has an existing single-stage desalter. By adding a second stage desalter, the required salt spec in the desalted crude will be met. Also, focus will be on improving the heat integration of the desalting process, and optimization of the desalting temperature to achieve the best operating conditions in the plant after revamp.
APA, Harvard, Vancouver, ISO, and other styles
16

Walavalkar, Ajey Y. "Combustion of water-in-oil emulsions of diesel and fresh and weathered crude oils floating on water." 2001. http://etda.libraries.psu.edu/theses/available/etd-0317101-204038/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography