Academic literature on the topic 'Crystalline cohomology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crystalline cohomology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Crystalline cohomology"

1

Crew, Richard. "Specialization of crystalline cohomology." Duke Mathematical Journal 53, no. 3 (September 1986): 749–57. http://dx.doi.org/10.1215/s0012-7094-86-05340-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nizio?, Wies?awa. "Cohomology of crystalline representations." Duke Mathematical Journal 71, no. 3 (September 1993): 747–91. http://dx.doi.org/10.1215/s0012-7094-93-07128-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Luu, Martin T. "Crystalline cohomology of superschemes." Journal of Geometry and Physics 121 (November 2017): 83–92. http://dx.doi.org/10.1016/j.geomphys.2017.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vonk, Jan. "Crystalline Cohomology of Towers of Curves." International Mathematics Research Notices 2020, no. 21 (September 7, 2018): 7454–88. http://dx.doi.org/10.1093/imrn/rny213.

Full text
Abstract:
Abstract We investigate the geometry of finite maps and correspondences between curves, and construct canonical trace and pullback maps between Hyodo–Kato integral structures on de Rham cohomology of curves, which are functorial for finite morphisms of the generic fibres. This leads to a crystalline version of the étale cohomology of towers of modular curves considered by Hida and Ohta, whose ordinary part satisfies $\Lambda $-adic control and Eichler–Shimura theorems.
APA, Harvard, Vancouver, ISO, and other styles
5

Grosse-Klönne, Elmar. "Equivariant crystalline cohomology and base change." Proceedings of the American Mathematical Society 135, no. 05 (May 1, 2007): 1249–54. http://dx.doi.org/10.1090/s0002-9939-06-08634-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cais, Bryden, and Tong Liu. "Breuil–Kisin modules via crystalline cohomology." Transactions of the American Mathematical Society 371, no. 2 (September 20, 2018): 1199–230. http://dx.doi.org/10.1090/tran/7280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Feigin, B. L., and B. L. Tsygan. "Additive K-theory and crystalline cohomology." Functional Analysis and Its Applications 19, no. 2 (1985): 124–32. http://dx.doi.org/10.1007/bf01078391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Faltings, Gerd, and Bruce W. Jordan. "Crystalline cohomology and GL(2, ℚ)." Israel Journal of Mathematics 90, no. 1-3 (October 1995): 1–66. http://dx.doi.org/10.1007/bf02783205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morrow, Matthew. "A Variational Tate Conjecture in crystalline cohomology." Journal of the European Mathematical Society 21, no. 11 (July 19, 2019): 3467–511. http://dx.doi.org/10.4171/jems/907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miyatani, Kazuaki. "Finiteness of crystalline cohomology of higher level." Annales de l’institut Fourier 65, no. 3 (2015): 975–1004. http://dx.doi.org/10.5802/aif.2949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Crystalline cohomology"

1

Xu, Daxin. "Correspondances de Simpson p-adique et modulo pⁿ." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS133/document.

