Academic literature on the topic 'Crystal field'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crystal field.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Crystal field"
Ross, Nancy L., and John R. Sowerby. "High-pressure crystal-field spectra of single-crystal clinoferrosilite." European Journal of Mineralogy 11, no. 5 (September 30, 1999): 791–802. http://dx.doi.org/10.1127/ejm/11/5/0791.
Full textRossano, Stéphanie, Laurence Galoisy, and Gabriel Gwamnesia. "Crystal-field spectrum of γ-Ni2SiO4." European Journal of Mineralogy 8, no. 3 (June 17, 1996): 471–76. http://dx.doi.org/10.1127/ejm/8/3/0471.
Full textRyu, Sun Young, In Hwan Oh, Sang Jin Cho, Shin Ae Kim, and Hyun Kyu Song. "Enhancing Protein Crystallization under a Magnetic Field." Crystals 10, no. 9 (September 16, 2020): 821. http://dx.doi.org/10.3390/cryst10090821.
Full textChoudhury, P. K. "Evanescent Field Enhancement in Liquid Crystal Optical Fibers: A Field Characteristics Based Analysis." Advances in Condensed Matter Physics 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/504868.
Full textTang, Xia, Botao Liu, Yue Yu, Sheng Liu, and Bing Gao. "Numerical Analysis of Difficulties of Growing Large-Size Bulk β-Ga2O3 Single Crystals with the Czochralski Method." Crystals 11, no. 1 (December 30, 2020): 25. http://dx.doi.org/10.3390/cryst11010025.
Full textHe, Xinke, Linnong Li, Xinqi He, and Chao Xie. "Multi-Physical Field Simulation of Cracking during Crystal Growth by Bridgman Method." Materials 16, no. 8 (April 20, 2023): 3260. http://dx.doi.org/10.3390/ma16083260.
Full textVoronin, Vladimir, Valery Fedorov, Sergey Semenikhin, and Yaroslav Berdnikov. "Neutron spin rotation effect at Laue diffraction in a weakly deformed and nonabsorbing crystal with no center of symmetry." EPJ Web of Conferences 219 (2019): 06003. http://dx.doi.org/10.1051/epjconf/201921906003.
Full textBulutoglu, Pelin Su, Conor Parks, Nandkishor K. Nere, Shailendra Bordawekar, and Doraiswami Ramkrishna. "Exploring New Crystal Structures of Glycine via Electric Field-Induced Structural Transformations with Molecular Dynamics Simulations." Processes 7, no. 5 (May 8, 2019): 268. http://dx.doi.org/10.3390/pr7050268.
Full textBai, Minyu, Shuai Wen, Jijie Zhao, Yuxuan Du, Fei Xie, and Huan Liu. "Effect of Carrier Gas Flow Field on Chemical Vapor Deposition of 2D MoS2 Crystal." Coatings 11, no. 5 (May 6, 2021): 547. http://dx.doi.org/10.3390/coatings11050547.
Full textZhong, Z., M. Hasnah, A. Broadbent, E. Dooryhee, and M. Lucas. "Phase-space matching between bent Laue and flat Bragg crystals." Journal of Synchrotron Radiation 26, no. 6 (October 23, 2019): 1917–23. http://dx.doi.org/10.1107/s1600577519010774.
Full textDissertations / Theses on the topic "Crystal field"
吳潔貞 and Kit-ching Betty Ng. "Correlation effects in crystal field splitting." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1986. http://hub.hku.hk/bib/B31230714.
Full textNg, Kit-ching Betty. "Correlation effects in crystal field splitting /." [Hong Kong : University of Hong Kong], 1986. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12323342.
Full textLee, Michael James. "Crystal field matrix reduction and polarisation interference calculations." Thesis, University of Canterbury. Physics and Astronomy, 1999. http://hdl.handle.net/10092/8169.
Full text盧德成 and Tak-shing Lo. "Two-body operators and correlation crystal field models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31210922.
Full textPraetorius, Simon. "Efficient Solvers for the Phase-Field Crystal Equation." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-195532.
Full textLo, Tak-shing. "Two-body operators and correlation crystal field models /." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13437549.
Full textYeung, Yau-yuen. "Alternative parametrization schemes in lanthanide crystal field theory /." [Hong Kong : University of Hong Kong], 1986. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12324863.
Full textMatias, Jean de Souza. "Crystal electric field efect in non-conventional structures." reponame:Repositório Institucional da UFABC, 2017.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2017.
Em Física da Matéria Condesada, as terras raras apresentam um papel importante em várias aplicações tecnológicas. Suas camadas 4f incompletas possuem enumeras con- gurações diferentes possibilitando o desenvolvimento e melhoramento de propriedades interessantes. Materiais supercondutores, lasers de estado sólido, radares e ímãs permanentes são bons exemplos de dispositivos que utilizam materiais desenvolvidos com terras raras. Quando terras raras são colocadas em um material matriz, as interações entre esses elementos ou entre a matriz e as terras raras fazem com que os seus estados eletrônicos mudem. Estruturas cristalinas apresentam campo elétrico cristalino, cuja teoria desenvolvida no século passado foi amplamente estudada e aplicada à vários grupos de simetria em cristais bulk. Até o momento, porém, muito pouco tem sido estudado a respeito de como o campo elétrico de estruturas não convencionais, como quasicristias e nanocristais, afeta os autoestados das terras raras. Portanto, o objetivo desse projeto foi analizar o efeito de campo elétrico cristalino em dois tipos de materiais: Nanopartículas cúbicas com tamanho de 8 nm e quasicristais icosaédricos, bem como seu aproximante. Para isso, nanopartículas de NaY1..xRExF4 (RE = Yb, Er, Dy, Gd) foram sintetizadas pelo método de termo-decomposição e quasicristais de Au-Al-Yb foram crescidos em forno a arco. Para a determinação parâmetros de campo elétrico cristalino Bm n , foram feitos ajustes das curvas de magnetização dependentes da temperatura e do campo magnético aplicado. Além disso, para os quasicristais foi encontrado um grupo de simetria pontual equivalente e seus parâmetros de campo elétrico cristalino foram comparados com os de seus aproximantes. Com isso, observou-se que somente parâmetros de segunda ordem apresentaram uma diferença signicativa quando comparados entre essas duas estruturas; B0 2 é 20 vezes maior para a estrutura quasicristalina. Para as nanopartículas cúbicas, uma Hamiltoniana total foi proposta e com isso foi feita um simulação para determinar a separação total dos níveis de energia da camada incompleta 4f das terras raras. Além disso, o espectro de Up conversion foi medido e comparado com a simulação teórica. A largura de linha do espectro teórico, 470 20 K, para a transição 4S3=2 ! 4I15=2 , é comparável aos resultados empíricos, 650 50 K. O estado fundamental dos sistemas foi conrmado pela técnica de Ressonância Eletrônica de Spin. Dessa forma, foi estabelecida uma realação de como a separação total dos multipletos-J afeta a emissão de Up conversion destas NP's.
In Condensed Matter Physics, rare earth elements play an important role in several technological applications. Their complex 4f unfullled shell presents numerous dierent congurations, making possible to engineer or tune interesting properties. Superconductors, solid state lasers, radars and permanent magnets are some examples of cutting edge devices using materials developed with rare earth elements. When a rare earth ion is placed in a host material, their interactions with each other or with the host lattice are responsible for the arrangement of their electronic state. Crystalline structures exhibit the crystal eld eect, whose theory developed in the last century has been largely applied and studied to various point group symmetries in bulk crystals. However, there is a lack of researches in how the electric eld of non-conventional host lattices, such as quasicrystals and nanocrystals, aect rare earth's eigenstates. Therefore, the aim of this project was to analyze the crystal eld eect in two dierent kind of materials: Cubic nanoparticles with 8 nm in size and icosahedral bulk quasicristals, as well as their crystal approximant. For that, NaY1..xRExF4 (RE = Yb, Er, Dy, Gd) nanoparticles were synthesized by temperature decomposition and Au-Al- Yb quasicrystals were grown by arc-melting. Fittings of the thermal and eld dependent magnetization were used to determine the crystal electric eld parameters Bmn . In the quasicrystal material case, an equivalent point group symmetry was obtained and their crystal electric eld parameters were compared with the ones of their approximant. Only parameters of second order substantially diered between both structures, B02 was found out to be around 20 times larger than that for the approximant. Moreover, in the cubic nanostructures case, the overall splitting of the 4f unfullled shell of the RE elements was determined diagonalizing a proposed total Hamiltonian, whose terms include the Crystal Electric Field parameters. In addition, the up-conversion light emission signal was acquired and compared with a theoretical simulation. The theoretical up-conversion light emission line-width found out as 471 20 K, for the transition 4S3=2 ! 4I15=2 , is comparable to empirical results, 650 50 K. The ground state of the systems was conrmed by Electron Spin Resonance analysis. In this case, a relation with how the overall energy splitting of the J-multiplets aect the UC conversion light emission of theses NP's was established.
Zeis, Roswitha. "Single crystal field-effect transistors based on layered semiconductors." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975775405.
Full textHashim, K. I. "A study of crystal growth by field emission microscopy." Thesis, Bangor University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380230.
Full textBooks on the topic "Crystal field"
Burns, Roger G. Mineralogical applications of crystal field theory. 2nd ed. Cambridge [England]: Cambridge University Press, 1993.
Find full textB, McFadden Geoffrey, Wheeler A. A, and National Institute of Standards and Technology (U.S.), eds. A phase-field model with convection: Numerical simulations. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2000.
Find full textB, McFadden Geoffrey, Wheeler A. A, and National Institute of Standards and Technology (U.S.), eds. A phase-field model with convection: Numerical simulations. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2000.
Find full textB, McFadden Geoffrey, Wheeler A. A, and National Institute of Standards and Technology (U.S.), eds. A phase-field model with convection: Numerical simulations. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2000.
Find full textB, McFadden Geoffrey, Wheeler A. A, and National Institute of Standards and Technology (U.S.), eds. A phase-field model with convection: Numerical simulations. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2000.
Find full textB, McFadden Geoffrey, Wheeler A. A, and National Institute of Standards and Technology (U.S.), eds. A phase-field model with convection: Numerical simulations. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2000.
Find full textFowler, H. A. Growth model for filamentary streamers in an ambient field. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2000.
Find full textAvram, Nicolae M., and Mikhail G. Brik, eds. Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30838-3.
Full textAvram, Nicolae M. Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textBook chapters on the topic "Crystal field"
Keppler, Hans. "Crystal Field Theory." In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_316-1.
Full textKeppler, Hans. "Crystal Field Theory." In Encyclopedia of Earth Sciences Series, 340–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_316.
Full textMorrison, C. A. "Crystal-Field Interactions--Phenomenological Theory of Crystal Fields." In Lecture Notes in Chemistry, 81–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-93376-9_8.
Full textMorrison, C. A. "Miscellaneous Crystal-Field Effects." In Lecture Notes in Chemistry, 143–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-93376-9_15.
Full textSkomski, Ralph, Priyanka Manchanda, and Arti Kashyap. "Anisotropy and Crystal Field." In Handbook of Magnetism and Magnetic Materials, 1–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63101-7_3-1.
Full textSkomski, Ralph, Priyanka Manchanda, and Arti Kashyap. "Anisotropy and Crystal Field." In Handbook of Magnetism and Magnetic Materials, 103–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63210-6_3.
Full textNakayama, Naofumi, and Hitoshi Goto. "Molecular Crystal Calculation Prospects for Structural Phase Transitions." In The Materials Research Society Series, 179–208. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0260-6_10.
Full textMeyer, B. K. "ZnO: crystal-field splitting energy." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 583. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_324.
Full textMaekawa, S., S. Kashiba, S. Takahashi, and M. Tachiki. "Kondo Effect versus Crystal Field." In Springer Series in Solid-State Sciences, 90–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82618-4_6.
Full textSeo, Jooyeok, Myeonghun Song, Hwajeong Kim, and Youngkyoo Kim. "Liquid Crystal-Integrated-Organic Field-Effect Transistors for Ultrasensitive Sensors." In Liquid Crystal Sensors, 123–44. Boca Raton, FL: CRC Press, [2017] | Series: Liquid crystals book series: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120539-6.
Full textConference papers on the topic "Crystal field"
Plapp, Mathis, W. Wang, Katsuo Tsukamoto, and Di Wu. "Phase-Field Simulations of Crystal Growth." In SELECTED TOPICS ON CRYSTAL GROWTH: 14th International Summer School on Crystal Growth. AIP, 2010. http://dx.doi.org/10.1063/1.3476229.
Full textKobayashi, Ryo, W. Wang, Katsuo Tsukamoto, and Di Wu. "A brief introduction to phase field method." In SELECTED TOPICS ON CRYSTAL GROWTH: 14th International Summer School on Crystal Growth. AIP, 2010. http://dx.doi.org/10.1063/1.3476232.
