To see the other types of publications on this topic, follow the link: Crystal quartz microbalance.

Journal articles on the topic 'Crystal quartz microbalance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Crystal quartz microbalance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tatsuma, Tetsu, Yoshihito Watanabe, Noboru Oyama, Kaoru Kitakizaki, and Masanori Haba. "Multichannel Quartz Crystal Microbalance." Analytical Chemistry 71, no. 17 (1999): 3632–36. http://dx.doi.org/10.1021/ac9904260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dunham, Glen C., Nicholas H. Benson, Danuta Petelenz, and Jiri Janata. "Dual Quartz Crystal Microbalance." Analytical Chemistry 67, no. 2 (1995): 267–72. http://dx.doi.org/10.1021/ac00098a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goka, Shigeyoshi, Kiwamu Okabe, Yasuaki Watanabe, and Hitoshi Sekimoto. "Multimode Quartz Crystal Microbalance." Japanese Journal of Applied Physics 39, Part 1, No. 5B (2000): 3073–75. http://dx.doi.org/10.1143/jjap.39.3073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Naoi, Katsuhiko, Mary M. Lien, and William H. Smyrl. "Quartz crystal microbalance analysis." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 272, no. 1-2 (1989): 273–75. http://dx.doi.org/10.1016/0022-0728(89)87088-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bizet, K., C. Gabrielli, and H. Perrot. "Immunodetection by Quartz Crystal Microbalance." Applied Biochemistry and Biotechnology 89, no. 2-3 (2000): 139–50. http://dx.doi.org/10.1385/abab:89:2-3:139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

K��linger, C., S. Drost, F. Aberl, and H. Wolf. "Quartz crystal microbalance for immunosensing." Fresenius' Journal of Analytical Chemistry 349, no. 5 (1994): 349–54. http://dx.doi.org/10.1007/bf00326598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Owen, Valerie M. "France — Electrochemical quartz crystal microbalance." Biosensors and Bioelectronics 11, no. 4 (1996): xiv. http://dx.doi.org/10.1016/0956-5663(96)82761-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ohlsson, Gabriel, Christoph Langhammer, Igor Zorić, and Bengt Kasemo. "A nanocell for quartz crystal microbalance and quartz crystal microbalance with dissipation-monitoring sensing." Review of Scientific Instruments 80, no. 8 (2009): 083905. http://dx.doi.org/10.1063/1.3202207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wahyuni, Farida, Setyawan P. Sakti, Unggul P. Juswono, Fenny Irawati, and Nur Chabibah. "Design of Cell Construction for Immunosensor Based Quartz Crystal Microbalance (QCM)." Natural B 1, no. 4 (2012): 305–11. http://dx.doi.org/10.21776/ub.natural-b.2012.001.04.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gomes, M. Teresa SR, Cristina MF Barros, M. Graça O. Santana-Marques, and João ABP Oliveira. "The adsorption of carbon dioxide by tertiary alkanolamines." Canadian Journal of Chemistry 77, no. 3 (1999): 401–8. http://dx.doi.org/10.1139/v99-020.

Full text
Abstract:
The quantification of gaseous carbon dioxide, CO2, adsorbed by tertiary alkanolamines was performed using a quartz crystal microbalance. Carbon dioxide was injected over piezoelectric quartz crystals coated with different amounts of N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (THEED), N,N,N',N'-tetrakis(2-hydroxypropyl)ethyl enediamine (Quadrol), and triethanolamine (TEA), and the frequency decrease of the crystals was recorded. The nature of the interaction of the alkanolamines with CO2 was investigated by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectro
APA, Harvard, Vancouver, ISO, and other styles
11