Full text
Abstract:
Cette thèse est consacrée à deux variantes arithmétiques de la correspondance de Simpson. Dans la première partie, on compare la correspondance de Simpson p-adique à un analogue p-adique de la correspondance de Narasimhan et Seshadri pour les courbes sur les corps p-adiques dû à Deninger et Werner. Narasimhan et Seshadri ont établi une correspondance entre les fibrés vectoriels stables de degré zéro et les représentations unitaires du groupe fondamental topologique pour une courbe complexe propre et lisse. Par transport parallèle, Deninger et Werner ont associé fonctoriellement à chaque fibré vectoriel sur une courbe p-adique dont la réduction est fortement semi-stable de degré 0 une représentation p-adique du groupe fondamental de la courbe. Ils se sont posés quelques questions: si leur foncteur est pleinement fidèle ; si la cohomologie des systèmes locaux fournis par leur foncteur admet une filtration de Hodge-Tate ; et si leur construction est compatible avec la correspondance de Simpson p-adique développée par Faltings. On répond positivement à ces questions. La seconde partie est consacrée à la construction d'un relèvement de la transformée de Cartier d'Ogus-Vologodsky modulo pⁿ. Soient W l'anneau des vecteurs de Witt d'un corps parfait de caractéristique p>0, X un schéma formel lisse sur W, X' le changement de base de X par l'endomorphisme de Frobenius de W, X'_2 la réduction modulo p² de X' et Y la fibre spéciale de X. On relève la transformée de Cartier d'Ogus-Vologodsky relative à X'_2. Plus précisément, on construit un foncteur de la catégorie des O_{X'}-modules de pⁿ-torsion à p-connexion intégrable dans la catégorie des O_X-modules de pⁿ-torsion à connexion intégrable, chacune étant soumise à des conditions de nilpotence appropriées. S'il existe un relèvement F: X -> X' du morphisme de Frobenius relatif de Y, notre foncteur est compatible avec le foncteur de Shiho induit par F. Comme application de la transformée de Cartier modulo pⁿ, on donne une nouvelle interprétation des modules de Fontaine relatifs introduits par Faltings et du calcul de leur cohomologie
This thesis is devoted to two arithmetic variants of Simpson's correspondence. In the first part, I compare the p-adic Simpson correspondence with a p-adic analogue of the Narasimhan-Seshadri's correspondence for curves over p-adic fields due to Deninger and Werner. Narasimhan and Seshadri established a correspondence between stable bundles of degree zero and unitary representations of the topological fundamental group for a complex smooth proper curve. Using parallel transport, Deninger and Werner associated functorially to every vector bundle on a p-adic curve whose reduction is strongly semi-stable of degree 0 a p-adic representation of the fundamental group of the curve. They asked several questions: whether their functor is fully faithful; whether the cohomology of the local systems produced by this functor admits a Hodge-Tate filtration; and whether their construction is compatible with the p-adic Simpson correspondence developed by Faltings. We answer positively these questions. The second part is devoted to the construction of a lifting of the Cartier transform of Ogus-Vologodsky modulo pⁿ. Let W be the ring of the Witt vectors of a perfect field of characteristic p, X a smooth formal scheme over W, X' the base change of X by the Frobenius morphism of W, X'_2 the reduction modulo p² of X' and Y the special fiber of X. We lift the Cartier transform of Ogus-Vologodsky relative to X'_2 modulo pⁿ. More precisely, we construct a functor from the category of pⁿ-torsion O_{X'}-modules with integrable p-connection to the category of pⁿ-torsion O_X-modules with integrable connection, each subject to a suitable nilpotence condition. Our construction is based on Oyama's reformulation of the Cartier transform of Ogus-Vologodsky in characteristic p. If there exists a lifting F: X -> X' of the relative Frobenius morphism of Y, our functor is compatible with a functor constructed by Shiho from F. As an application, we give a new interpretation of relative Fontaine modules introduced by Faltings and of the computation of their cohomology
APA, Harvard, Vancouver, ISO, and other styles
2

Muller, Alain. "Relèvements cristallins de représentations galoisiennes." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00873407.

Full text
Abstract:
Dans cette thèse, on démontre que certaines représentations du groupe de Galois absolu d'une extension finie de $Q_p$ à coefficients dans $\bar{F_p}$ se relèvent en des représentations cristallines à coefficients dans $\bar{Z_p}$.
APA, Harvard, Vancouver, ISO, and other styles
3

Ding, Yiwen. "Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112035/document.

