Academic literature on the topic 'Crystalline Silicon (C-Si)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crystalline Silicon (C-Si).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Crystalline Silicon (C-Si)"

1

Hafdi, Zoubeida. "Electrical and Optical Characterization of Non-Hydrogenated a-Si/c-Si Heterojunction Solar Cells." Journal of Renewable Energies 24, no. 2 (2021): 202–13. http://dx.doi.org/10.54966/jreen.v24i2.981.

Full text
Abstract:
This work deals with the performance of a heterojunction with intrinsic thin layer solar cell by sputtering silicon on p-type crystalline silicon substrate in argon ambient without hydrogen addition. This first effort was an attempt to use cost-effective means to convert light into electricity and to find fabrication processes which use fewer and cheaper materials for the fabrication of solar cells. Since transport mechanisms of amorphous silicon/crystalline silicon heterojunctions are still under investigation, the aim is to examine the behavior of the fabricated samples under electrical and
APA, Harvard, Vancouver, ISO, and other styles
2

Agbo, Solomon, Pavol Sutta, Pavel Calta, Rana Biswas, and Bicai Pan. "Crystallized silicon nanostructures — experimental characterization and atomistic simulations." Canadian Journal of Physics 92, no. 7/8 (2014): 783–88. http://dx.doi.org/10.1139/cjp-2013-0442.

Full text
Abstract:
We have synthesized silicon nanocrystalline structures from thermal annealing of thin film amorphous silicon-based multilayers. The annealing procedure that was carried out in vacuum at temperatures up to 1100 °C is integrated in a X-ray diffraction (XRD) setup for real-time monitoring of the formation phases of the nanostructures. The microstructure of the crystallized films is investigated through experimental measurements combined with atomistic simulations of realistic nanocrystalline silicon (nc-Si) models. The multilayers consisting of uniformly alternating thicknesses of hydrogenated am
APA, Harvard, Vancouver, ISO, and other styles
3

Batstone, J. L. "In situ crystallization of amorphous silicon." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (1992): 1346–47. http://dx.doi.org/10.1017/s042482010013136x.

Full text
Abstract:
The solid state transformation of amorphous silicon (a-Si) to crystalline silicon (c-Si) is a first order phase transformation which is driven by the difference in free energy between the amorphous and crystalline phases. The crystallization occurs at temperatures of 500-700°C which are readily accessible with commercial specimen heating stages for the transmission electron microscope (TEM). In this paper we study the a-c phase transformation dynamically by utilizing the powerful technique of in-situ TEM to monitor the nucleation and growth kinetics of thin films of Si. The propagation of a mo
APA, Harvard, Vancouver, ISO, and other styles
4

Pamungkas, Mauludi Ariesto, and Rendra Widiyatmoko. "Effect of Hydrogenation Temperature on Distribution of Hydrogen Atoms in c-Si and a-Si: Molecular Dynamic Simulations." Key Engineering Materials 706 (August 2016): 55–59. http://dx.doi.org/10.4028/www.scientific.net/kem.706.55.

Full text
Abstract:
Crystalline silicon and amorphous silicon are main materials of solar cell. Under prolonged exposure to light, silicon will degrade in quality. Hydrogenation is believed can minimize this degradation by reduce the number of dangling bond. These Molecular dynamics simulations are aimed to elaborate the hydrogenation process of crystalline silicon and amorphous silicon and to elucidate effect of temperature on distribution of hydrogen atoms. Reactive Force Field is selected owing to its capability to describe forming and breaking of atomic bonds as well as charge transfer. Hydrogenation is perfo
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Ying Lian, and Jun Yao Ye. "Review and Development of Crystalline Silicon Solar Cell with Intelligent Materials." Advanced Materials Research 321 (August 2011): 196–99. http://dx.doi.org/10.4028/www.scientific.net/amr.321.196.

Full text
Abstract:
The application of solar cell has offered human society renewable clean energy. As intelligent materials, crystalline silicon solar cells occupy absolutely dominant position in photovoltaic market, and this position will not change for a long time in the future. Thereby increasing the efficiency of crystalline silicon solar cells, reducing production costs and making crystalline silicon solar cells competitive with conventional energy sources become the subject of today's PV market. The working theory of solar cell was introduced. The developing progress and the future development of mono-crys
APA, Harvard, Vancouver, ISO, and other styles
6

Holla, M., Tzanimir Arguirov, Winfried Seifert, and Martin Kittler. "Analysis of Silicon Carbide and Silicon Nitride Precipitates in Block Cast Multicrystalline Silicon." Solid State Phenomena 156-158 (October 2009): 41–48. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.41.

Full text
Abstract:
We report on the optical and mechanical properties of Si3N4 inclusions, formed in the upper part of mc-Si blocks during the crystallization process. Those inclusions usually appear as crystalline hexagonal tubes or rods. Here we show that in many cases the Si3N4 inclusions contain crystalline Si in their core. The presence of the Si phase in the centre was proven by means of cathodoluminescence spectroscopy and imaging, electron beam induced current measurements and Raman spectroscopy. The crystalline Si3N4 phase was identified as β-Si3N4. Residual stress was revealed at the particles. While t
APA, Harvard, Vancouver, ISO, and other styles
7

Middya, A. R., and Kartik Ghosh. "Quasicrystalline Phase of Silicon on Glass." MRS Proceedings 1493 (2013): 169–74. http://dx.doi.org/10.1557/opl.2013.225.

Full text
Abstract:
ABSTRACTIn this paper, we report new phase of crystalline silicon, quasicrystalline silicon thin-film on glass substrate. The surface topography of these films reveal simultaneous existence of sixfold and fivefold symmetry. We found an array of quasi-unit cell in 2-D that formed quasicrystalline solid. This is first time demonstration of quasicrystalline for single element, silicon (Si). Raman spectra suggests that we found crystalline silicon structure on glass substrate that is not single-crystal silicon (c-Si) but very close to c-Si.
APA, Harvard, Vancouver, ISO, and other styles
8

Ech-chamikh, E., A. Essafti, M. Azizan, F. Debbagh, and Y. Ijdiyaou. "Annealing Effects on RF Sputter Deposited a-Si/a-C Multilayers." Journal of Nano Research 4 (January 2009): 103–6. http://dx.doi.org/10.4028/www.scientific.net/jnanor.4.103.

Full text
Abstract:
Amorphous silicon on amorphous carbon (a-Si/a-C) multilayers was deposited by RadioFrequency (RF) sputtering. These multilayers were obtained by alternate deposition of a-C and a-Si layers, respectively from graphite and silicon targets of high purity, on crystalline silicon substrates. The RF power and the argon pressure, during the pulverization, were maintained respectively at 250W and 10-2 mbar. The annealing effects, at temperatures of 450°C and 750°C, on the deposited structures were investigated by X-ray reflectometry. The a-Si/a-C interfaces are abrupt before and after annealing at 450
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Junling, Shimou Chen, Haitao Zhang, Suojiang Zhang, Xue Yao, and Zhaohui Shi. "Electrodeposition of crystalline silicon directly from silicon tetrachloride in ionic liquid at low temperature." RSC Advances 6, no. 15 (2016): 12061–67. http://dx.doi.org/10.1039/c5ra23085c.

Full text
Abstract:
Crystalline silicon was fabricated directly from silicon tetrachloride in ionic liquid at low temperature of 100 °C. SEM, TEM and SEAD revealed that as-deposited crystalline Si with diamond cubic crystal structure.
APA, Harvard, Vancouver, ISO, and other styles
10

Moreno, Mario, Arturo Ponce, Arturo Galindo, et al. "Comparative Study on the Quality of Microcrystalline and Epitaxial Silicon Films Produced by PECVD Using Identical SiF4 Based Process Conditions." Materials 14, no. 22 (2021): 6947. http://dx.doi.org/10.3390/ma14226947.

Full text
Abstract:
Hydrogenated microcrystalline silicon (µc-Si:H) and epitaxial silicon (epi-Si) films have been produced from SiF4, H2 and Ar mixtures by plasma enhanced chemical vapor deposition (PECVD) at 200 °C. Here, both films were produced using identical deposition conditions, to determine if the conditions for producing µc-Si with the largest crystalline fraction (XC), will also result in epi-Si films that encompass the best quality and largest crystalline silicon (c-Si) fraction. Both characteristics are of importance for the development of thin film transistors (TFTs), thin film solar cells and novel
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!