Full textMiura, Hitoshi, Etsuro Yokoyama, Katsuo Tsukamoto, W. Wang, Katsuo Tsukamoto, and Di Wu. "Introduction to Phase-Field Model and Its Applications in the Fields of Crystal Growth and Planetary Science." In SELECTED TOPICS ON CRYSTAL GROWTH: 14th International Summer School on Crystal Growth. AIP, 2010. http://dx.doi.org/10.1063/1.3476237.
Full textHehlen, Markus P. "Crystal-field effects in fluoride crystals for optical refrigeration." In OPTO, edited by Richard I. Epstein and Mansoor Sheik-Bahae. SPIE, 2010. http://dx.doi.org/10.1117/12.845626.
Full textRyzhkova, Anna V., Pratibha Ramarao, Maryam Nikkhou, and Igor Muševič. "Electric field tuning of ferroelectric liquid-crystal microlaser." In Emerging Liquid Crystal Technologies XV, edited by Liang-Chy Chien and Dirk J. Broer. SPIE, 2020. http://dx.doi.org/10.1117/12.2545802.
Full textWang, Hongbo, and William S. Oates. "A Phase Field Analysis of Thermomechanically Coupled Liquid Crystal Elastomers." In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1324.
Full textMeyer, Claire, Ivan N. Dozov, Irena Dokli, Anamarija Knezevic, Andreja Lesac, Patrick Davidson, and Geoffrey R. Luckhurst. "Electric-field effects in the twist-bend nematic phase." In Emerging Liquid Crystal Technologies XIII, edited by Igor Muševič, Liang-Chy Chien, Dirk J. Broer, and Vladimir G. Chigrinov. SPIE, 2018. http://dx.doi.org/10.1117/12.2301296.
Full textXiang, Xiao, Michael Escuti, and Jihwan Kim. "Wide-field-of-view nanoscale Bragg liquid crystal polarization gratings." In Emerging Liquid Crystal Technologies XIII, edited by Igor Muševič, Liang-Chy Chien, Dirk J. Broer, and Vladimir G. Chigrinov. SPIE, 2018. http://dx.doi.org/10.1117/12.2303994.
Full textWalczak, Andrzej, Edward Nowinowski-Kruszelnicki, and Aleksander Kiezun. "Director field in a liquid crystal: direct measurement method." In Liquid Crystals, edited by Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski, and Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300000.
Full textSakai, Kyosuke, Takeaki Yamamoto, Tatsuya Omura, and Keiji Sasaki. "Quadrupole Field in Plasmonic Crystal." In Frontiers in Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/fio.2015.fth1b.4.
Full textReports on the topic "Crystal field"
Glushko, E. Ya, and A. N. Stepanyuk. The multimode island kind photonic crystal resonator: states classification. SME Burlaka, 2017. http://dx.doi.org/10.31812/0564/1561.
Full textLim, Hojun, Steven J. Owen, Fadi F. Abdeljawad, Byron Hanks, and Corbett Chandler Battaile. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1215797.
Full textZhu, Xiaoyang. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1165194.
Full textZhu, Xiaoyang, and Daniel Frisbie. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1351111.
Full textEinfeld, W. Glass bead size and morphology characteristics in support of Crystal Mist field experiments. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/41392.
Full textStevens, Sally B., and Clyde A. Morrison. Theoretical Crystal-Field Calculations for Rare-Earth Ions in III-V semiconductor Compounds. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada243098.
Full textLoewenhaupt, M., P. Tils, W. Hahn, and C. K. Loong. Crystal field and exchange interactions in DyT{sub 4}Al{sub 8} (T = Fe and Mn). Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/28356.
Full textPaschke, Timothy M. Study in Calcium Carbonate Crystal Formation at the Air/Water Interface in the Presence of a Magnetic Field. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada388640.
Full textReinson, G. E. Facies analysis and reservoir geometry of the Crystal Viking Field, Tp. 45 and 46, Rg. 3 and 4W5, Central Alberta. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/130013.
Full textPisani, William, Dane Wedgeworth, Michael Roth, John Newman, and Manoj Shukla. Exploration of two polymer nanocomposite structure-property relationships facilitated by molecular dynamics simulation and multiscale modeling. Engineer Research and Development Center (U.S.), March 2023. http://dx.doi.org/10.21079/11681/46713.
Full text