Full text
Abstract:
Cette thèse s'inscrit dans le cadre du programme de Langlands local p-adique. Soient L une extension finie de Q_p, \rho_L une représentation p-adique de dimension 2 du groupe de Galois Gal(\overline{Q_p}/L) de L, lorsque \rho_L provient d'une représentation \rho globale et modulaire (i.e. \rho apparaît dans la cohomologie étale des courbes de Shimura), on sait associer à \rho une représentation de Banach admissible de \GL_2(L), notée \widehat{\Pi}(\rho), en utilisant la théorie de la cohomologie étale complétée d'Emerton. Localement, lorsque \rho_L est cristalline (et assez générique), d'après Breuil, on sait associer à \rho_L une représentation localement analytique de \GL_2(L), notée \Pi(\rho_L). Dans cette thèse, on montre divers résultats sur la compatibilité entre les représentations \widehat{\Pi}(\rho) et \Pi(\rho_L), qui s'appelle la compatibilité local-global, dans la cas des courbes de Shimura unitaires. Par la théorie des représentations localement analytiques de \GL_2(L), le problème de compatibilité local-global se ramène à l'étude des variétés de Hecke X construites à partir du H^1-complété des courbes de Shimura unitaires. On montre des résultats sur la compatibilité local-global dans le cas non-critique en utilisant la théorie de la triangulation globale. On étudie ainsi les formes modulaires p-adiques sur les courbes de Shimura unitaires, à partir desquelles on peut construire des sous-espaces rigides de X à la manière de Coleman-Mazur. On montre l'existence des formes compagnons surconvergentes sur les courbes de Shimura unitaires en utilisant les théorèmes de comparaison p-adique, d'où on déduit des résultats sur la compatibilité local-global dans le cas critique
The subject of this thesis is in the p-adic Langlands programme. Let L be a finite extension of \Q_p, \rho_L a 2-dimensional p-adic representation of the Galois group \Gal(\overline{\Q_p}/L) of L, if \rho_L is the restriction of a global modular Galois representation \rho (i.e. \rho appears in the étale cohomology of Shimura curves), one can associate to \rho an admissible Banach representation \widehat{\Pi}(\rho) of \GL_2(L) by using Emerton's completed cohomology theory. Locally, if \rho_L is crystalline (and sufficiently generic), following Breuil, one can associate to \rho_L a locally analytic representation \Pi(\rho_L) of \GL_2(L). In this thesis, we prove results on the compatibility of \widehat{\Pi}(\rho) and \Pi(\rho_L), called local-global compatibility, in the unitary Shimura curves case. By locally analytic representations theory (for \GL_2(L)), the problem of local-global compatibility can be reduced to the study of eigenvarieties X constructed from the completed H^1 of unitary Shimura curves. We prove results on local-global compatibility in non-critical case by using global triangulation theory. We also study the p-adic modular forms over unitary Shimura curves, from which we construct some closed rigid subspaces of X by Coleman-Mazur's method. We prove the existence of overconvergent companion forms (over unitary Shimura curves) by using p-adic comparison theorems, from which we deduce some results on local-global compatibility in critical case
APA, Harvard, Vancouver, ISO, and other styles
4

Ring, Nicholas [Verfasser]. "Cycle classes for algebraic De Rham cohomology and crystalline cohomology / vorgelegt von Nicholas Ring." 2002. http://d-nb.info/966583612/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Crystalline cohomology"

1

Ogus, Arthur, and Pierre Berthelot. Notes on Crystalline Cohomology. Princeton University Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ogus, Arthur, and Pierre Berthelot. Notes on Crystalline Cohomology. Princeton University Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Crystalline cohomology of algebraic stacks and Hyodo-Kato cohomology. Paris: Société Mathématique de France, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ogus, Arthur, and Pierre Berthelot. Notes on Crystalline Cohomology. (MN-21). Princeton University Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ogus, Arthur, and Pierre Berthelot. Notes on Crystalline Cohomology (MN-21). Princeton University Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mazur, B., and W. Messing. Universal Extensions and One Dimensional Crystalline Cohomology. Springer London, Limited, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Perfectoid Spaces: Lectures from the 2017 Arizona Winter School. American Mathematical Society, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kedlaya, Kiran S., Debargha Banerjee, Ehud de Shalit, and Chitrabhanu Chaudhuri. Perfectoid Spaces. Springer Singapore Pte. Limited, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perfectoid Spaces. Springer, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Crystalline cohomology"

1

"Crystalline cohomology of singular varieties." In Geometric Aspects of Dwork Theory, 451–62. De Gruyter, 2004. http://dx.doi.org/10.1515/9783110198133.1.451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"§ 5. The Crystalline Topos." In Notes on Crystalline Cohomology. (MN-21), 74–102. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400867318-006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"§ 7 . The Cohomology of a Crystal." In Notes on Crystalline Cohomology. (MN-21), 126–60. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400867318-008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"§ 0. Preface." In Notes on Crystalline Cohomology. (MN-21), v—x. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400867318-001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"§ 1. Introduction." In Notes on Crystalline Cohomology. (MN-21), 1–14. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400867318-002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"§ 2. Calculus and Differential Operators." In Notes on Crystalline Cohomology. (MN-21), 15–37. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400867318-003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"§ 3. Divided Powers." In Notes on Crystalline Cohomology. (MN-21), 38–60. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400867318-004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"§ 4. Calculus with Divided Powers." In Notes on Crystalline Cohomology. (MN-21), 61–73. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400867318-005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"§ 6. Crystals." In Notes on Crystalline Cohomology. (MN-21), 103–25. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400867318-007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"§ 8. Frobenius and the Hodge Filtration." In Notes on Crystalline Cohomology. (MN-21), 161–210. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400867318-009.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Crystalline cohomology"

1

Musleh, Yossef, and Éric Schost. "Computing the Characteristic Polynomial of Endomorphisms of a finite Drinfeld Module using Crystalline Cohomology." In ISSAC 2023: International Symposium on Symbolic and Algebraic Computation 2023. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3597066.3597080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography