Journal articles on the topic 'Cryogenic rolling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cryogenic rolling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Meyer, D., E. Brinksmeier, and F. Hoffmann. "Surface hardening by cryogenic deep rolling." Procedia Engineering 19 (2011): 258–63. http://dx.doi.org/10.1016/j.proeng.2011.11.109.
Full textWang, Peng Fei, Chen Bin Liu, Jin Chuan Jie, and Ting Ju Li. "An Effective Method to Fabricate 5083 Aluminum Alloy with Excellent Corrosion Resistance." Materials Science Forum 898 (June 2017): 1300–1304. http://dx.doi.org/10.4028/www.scientific.net/msf.898.1300.
Full textPetrousek, Patrik, Tibor Kvackaj, Róbert Kocisko, Jana Bidulska, Miloslav Luptak, Diego Manfredi, Marco Actis Grande, and Róbert Bidulsky. "INFLUENCE OF CRYOROLLING ON PROPERTIES OF L-PBF 316L STAINLESS STEEL TESTED AT 298K AND 77K." Acta Metallurgica Slovaca 25, no. 4 (December 18, 2019): 283. http://dx.doi.org/10.12776/ams.v25i4.1366.
Full textOevermann, Torben, Thomas Wegener, and Thomas Niendorf. "On the Evolution of Residual Stresses, Microstructure and Cyclic Performance of High-Manganese Austenitic TWIP-Steel after Deep Rolling." Metals 9, no. 8 (July 25, 2019): 825. http://dx.doi.org/10.3390/met9080825.
Full textShi, Jin Tao, Long Gang Hou, Cun Qiang Ma, Jin Rong Zuo, Hua Cui, Lin Zhong Zhuang, and Ji Shan Zhang. "Mechanical Properties and Microstructures of 5052 Al Alloy Processed by Asymmetric Cryorolling." Materials Science Forum 850 (March 2016): 823–28. http://dx.doi.org/10.4028/www.scientific.net/msf.850.823.
Full textKvačkaj, Tibor, Robert Kočiško, Robert Bidulský, Jana Bidulská, Peter Bella, Miloslav Lupták, Andrea Kováčová, and Július Bacsó. "The Influence of Thermo-Plastic Processes on Materials Recovery." Materials Science Forum 782 (April 2014): 379–83. http://dx.doi.org/10.4028/www.scientific.net/msf.782.379.
Full textŠimčák, Dušan, Tibor Kvačkaj, Róbert Kočiško, Róbert Bidulský, Ján Kepič, and Viktor Puchý. "EVALUATION OF HIGHT PURITY ALUMINIUM AFTER ASYMMETRIC ROLLING AT AMBIENT AND CRYOGENIC TEMPERATURES." Acta Metallurgica Slovaca 23, no. 2 (June 30, 2017): 99. http://dx.doi.org/10.12776/ams.v23i2.928.
Full textXiu-Yan, Feng, Cheng Zhi-Ying, Zhou Jia, Wu Xiao-Lei, Wang Zi-Qiang, and Hong You-Shi. "Deformation Twinning in Nanocrystalline Ni during Cryogenic Rolling." Chinese Physics Letters 23, no. 2 (January 30, 2006): 420–22. http://dx.doi.org/10.1088/0256-307x/23/2/040.
Full textKonkova, T., S. Mironov, A. Korznikov, and S. L. Semiatin. "Microstructural response of pure copper to cryogenic rolling." Acta Materialia 58, no. 16 (September 2010): 5262–73. http://dx.doi.org/10.1016/j.actamat.2010.05.056.
Full textKočiško, Róbert, Tibor Kvačkaj, Andrea Kováčová, Dušan Šimčák, Róbert Bidulský, Milostav Lupták, Martin Vlado, and Imrich Pokorný. "The mechanical properties of OFHC copper and CuCrZr alloys after asymmetric rolling at ambient and cryogenic temperatures." Open Engineering 8, no. 1 (November 21, 2018): 426–31. http://dx.doi.org/10.1515/eng-2018-0041.
Full textChen, J. Z., Liang Zhen, Bao You Zhang, Y. X. Cui, and Sheng Long Dai. "Texture Development during Cold and Cryogenic Rolling in AA 7055 Aluminum Alloy." Key Engineering Materials 353-358 (September 2007): 639–42. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.639.
Full textPesin, Alexander, and Denis Pustovoytov. "Finite Element Simulation of Heat Transfer during Cryogenic Asymmetric Sheet Rolling of Aluminum Alloys." Key Engineering Materials 716 (October 2016): 692–99. http://dx.doi.org/10.4028/www.scientific.net/kem.716.692.
Full textKam, Menderes, and Hamit Saruhan. "Vibration damping capacity of deep cryogenic treated AISI 4140 steel shaft supported by rolling element bearings." Materials Testing 63, no. 8 (August 1, 2021): 742–47. http://dx.doi.org/10.1515/mt-2020-0118.
Full textNam, Won Jong, Young Bum Lee, and Dong Hyuk Shin. "Ultrafine Grained Bulk 5083 Al Alloy Produced by Cryogenic Rolling Process." Materials Science Forum 449-452 (March 2004): 141–44. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.141.
Full textShi, Jin Tao, Jin Rong Zuo, and Ji Shan Zhang. "Microstructure and Mechanical Properties of 5052 Al Alloy by Cryogenic Rolling." Materials Science Forum 993 (May 2020): 86–91. http://dx.doi.org/10.4028/www.scientific.net/msf.993.86.
Full textKonkova, T., S. Mironov, A. Korznikov, G. Korznikova, M. M. Myshlyaev, and S. L. Semiatin. "Grain structure evolution during cryogenic rolling of alpha brass." Journal of Alloys and Compounds 629 (April 2015): 140–47. http://dx.doi.org/10.1016/j.jallcom.2014.12.241.
Full textCui, Junjun, Liqing Chen, Yanfei Li, Jiahua Liu, and Jiaqi Xie. "Effects of annealing treatment on mechanical properties of 8011 aluminum alloy after cryogenic rolling." Metallurgical Research & Technology 116, no. 2 (2019): 219. http://dx.doi.org/10.1051/metal/2018067.
Full textSathiaraj, G. Dan, Rajib Kalsar, Satyam Suwas, and Werner Skrotzki. "Effect of Stacking Fault Energy on Microstructure and Texture Evolution during the Rolling of Non-Equiatomic CrMnFeCoNi High-Entropy Alloys." Crystals 10, no. 7 (July 13, 2020): 607. http://dx.doi.org/10.3390/cryst10070607.
Full textSaju, Tinu P. "Experimental Investigation on Formability of Cryorolled and Room Temperature Rolled AA 6061 Sheet Metal with 50% and 75% Thickness Reduction." Applied Mechanics and Materials 592-594 (July 2014): 302–6. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.302.
Full textMagalhães, Danielle Cristina Camilo, Marcio Ferreira Hupalo, and Osvaldo Mitsuyuki Cintho. "Natural aging behavior of AA7050 Al alloy after cryogenic rolling." Materials Science and Engineering: A 593 (January 2014): 1–7. http://dx.doi.org/10.1016/j.msea.2013.11.017.
Full textYe, K. L., H. Y. Luo, and J. L. Lv. "Producing Nanostructured 304 Stainless Steel by Rolling at Cryogenic Temperature." Materials and Manufacturing Processes 29, no. 6 (June 3, 2014): 754–58. http://dx.doi.org/10.1080/10426914.2014.901534.
Full textWon, Jong Woo, Seong-Woo Choi, Jae-Keun Hong, Byeong-Chan Suh, Jeong Hun Lee, and Byung Je Kwak. "Microstructure and strength–ductility balance of pure titanium processed by cryogenic rolling at various rolling reductions." Materials Science and Engineering: A 798 (November 2020): 140328. http://dx.doi.org/10.1016/j.msea.2020.140328.
Full textLi, Zhide, Yuze Wu, Zhibao Xie, Charlie Kong, and Hailiang Yu. "Grain Growth Mechanism of Lamellar-Structure High-Purity Nickel via Cold Rolling and Cryorolling during Annealing." Materials 14, no. 14 (July 19, 2021): 4025. http://dx.doi.org/10.3390/ma14144025.
Full textGeorge, Sarah, and Candice Mias. "Effect of Rolling Temperature on Annealing of aa1050 Aluminium Alloy." Materials Science Forum 828-829 (August 2015): 200–205. http://dx.doi.org/10.4028/www.scientific.net/msf.828-829.200.