Yu, George Y., and Jiří Janata. "Proximity Effect in Quartz Crystal Microbalance." Analytical Chemistry 80, no. 8 (2008): 2751–55. http://dx.doi.org/10.1021/ac7022519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kurosawa, Shigeru, Hidenobu Aizawa, Mitsuhiro Tozuka, Miki Nakamura, and Jong-Won Park. "Immunosensors using a quartz crystal microbalance." Measurement Science and Technology 14, no. 11 (2003): 1882–87. http://dx.doi.org/10.1088/0957-0233/14/11/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

LU, YuDong, Jian'An HE, ZhiQiang ZHU, et al. "The development of quartz crystal microbalance." SCIENTIA SINICA Chimica 41, no. 11 (2011): 1679–98. http://dx.doi.org/10.1360/032011-381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Janshoff, A., and C. Steinem. "Quartz Crystal Microbalance for Bioanalytical Applications." Sensors Update 9, no. 1 (2001): 313–54. http://dx.doi.org/10.1002/1616-8984(200105)9:1<313::aid-seup313>3.0.co;2-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Okahata, Yoshio, and Hiroyuki Furusawa. "Biosensor Using a Quartz-crystal Microbalance." IEEJ Transactions on Sensors and Micromachines 123, no. 11 (2003): 459–64. http://dx.doi.org/10.1541/ieejsmas.123.459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sönmezler, Merve, Erdoğan Özgür, Handan Yavuz, and Adil Denizli. "Quartz crystal microbalance based histidine sensor." Artificial Cells, Nanomedicine, and Biotechnology 47, no. 1 (2019): 221–27. http://dx.doi.org/10.1080/21691401.2018.1548474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Geelhood, S. J., C. W. Frank, and K. Kanazawa. "Transient Quartz Crystal Microbalance Behaviors Compared." Journal of The Electrochemical Society 149, no. 1 (2002): H33. http://dx.doi.org/10.1149/1.1427080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Auge, Jörg, Peter Hauptmann, Frank Eichelbaum, and Steffen Rösler. "Quartz crystal microbalance sensor in liquids." Sensors and Actuators B: Chemical 19, no. 1-3 (1994): 518–22. http://dx.doi.org/10.1016/0925-4005(93)00983-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chen, Lei, Pengfei Sun, and Guosong Chen. "Fluorous-based carbohydrate Quartz Crystal Microbalance." Carbohydrate Research 405 (March 2015): 66–69. http://dx.doi.org/10.1016/j.carres.2014.07.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bing-Liang, Wu, Lei Han-Wei, and Cha Chuan-Sin. "Time-resolved electrochemical quartz crystal microbalance." Journal of Electroanalytical Chemistry 374, no. 1-2 (1994): 97–99. http://dx.doi.org/10.1016/0022-0728(94)03345-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

扶, 梅. "Electrodeless Quartz Crystal Microbalance Chemo/Biosensor." Advances in Analytical Chemistry 11, no. 01 (2021): 1–15. http://dx.doi.org/10.12677/aac.2021.111001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bertran, Celso A., and Maria F. B. Sousa. "Quartz Crystal Microbalance Evaluation of Inhibitors for Inorganic Scale." SPE Journal 18, no. 03 (2013): 583–88. http://dx.doi.org/10.2118/163105-pa.

Full text
Abstract:
Summary In this paper, the use of a quartz crystal microbalance (QCM) with a quartz crystal sensor coated with iron oxide is proposed to evaluate the efficacy of inhibitors in the prevention of scale formation. The quartz crystal was first iron-plated by electrodeposition over the original gold film on the outer side of the crystal and then oxidized. The iron oxide layer is more representative for an evaluation of the inhibitor's effectiveness because tubing and equipment in oil-industry facilities are made of low carbon steel that is coated with an iron oxide layer. The scale formation was co
APA, Harvard, Vancouver, ISO, and other styles
23

Seo, Yongho, Jeongmin Lee, and Insuk Yu. "Amplitude Change of a Quartz Crystal Microbalance." Journal of the Korean Physical Society 51, no. 6 (2007): 1948. http://dx.doi.org/10.3938/jkps.51.1948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Perkel, Jeffrey M. "Pesticide monitoring with a quartz crystal microbalance." Analytical Chemistry 81, no. 3 (2009): 859. http://dx.doi.org/10.1021/ac8025306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Deakin, Mark R., and Daniel A. Buttry. "Electrochemical applications of the quartz crystal microbalance." Analytical Chemistry 61, no. 20 (1989): 1147A—1154A. http://dx.doi.org/10.1021/ac00195a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Eichelbaum, Frank, Ralf Borngräber, Jens Schröder, Ralf Lucklum, and Peter Hauptmann. "Interface circuits for quartz-crystal-microbalance sensors." Review of Scientific Instruments 70, no. 5 (1999): 2537–45. http://dx.doi.org/10.1063/1.1149788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yu, George Y., William D. Hunt, Mira Josowicz, and Jiri Janata. "Development of a magnetic quartz crystal microbalance." Review of Scientific Instruments 78, no. 6 (2007): 065111. http://dx.doi.org/10.1063/1.2749448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ogi, Hirotsugu, Hironao Nagai, Yuji Fukunishi, Taiji Yanagida, Masahiko Hirao, and Masayoshi Nishiyama. "Multichannel Wireless-Electrodeless Quartz-Crystal Microbalance Immunosensor." Analytical Chemistry 82, no. 9 (2010): 3957–62. http://dx.doi.org/10.1021/ac100527r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sekar, Sribharani, Joanna Giermanska, and Jean-Paul Chapel. "Reusable and recyclable quartz crystal microbalance sensors." Sensors and Actuators B: Chemical 212 (June 2015): 196–99. http://dx.doi.org/10.1016/j.snb.2015.02.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Masson, Mar, Kyusik Yun, Tetsuya Haruyama, Eiry Kobatake, and Masuo Aizawa. "Quartz Crystal Microbalance Bioaffinity Sensor for Biotin." Analytical Chemistry 67, no. 13 (1995): 2212–15. http://dx.doi.org/10.1021/ac00109a047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gabrielli, C., M. Keddam, and R. Torresi. "Calibration of the Electrochemical Quartz Crystal Microbalance." Journal of The Electrochemical Society 138, no. 9 (1991): 2657–60. http://dx.doi.org/10.1149/1.2086033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vanýsek, Petr, and Laura A Delia. "Impedance Characterization of a Quartz Crystal Microbalance." Electroanalysis 18, no. 4 (2006): 371–77. http://dx.doi.org/10.1002/elan.200503426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schneider, Oliver, Sladjana Martens, and Christos Argirusis. "Electrochemical Quartz Crystal Microbalance Technique in Sonoelectrochemistry." ECS Transactions 25, no. 28 (2019): 69–80. http://dx.doi.org/10.1149/1.3309679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vavra, Kevin C., George Yu, Mira Josowicz, and Jií Janata. "Magnetic quartz crystal microbalance: Magneto-acoustic parameters." Journal of Applied Physics 110, no. 1 (2011): 013905. http://dx.doi.org/10.1063/1.3602998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Araki, Hideo, and Sigeru Omatu. "Measurement system for quartz crystal microbalance sensors." Artificial Life and Robotics 17, no. 2 (2012): 270–74. http://dx.doi.org/10.1007/s10015-012-0055-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mecea, V. M., J. O. Carlsson, and R. V. Bucur. "Extensions of the quartz-crystal-microbalance technique." Sensors and Actuators A: Physical 53, no. 1-3 (1996): 371–78. http://dx.doi.org/10.1016/0924-4247(96)80161-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kurosawa, Shigeru, Jong-Won Park, Hidenobu Aizawa, Shin-Ichi Wakida, Hiroaki Tao, and Kazuhiko Ishihara. "Quartz crystal microbalance immunosensors for environmental monitoring." Biosensors and Bioelectronics 22, no. 4 (2006): 473–81. http://dx.doi.org/10.1016/j.bios.2006.06.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Friedt, J. M., K. H. Choi, L. Francis, and A. Campitelli. "Simultaneous Atomic Force Microscope and Quartz Crystal Microbalance Measurements: Interactions and Displacement Field of a Quartz Crystal Microbalance." Japanese Journal of Applied Physics 41, Part 1, No. 6A (2002): 3974–77. http://dx.doi.org/10.1143/jjap.41.3974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yu, Hui Yao, Ying Long Yao, and Xiao Hua Wang. "Humidity Sensitive Properties of Graphene Oxide Investigated by Quartz Crystal Microbalance." Advanced Materials Research 1051 (October 2014): 85–89. http://dx.doi.org/10.4028/www.scientific.net/amr.1051.85.

