Academic literature on the topic 'Cryo-EM structure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cryo-EM structure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cryo-EM structure"

1

Rohou, Alexis. "Improving cryo-EM structure validation." Nature Methods 18, no. 2 (2021): 130–31. http://dx.doi.org/10.1038/s41592-021-01062-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Powell, Samantha, and James Evans. "Cryo-EM Protein Structure Without Purification." Structural Dynamics 12, no. 2_Supplement (2025): A151. https://doi.org/10.1063/4.0000460.

Full text
Abstract:
Determining protein structures can be a laborious and time-consuming process. Despite recent advances in single particle cryo- electron microscopy (cryo-EM) which have reduced the timeline for structure determination, one of the largest remaining bottlenecks is sample preparation. Traditionally, most single particle cryo-EM workflows rely on obtaining a highly homogenous and pure sample to yield a high-resolution protein structure, but protein expression and purification can be time-consuming and often challenging steps. To combat this, other groups have developed affinity grids using a variet
APA, Harvard, Vancouver, ISO, and other styles
3

Kimanius, Dari, Gustav Zickert, Takanori Nakane, et al. "Exploiting prior knowledge about biological macromolecules in cryo-EM structure determination." IUCrJ 8, no. 1 (2021): 60–75. http://dx.doi.org/10.1107/s2052252520014384.

Full text
Abstract:
Three-dimensional reconstruction of the electron-scattering potential of biological macromolecules from electron cryo-microscopy (cryo-EM) projection images is an ill-posed problem. The most popular cryo-EM software solutions to date rely on a regularization approach that is based on the prior assumption that the scattering potential varies smoothly over three-dimensional space. Although this approach has been hugely successful in recent years, the amount of prior knowledge that it exploits compares unfavorably with the knowledge about biological structures that has been accumulated over decad
APA, Harvard, Vancouver, ISO, and other styles
4

García-Nafría, Javier, and Christopher G. Tate. "Cryo-Electron Microscopy: Moving Beyond X-Ray Crystal Structures for Drug Receptors and Drug Development." Annual Review of Pharmacology and Toxicology 60, no. 1 (2020): 51–71. http://dx.doi.org/10.1146/annurev-pharmtox-010919-023545.

Full text
Abstract:
Electron cryo-microscopy (cryo-EM) has revolutionized structure determination of membrane proteins and holds great potential for structure-based drug discovery. Here we discuss the potential of cryo-EM in the rational design of therapeutics for membrane proteins compared to X-ray crystallography. We also detail recent progress in the field of drug receptors, focusing on cryo-EM of two protein families with established therapeutic value, the γ-aminobutyric acid A receptors (GABAARs) and G protein–coupled receptors (GPCRs). GABAARs are pentameric ion channels, and cryo-EM structures of physiolog
APA, Harvard, Vancouver, ISO, and other styles
5

Zeng, Lingxiao, Wei Ding, and Quan Hao. "Using cryo-electron microscopy maps for X-ray structure determination of homologues." Acta Crystallographica Section D Structural Biology 76, no. 1 (2020): 63–72. http://dx.doi.org/10.1107/s2059798319015924.

Full text
Abstract:
The combination of cryo-electron microscopy (cryo-EM) and X-ray crystallography reflects an important trend in structural biology. In a previously published study, a hybrid method for the determination of X-ray structures using initial phases provided by the corresponding parts of cryo-EM maps was presented. However, if the target structure of X-ray crystallography is not identical but homologous to the corresponding molecular model of the cryo-EM map, then the decrease in the accuracy of the starting phases makes the whole process more difficult. Here, a modified hybrid method is presented to
APA, Harvard, Vancouver, ISO, and other styles
6

Stewart, P. L., and G. R. Nemerow. "Combining structures from cryo-EM and x-ray crystallography." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 44–45. http://dx.doi.org/10.1017/s0424820100136593.

Full text
Abstract:
Cryo-electron microscopy (cryo-EM) combined with three-dimensional image reconstruction techniques has produced structures of large macromolecular assemblies. Interpretation of low resolution (25-35 A) cryo-EM density can be greatly enhanced by mapping in crystallographic structures of component molecules. Difference imaging between the cryo-EM structure of the human adenovirus particle and a capsid calculated from the crystal structure of the major structural protein, hexon, revealed numerous minor structural components in the viral capsid. In addition, the atomic binding sites of the minor p
APA, Harvard, Vancouver, ISO, and other styles
7

Punjani, Ali. "Real-time cryo-EM structure determination." Microscopy and Microanalysis 27, S1 (2021): 1156–57. http://dx.doi.org/10.1017/s1431927621004360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dai, Muzhi, Zhuoer Dong, Weining Fu, Kui Xu, and Qiangfeng Cliff Zhang. "CryoDomain: Sequence-free Protein Domain Identification from Low-resolution Cryo-EM Density Maps." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 1 (2025): 119–27. https://doi.org/10.1609/aaai.v39i1.31987.

Full text
Abstract:
Cryo-electron microscopy (cryo-EM) has revolutionized the field of structural biology, determining structures of large protein machines and sharpening the understanding of fundamental biological processes. Despite cryo-EM’s unique capacity to discover novel proteins from unpurified samples and reveal the intricate structures of protein complexes within native cellular environments, the advancement of protein identification methods for cryo-EM lags behind. Without prior knowledge, such as sequence, protein identification from low-resolution density maps remains challenging. Here we introduce Cr
APA, Harvard, Vancouver, ISO, and other styles
9

Henderson, Richard, and Samar Hasnain. "`Cryo-EM': electron cryomicroscopy, cryo electron microscopy or something else?" IUCrJ 10, no. 5 (2023): 519–20. http://dx.doi.org/10.1107/s2052252523006759.

Full text
Abstract:
Structural biology continues to benefit from an expanding toolkit, which is helping to gain unprecedented insight into the assembly and organization of multi-protein machineries, enzyme mechanisms and ligand/inhibitor binding. During the last ten years, cryoEM has become widely available and has provided a major boost to structure determination of membrane proteins and large multi-protein complexes. Many of the structures have now been made available at resolutions around 2 Å, where fundamental questions regarding enzyme mechanisms can be addressed. Over the years, the abbreviation cryoEM has
APA, Harvard, Vancouver, ISO, and other styles
10

Zeng, Lingxiao, Wei Ding, and Quan Hao. "Using cryo-electron microscopy maps for X-ray structure determination." IUCrJ 5, no. 4 (2018): 382–89. http://dx.doi.org/10.1107/s2052252518005857.

Full text
Abstract:
X-ray crystallography and cryo-electron microscopy (cryo-EM) are complementary techniques for structure determination. Crystallography usually reveals more detailed information, while cryo-EM is an extremely useful technique for studying large-sized macromolecules. As the gap between the resolution of crystallography and cryo-EM data narrows, the cryo-EM map of a macromolecule could serve as an initial model to solve the phase problem of crystal diffraction for high-resolution structure determination. FSEARCH is a procedure to utilize the low-resolution molecular shape for crystallographic pha
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cryo-EM structure"

1

Nojima, Shingo. "Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Busselez, Johan. "Structure et oligomérisation de complexes membranaires photosynthétique bactériens : une analyse par cryo-microscopie électronique." Paris 6, 2007. http://www.theses.fr/2007PA066094.

Full text
Abstract:
Le travail de cette thèse a été consacré à l'analyse structurale par microscopie électronique du « core complexe » de l'appareil photosynthétique bactérien. Ce multicomplexe membranaire est le dernier composant de l'appareil photosynthétique bactérien dont on ne dispose pas de structure atomique. L'enjeu de la détermination de la structure de ce complexe est la compréhension de la transformation de l'énergie lumineuse en séparation de charges et du couplage entre le centre réactionnel et le cytochrome bc1. Pour répondre à ces questions, la démarche a consisté en une analyse structurale compara
APA, Harvard, Vancouver, ISO, and other styles
3

Torchy, Morgan. "Etude structure-fonction du complexe de remodelage de la chromatine NuRD." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ113/document.

Full text
Abstract:
Une approche de biologie structurale intégrative a été mise à profit pour l'étude de l’organisation structurale du complexe NuRD. Mon travail s'est focalisé essentiellement sur trois sous-unités du complexe: MBD3, RbAp46 et RbAp48. J'ai mis en place les protocoles de production et de purification de ces différentes sous-unités, et les ai caractérisé biophysiquement par diverses méthodes. Nous avons ensuite entrepris des études de liaisons sur des nucléosomes reconstitués au laboratoire. Pour MBD3, l'optimisation du complexe nous a permis d'obtenir des cristaux diffractant jusqu'à 7 A de résolu
APA, Harvard, Vancouver, ISO, and other styles
4

Guo, Xieyang. "Regulation of transcription : structural studies of an RNA polymerase elongation complex bound to transcription factor NusA." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ071/document.

Full text
Abstract:
La pause transcriptionnelle marquée par les ARN polymérases (RNAP) est un mécanisme clé pour réguler l'expression des gènes dans tous les règnes de la vie et est une condition préalable à la terminaison de la transcription. Le facteur de transcription bactérien essentiel NusA stimule à la fois la pause et la terminaison de la transcription, jouant ainsi un rôle central. Ici, je présente des reconstructions par cryo-microscopie électronique (cryo-EM) à une seule particule de NusA lié à des complexes d'élongation en présence et en absence d’ARN en épingle à cheveux dans le canal de sortie de l'A
APA, Harvard, Vancouver, ISO, and other styles
5

Braun, Tatjana [Verfasser], Gunnar [Gutachter] Schröder, and Georg [Gutachter] Groth. "Protein Structure Modelling using Evolutionary Information and Cryo-EM Data / Tatjana Braun ; Gutachter: Gunnar Schröder, Georg Groth." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2017. http://d-nb.info/1139891170/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schenk, Carla [Verfasser], Gunnar [Gutachter] Schröder та Dieter [Gutachter] Willbold. "Structure Determination of Amyloid-β1-42 Fibrils by Cryo-EM / Carla Schenk ; Gutachter: Gunnar Schröder, Dieter Willbold". Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2019. http://d-nb.info/1195775385/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khusainov, Iskander. "Structural studies of the Staphylococcus aureus ribosome." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAJ071/document.

Full text
Abstract:
Le ribosome est une machinerie cellulaire importante impliquée dans la synthèse protéique de toute cellule vivante. Par conséquent, le ribosome est l'une des principales cibles des antibiotiques naturels, qui sont capables de tuer les cellules bactériennes en bloquant la synthèse protéique. Toutefois, certaines bactéries sont résistantes à ces antibiotiques en raison de petites modifications au niveau de leurs ribosomes. Entre autres, Staphylococcus aureus (S. aureus) est un agent pathogène responsable de nombreuses infections graves chez l’Homme. Les structures cristallines d'antibiotiques en
APA, Harvard, Vancouver, ISO, and other styles
8

Thonghin, Nopnithi. "Structural studies of the multi-drug resistance protein P-glycoprotein (ABCB1)." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/structural-studies-of-the-multidrug-resistance-protein-pglycoprotein-abcb1(9f3d4a87-4d43-4984-9e41-3db5fc2be66a).html.

Full text
Abstract:
P-glycoprotein (P-gp or ABCB1) is a membrane-bound active transporter belonging to the ABC protein superfamily. It is responsible for xenobioIc efflux and also contributes to multidrug resistance in diverse diseases including cancer and epilepsy. P-gp has been increasingly recognised as a potential target for future therapeutics. Although the protein has been studied for decades, understanding of the P-gp transport mechanism is still incomplete. Two P-gp orthologues, mouse (m) and human (h), were therefore expressed in yeasts and purified in the presence of the detergent, n-Dodecyl-β-D- Malt
APA, Harvard, Vancouver, ISO, and other styles
9

Gomez, de Segura Jesus. "Caractérisation structurale et fonctionnelle des NuRD Complexes." Thesis, Université Grenoble Alpes (ComUE), 2019. https://thares.univ-grenoble-alpes.fr/2019GREAV063.pdf.

Full text
Abstract:
Le complexe de remodelage des nucléosomes et de désacétylation des histones (NuRD) est l'un des principaux régulateurs épigénétiques du génome. Il contribue à la formation et au maintien de l'hétérochromatine, une structure très dense d'ADN et de protéines réprimant la transcription. La NuRD joue un rôle central dans les processus biologiques pertinents tels que la régulation de la pluripotence ou la tumorigenèse. Malgré cela, sa structure et son mécanisme d'action restent largement inconnus. Cela est dû en grande partie à l'hétérogénéité inhérente de composition et de conformation de NuRD. Da
APA, Harvard, Vancouver, ISO, and other styles
10

Guyomar, Charlotte. "Études structurales de la trans-traduction, cible privilégiée pour le développement de nouveaux antibiotiques." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1B039.

Full text
Abstract:
Le travail retranscrit dans cette thèse porte sur un processus biologique impliqué dans le contrôle qualité de la synthèse protéique bactérienne : la trans-traduction. Ce processus permet de libérer les ribosomes bloqués sur des ARNm défectueux tout en détruisant les peptides et ARNm problématiques impliqués dans le blocage. Il nécessite deux acteurs principaux qui interagissent avec le ribosome: l’ARN transfert-messager (ARNtm) et la protéine SmpB. Dans un premier chapitre, une étude en cryo-microscopie électronique à transmission (cryo-MET) a permis d’obtenir deux structures à l’échelle atom
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Cryo-EM structure"

1

service), ScienceDirect (Online. Cryo-EM: Analyses, interpretation, and case studies. Academic Press/Elsevier, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), ScienceDirect (Online, ed. Cryo-EM: Sample preparation and data collection. Academic Press/Elsevier, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cryo-EM structure"

1

Pilsl, Michael, Florian B. Heiss, Gisela Pöll, Mona Höcherl, Philipp Milkereit, and Christoph Engel. "Preparation of RNA Polymerase Complexes for Their Analysis by Single-Particle Cryo-Electron Microscopy." In Ribosome Biogenesis. Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_6.

Full text
Abstract:
AbstractRecent technological progress revealed new prospects of high-resolution structure determination of macromolecular complexes using cryo-electron microscopy (cryo-EM). In the field of RNA polymerase (Pol) I research, a number of cryo-EM studies contributed to understanding the highly specialized mechanisms underlying the transcription of ribosomal RNA genes. Despite a broad applicability of the cryo-EM method itself, preparation of samples for high-resolution data collection can be challenging. Here, we describe strategies for the purification and stabilization of Pol I complexes, exempl
APA, Harvard, Vancouver, ISO, and other styles
2

Punuru, Pranav, Anika Jain, and Daisuke Kihara. "Secondary Structure Detection and Structure Modeling for Cryo-EM." In Methods in Molecular Biology. Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4213-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shi, Yi, and George F. Gao. "Cryo-EM Structure of Monkeypox Virus DNA Polymerase Holoenzyme." In Cryo-Electron Microscopy in Structural Biology. CRC Press, 2024. http://dx.doi.org/10.1201/9781003326106-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baghirov, Javad, Xiao Wang, Genki Terashi, Shu Li, and Daisuke Kihara. "Computational Methods for Bimolecular Structure Modeling for Cryo-EM." In Cryo-Electron Microscopy in Structural Biology. CRC Press, 2024. http://dx.doi.org/10.1201/9781003326106-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mei, Kunrong, and Wei Guo. "Modeling the Cryo-EM Structure of the Exocyst Complex." In Methods in Molecular Biology. Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2639-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hillen, Hauke S. "Cryo-EM for Structure Determination of Mitochondrial Ribosome Samples." In Methods in Molecular Biology. Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3171-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Frank, Joachim, and Abbas Ourmazd. "Continuous Changes in Structure Mapped by Manifold Embedding of Single-Particle Data in Cryo-EM." In Novel Developments in Cryo‐EM of Biological Molecules. Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Agrawal, Rajendra K., Manjuli R. Sharma, Aymen Yassin, Indrajit Lahiri, and inda L. Spremulli. "Structure and function of organellar ribosomes as revealed by cryo-EM." In Ribosomes. Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0215-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhai, Liting, and Wenxin Zhang. "Determination of the Cryo-EM Structure of ATG9 from Arabidopsis thaliana." In Methods in Molecular Biology. Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4059-3_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baghirov, Javad, Han Zhu, Xiao Wang, and Daisuke Kihara. "Protein Secondary Structure and DNA/RNA Detection for Cryo-EM and Cryo-ET Using Emap2sec and Emap2sec+." In Methods in Molecular Biology. Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4196-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cryo-EM structure"

1

NOGALES, EVA. "CRYO-EM VISUALIZATION OF MACROMOLECULAR STRUCTURE AND DYNAMICS." In 25th Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811228216_0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scheres, Sjors H. W. "A Bayesian view on cryo-EM structure determination." In 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012). IEEE, 2012. http://dx.doi.org/10.1109/isbi.2012.6235807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Penczek, Pawel A., and Francisco J. Asturias. "Ab initio cryo-EM structure determination as a validation problem." In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Golubev, A., B. Fatkhullin, I. Khusainov, et al. "Cryo-EM structure of the 70 initiation complex from S. aurues." In XXVIII Российская конференция по электронной микроскопии и VI школа молодых учёных "Современные методы электронной, зондовой микроскопии и комплементарные методы в исследованиях наноструктур и наноматериалов". Crossref, 2020. http://dx.doi.org/10.37795/rcem.2020.51.47.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hennig, Michael. "CRYO-EM ENABLED STRUCTURE BASED DRUG DISCOVERY ON CHALLENGING MEMBRANE PROTEIN TARGETS." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alshammari, Maytha, and Jing He. "Combine Cryo-EM Density Map and Residue Contact for Protein Structure Prediction." In BCB '20: 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. ACM, 2020. http://dx.doi.org/10.1145/3388440.3414708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Street, Maya, and Matthias Wolf. "Structure of a T4-like Myophage in Two States by Cryo-EM." In 13th Asia Pacific Microscopy Congress 2025. ScienceOpen, 2025. https://doi.org/10.14293/apmc13-2025-0223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kato, Koji, Tasuku Hamaguchi, Minoru Kumazawa, et al. "Cryo-EM Structure of PSI-LHCI from a Red alga Cyanidium caldarium." In 13th Asia Pacific Microscopy Congress 2025. ScienceOpen, 2025. https://doi.org/10.14293/apmc13-2025-0400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, S., D. Uruglar, G. Hagelukean, et al. "An improved understanding of native coagulation factor XIII complex structure using cryo-EM." In GTH Congress 2023 – 67th Annual Meeting of the Society of Thrombosis and Haemostasis Research – The patient as a benchmark. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0042-1760590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qiao, Liang, Hongkun Yu, Kunpeng Wang, et al. "Large-scale Parallel Design for Cryo-EM Structure Determination on Heterogeneous Many-core Architectures." In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2019. http://dx.doi.org/10.1109/bibm47256.2019.8983081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!