Full textZhang, Zheng, Hongjiang Pan, Lifang Meng, Jinxu Zhang, Xu Yang, Hongliang Gao, Yulan Gong, Baipo Shu, and Xinkun Zhu. "Mechanical Properties of Pure Titanium Processed by Cryogenic Rolling and Annealing." MATERIALS TRANSACTIONS 60, no. 4 (April 1, 2019): 513–18. http://dx.doi.org/10.2320/matertrans.m2018312.
Full textSingh, Rahul, Deepak Sachan, Raviraj Verma, Sunkulp Goel, R. Jayaganthan, and Abhishek Kumar. "Mechanical behavior of 304 Austenitic stainless steel processed by cryogenic rolling." Materials Today: Proceedings 5, no. 9 (2018): 16880–86. http://dx.doi.org/10.1016/j.matpr.2018.04.090.
Full textHu, Zhiping, Rendong Liu, Li Lin, and Guodong Wang. "The influence of cryogenic rolling on a transformation-induced plasticity steel." Materials Science and Technology 36, no. 13 (June 25, 2020): 1381–88. http://dx.doi.org/10.1080/02670836.2020.1783617.
Full textPemov, I. F., E. V. Yakushev, S. P. Zubov, A. A. Pridein, L. V. Prokopenko, O. V. Samokhina, and D. V. Nizhel’skii. "Elaboration and pilot testing of a technology for production of sheet rolled products of cryogenic grade steels for liquidized natural gas storing." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, no. 3 (March 29, 2020): 222–27. http://dx.doi.org/10.32339/0135-5910-2020-3-222-227.
Full textGode, Ceren. "INFLUENCE OF A LOW-TEMPERATURE PLASTIC-DEFORMATION PROCESS ON THE MICROSTRUCTURE OF AN Al-Si-Mg ALUMINUM ALLOY." Materiali in tehnologije 55, no. 2 (April 15, 2021): 283–91. http://dx.doi.org/10.17222/mit.2020.187.
Full textZharkov, I. P. "Cryogenic Equipment for Low-Temperature Hardening of Instruments and Machinery for Needs of Machine Building and Rolling Production." Science and innovation 10, no. 3 (May 30, 2014): 35–41. http://dx.doi.org/10.15407/scine10.03.035.
Full textSan Andres, Luis. "Turbulent Flow Foil Bearings for Cryogenic Applications." Journal of Tribology 117, no. 1 (January 1, 1995): 185–95. http://dx.doi.org/10.1115/1.2830598.
Full textYu, Bao Yi, Qian Qian Luo, Yang Li, Yu Juan Wu, and Run Xia Li. "Effects of Solution and Cryogenic Treatments on Microstructures and Mechanical Properties of AZ31 Alloy Tubes." Advanced Materials Research 750-752 (August 2013): 760–64. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.760.
Full textWu, Yuze, Juan Liu, Laxman Bhatta, Charlie Kong, and Hailiang Yu. "Study of Texture Analysis on Asymmetric Cryorolled and Annealed CoCrNi Medium Entropy Alloy." Crystals 10, no. 12 (December 18, 2020): 1154. http://dx.doi.org/10.3390/cryst10121154.
Full textVeverková, Anna, Jiří Kozlík, Kristína Bartha, Tomáš Chráska, Cinthia Antunes Corrêa, and Josef Stráský. "Mechanical Properties of Ti-15Mo Alloy Prepared by Cryogenic Milling and Spark Plasma Sintering." Metals 9, no. 12 (November 28, 2019): 1280. http://dx.doi.org/10.3390/met9121280.
Full textNageswara rao, P., and R. Jayaganthan. "Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy." Materials & Design 39 (August 2012): 226–33. http://dx.doi.org/10.1016/j.matdes.2012.02.010.
Full textMaeda, Milene Yumi, John Jairo Hoyos Quintero, Marcel Tadashi Izumi, Márcio Ferreira Hupalo, and Osvaldo Mitsuyuki Cintho. "Study of Cryogenic Rolling of FCC Metals with Different Stacking Fault Energies." Materials Research 20, suppl 2 (December 18, 2017): 716–21. http://dx.doi.org/10.1590/1980-5373-mr-2017-0054.
Full textZheng, Jian-jun, Chang-sheng Li, Shuai He, Ban Cai, and Yan-lei Song. "Deformation behavior of Fe-36Ni steel during cryogenic (123–173 K) rolling." Journal of Iron and Steel Research International 23, no. 5 (May 2016): 447–52. http://dx.doi.org/10.1016/s1006-706x(16)30071-1.
Full textMarkushev, M. V., E. V. Avtokratova, I. Ya Kazakulov, S. V. Krymsky, M. Yu Mochalova, M. Yu Murashkin, and O. Sh Sitdikov. "Microstructure and properties of an aluminum D16 alloy subjected to cryogenic rolling." Russian Metallurgy (Metally) 2011, no. 4 (April 2011): 364–69. http://dx.doi.org/10.1134/s0036029511040136.
Full textWang, Yinmin, Tong Jiao, and En Ma. "Dynamic Processes for Nanostructure Development in Cu after Severe Cryogenic Rolling Deformation." MATERIALS TRANSACTIONS 44, no. 10 (2003): 1926–34. http://dx.doi.org/10.2320/matertrans.44.1926.
Full textMeyer, Daniel. "Cryogenic deep rolling – An energy based approach for enhanced cold surface hardening." CIRP Annals 61, no. 1 (2012): 543–46. http://dx.doi.org/10.1016/j.cirp.2012.03.102.
Full textGuo, Fei, Haipeng Dong, Weijiu Huang, Xusheng Yang, Li Hu, Mengdi Li, and Luyao Jiang. "Nanocrystalline structure fabricated by cryogenic temperature rolling of AA 2099 aluminum alloy." Journal of Alloys and Compounds 864 (May 2021): 158293. http://dx.doi.org/10.1016/j.jallcom.2020.158293.
Full textLee, S., R. Muchime, R. Matsumoto, and H. Utsunomiya. "Texture and mechanical properties of Cu alloy by cryogenic high-speed rolling." IOP Conference Series: Materials Science and Engineering 1121, no. 1 (March 1, 2021): 012009. http://dx.doi.org/10.1088/1757-899x/1121/1/012009.
Full textNaydenkin, Evgeny V., and Ivan P. Mishin. "Structure and Grain Boundaries of Ultrafine-Grained Nickel after Rolling and Forging at Cryogenic Temperature." Solid State Phenomena 313 (January 2021): 31–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.313.31.
Full textNaydenkin, Evgeny V., and Ivan P. Mishin. "Structure and Grain Boundaries of Ultrafine-Grained Nickel after Rolling and Forging at Cryogenic Temperature." Solid State Phenomena 313 (January 2021): 31–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.313.31.
Full textStroupe, M. Elizabeth, and Yeqing Tao. "Rocking, rolling, sliding: structural transitions in actin:tropomyosin." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C850. http://dx.doi.org/10.1107/s2053273314091499.
Full textStepanov, Nikita, Dmitry Shaysultanov, Nikita Yurchenko, Margarita Klimova, Sergey Zherebtsov, and Gennady Salishchev. "Microstructure Refinement in the CoCrFeNiMn High Entropy Alloy under Plastic Straining." Materials Science Forum 879 (November 2016): 1853–58. http://dx.doi.org/10.4028/www.scientific.net/msf.879.1853.
Full textPeng, Bo, Li Qin Wang, Shou Xiao Fan, De Zhi Zheng, and Le Gu. "A Two-Disk Test Rig for Researching the Damage Behavior of Rolling/Sliding Contact Surfaces under Extreme Conditions." Advanced Materials Research 291-294 (July 2011): 1500–1505. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1500.
Full textChen, Chih-Hsin. "A Formula for Determining Limit Noninterference Curvature in Pure Rolling Conjugation Gears by Using Geometro-Kinematical Concepts." Journal of Mechanical Design 117, no. 1 (March 1, 1995): 180–84. http://dx.doi.org/10.1115/1.2826104.
Full textFu, Bin, Liming Fu, Shichang Liu, Huan Rong Wang, Wei Wang, and Aidang Shan. "High strength-ductility nano-structured high manganese steel produced by cryogenic asymmetry-rolling." Journal of Materials Science & Technology 34, no. 4 (April 2018): 695–99. http://dx.doi.org/10.1016/j.jmst.2017.09.017.
Full textLU, Yue, Ru MA, and Yi-nong WANG. "Texture evolution and recrystallization behaviors of Cu–Ag alloys subjected to cryogenic rolling." Transactions of Nonferrous Metals Society of China 25, no. 9 (September 2015): 2948–57. http://dx.doi.org/10.1016/s1003-6326(15)63921-8.
Full text