Full text
Abstract:
Graphene oxide has been studied as sensing material for the humidity detection in this paper. At room temperature, graphene oxide was dissolved in water to prepare graphene oxide aqueous solution. This aqueous solution was distributed on the electrode surface of quartz crystal microbalance to form a thin film for humidity detection. The results of the experiment showed that the quartz crystal microbalance sensors with graphene oxide film have good response to the change of humidity. The maximum humidity sensitivity, during the humidity ranging from 10% to 90%RH (relative humidity), has achieve
APA, Harvard, Vancouver, ISO, and other styles
40

Yang, Li, and Xianhe Huang. "Response of Quartz Crystal Microbalance Loaded with Single-drop Liquid in Gas Phase." Open Electrical & Electronic Engineering Journal 8, no. 1 (2014): 197–201. http://dx.doi.org/10.2174/1874129001408010197.

Full text
Abstract:
The frequency response of quartz crystal microbalance loaded by single-drop liquid is studied in this paper. Previous studies have shown that the relationship between resonant frequency and properties of liquid by completely immersing one side of the crystal in liquid. In this work, only localized portion of crystal was wetted by liquid droplet. Repeated experiment shows the relationship between liquid property include viscosity and density to resonant frequency. Furthermore, Theoretical formula describing the frequency change of the quartz crystal microbalance with liquid property is proposed
APA, Harvard, Vancouver, ISO, and other styles
41

Permana, Antonius Prisma Jalu, D. J. Djoko H. Santjojo, and Masruroh Masruroh. "Ch2FCF3 Gas Flow Rate Effects of SiO2 Plasma Etching Rate on Quartz Crystal Microbalance." Natural-B 3, no. 4 (2016): 271–76. http://dx.doi.org/10.21776/ub.natural-b.2016.003.04.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Nurramdaniyah, Nurramdaniyah, Masdiana Padaga, D. J. Djoko H. Santjojo, Setyawan P. Sakti, and Masruroh Masruroh. "Study of Stearic Acid Layer (SA) Microstructure on Surface Quartz Crystal Microbalance (QCM) Sensors." Natural B 004, no. 02 (2017): 105–10. http://dx.doi.org/10.21776/ub.natural-b.2017.004.02.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wibawa, Gede, Rica Widi Lestari, and Sofia Wardhani. "Pengukuran solubilitas n-amylalkohol dalam poly (n-butyl methacrylate) dan polyisobutylene menggunakan metode piezoelectric-quartz crystal microbalance sorption." Jurnal Teknik Kimia Indonesia 4, no. 3 (2018): 264. http://dx.doi.org/10.5614/jtki.2005.4.3.1.

Full text
Abstract:
The Piezoelectric Quartz Crystal Microbalance (QCM) method was used to measure the solubilities of n-amylalcohol in poly (n-butyl methac1ylate) and polyisobutylene at temperatures of 333.15 K, 353.15 K and 353.15 K. The crystals used were 5 MHz, AT-Cut, 5.5 mm in diameter and 0.3 mm in thick. Reliability of the measurements was comfirmed by comparing the present data with the literature data for the system of benzene-polyisobutylene at temperature 338.15K. The solubilities n-amyl alcohol in polyisobutylene were undectedable in the range of temperature experiments by the present apparatus becau
APA, Harvard, Vancouver, ISO, and other styles
44

XU, Bo, Hongda WANG, Ying WANG, Guoyi ZHU, Zhuang LI, and Erkang WANG. "A Mica-Modified Quartz Resonator for a Quartz Crystal Microbalance Study." Analytical Sciences 16, no. 10 (2000): 1061–63. http://dx.doi.org/10.2116/analsci.16.1061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fort, Ada, Enza Panzardi, Valerio Vignoli, et al. "An Adaptive Measurement System for the Simultaneous Evaluation of Frequency Shift and Series Resistance of QCM in Liquid." Sensors 21, no. 3 (2021): 678. http://dx.doi.org/10.3390/s21030678.

Full text
Abstract:
In this paper, a novel measurement system based on Quartz Crystal Microbalances is presented. The proposed solution was conceived specifically to overcome the measurement problems related to Quartz Crystal Microbalance (QCM) applications in dielectric liquids where the Q-factor of the resonant system is severely reduced with respect to in-gas applications. The QCM is placed in a Meacham oscillator embedding an amplifier with adjustable gain, an automatic strategy for gain tuning allows for maintaining the oscillator frequency close to the series resonance frequency of the quartz, which is rela
APA, Harvard, Vancouver, ISO, and other styles
46

Vashist, Sandeep Kumar, and Priya Vashist. "Recent Advances in Quartz Crystal Microbalance-Based Sensors." Journal of Sensors 2011 (2011): 1–13. http://dx.doi.org/10.1155/2011/571405.

Full text
Abstract:
Quartz crystal microbalance (QCM) has gained exceptional importance in the fields of (bio)sensors, material science, environmental monitoring, and electrochemistry based on the phenomenal development in QCM-based sensing during the last two decades. This review provides an overview of recent advances made in QCM-based sensors, which have been widely employed in a plethora of applications for the detection of chemicals, biomolecules and microorganisms.
APA, Harvard, Vancouver, ISO, and other styles
47

Alassi, Abdulrahman, Mohieddine Benammar, and Dan Brett. "Quartz Crystal Microbalance Electronic Interfacing Systems: A Review." Sensors 17, no. 12 (2017): 2799. http://dx.doi.org/10.3390/s17122799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Triyana, Kuwat, Agustinus Sembiring, Aditya Rianjanu, et al. "Chitosan-Based Quartz Crystal Microbalance for Alcohol Sensing." Electronics 7, no. 9 (2018): 181. http://dx.doi.org/10.3390/electronics7090181.

Full text
Abstract:
Short-chain alcohols are a group of volatile organic compounds (VOCs) that are often found in workplaces and laboratories, as well as medical, pharmaceutical, and food industries. Real-time monitoring of alcohol vapors is essential because exposure to alcohol vapors with concentrations of 0.15–0.30 mg·L−1 may be harmful to human health. This study aims to improve the detection capabilities of quartz crystal microbalance (QCM)-based sensors for the analysis of alcohol vapors. The active layer of chitosan was immobilized onto the QCM substrate through a self-assembled monolayer of L-cysteine usi
APA, Harvard, Vancouver, ISO, and other styles
49

Singh, Ashish, and Neelam Verma. "Quartz Crystal Microbalance Based Approach for Food Quality." Current Biotechnology 3, no. 2 (2013): 127–32. http://dx.doi.org/10.2174/2211550102666131125155622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tang, Alice X. J., Miloslav Pravda, George G. Guilbault, Sergey Piletsky, and Anthony P. F. Turner. "Immunosensor for okadaic acid using quartz crystal microbalance." Analytica Chimica Acta 471, no. 1 (2002): 33–40. http://dx.doi.org/10.1016/s0003-2670(02)00922-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!