Journal articles on the topic 'Cu nanostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cu nanostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Iwantono, Iwantono, Sella Natalia, Rinaldo Abdi, Awitdrus Awitdrus, and Zulkarnain Zulkarnain. "MORFOLOGI DAN EFISIENSI SEL SURYA FOTOELEKTROKIMIA BERBASIS NANOSTRUKTUR ZnO DILAPISI TEMBAGA." Komunikasi Fisika Indonesia 15, no. 2 (2018): 131. http://dx.doi.org/10.31258/jkfi.15.2.131-134.
Full textSpiecker, Erdmann, Stefan Hollensteiner, Wolfgang Jäger, Hans Haselier, and Herbert Schroeder. "Self-Assembled Nanostructures on VSe2Surfaces Induced by Cu Deposition." Microscopy and Microanalysis 11, no. 5 (2005): 456–71. http://dx.doi.org/10.1017/s1431927605050373.
Full textZhang, W. X., Z. H. Yang, S. X. Ding, and S. H. Yang. "Synthesis and Characterization of Nanostructured CuO Array Films." Solid State Phenomena 121-123 (March 2007): 303–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.303.
Full textKaur, Gurjinder, Amlan Baishya, R. Manoj Kumar, Debrupa Lahiri, and Indranil Lahiri. "Distinct Levels of Adhesion Energy of In-Situ Grown CuO Nanostructures." Journal of Nanoscience and Nanotechnology 20, no. 6 (2020): 3527–34. http://dx.doi.org/10.1166/jnn.2020.17419.
Full textHwa, Kuo Yuan, and Palpandi Karuppaiah. "Comparative Studies on the Synthesis of Copper Oxide Nano-Structures." Materials Science Forum 962 (July 2019): 51–56. http://dx.doi.org/10.4028/www.scientific.net/msf.962.51.
Full textTran, Minh, Sougata Roy, Steven Kmiec, et al. "Formation of Size and Density Controlled Nanostructures by Galvanic Displacement." Nanomaterials 10, no. 4 (2020): 644. http://dx.doi.org/10.3390/nano10040644.
Full textReddy, G. S., Mallikarjuna N. Nadagouda, and Jainagesh A. Sekhar. "Nanostructured Surfaces that Show Antimicrobial, Anticorrosive, and Antibiofilm Properties." Key Engineering Materials 521 (August 2012): 1–33. http://dx.doi.org/10.4028/www.scientific.net/kem.521.1.
Full textHowari, Haidar, and Islam Uddin. "Variations in Optical Properties of ZnS/Cu/ZnS Nanostructures Due to Thickness Change of ZnS Cap Layer." Journal of Modern Materials 2, no. 1 (2016): 25–30. http://dx.doi.org/10.21467/jmm.2.1.25-30.
Full textYonas, Surra, Birhanu Bayissa Gicha, Samir Adhikari, et al. "Electric-Field-Assisted Synthesis of Cu/MoS2 Nanostructures for Efficient Hydrogen Evolution Reaction." Micromachines 15, no. 4 (2024): 495. http://dx.doi.org/10.3390/mi15040495.
Full textYakushova, Nadezhda D., Ivan A. Gubich, Andrey A. Karmanov, et al. "Photocatalytic Degradation of Toxic Dyes on Cu and Al Co-Doped ZnO Nanostructured Films: A Comparative Study." Technologies 13, no. 7 (2025): 277. https://doi.org/10.3390/technologies13070277.
Full textKumar, N. S., B. Babu, M. Gowtham, et al. "Characterization of pure and Cu doped V2O5 nanostructures and their Cu:V2O5/p-Si photodiode applications." Digest Journal of Nanomaterials and Biostructures 18, no. 1 (2023): 131–43. http://dx.doi.org/10.15251/djnb.2023.181.131.
Full textAlam, Mir Waqas, Mohd Zahid Ansari, Muhammad Aamir, Mir Waheed-Ur-Rehman, Nazish Parveen, and Sajid Ali Ansari. "Preparation and Characterization of Cu and Al Doped ZnO Thin Films for Solar Cell Applications." Crystals 12, no. 2 (2022): 128. http://dx.doi.org/10.3390/cryst12020128.
Full textKasian, Pristanuch, and Supakorn Pukird. "Gas Sensing Properties of CuO Nanostructures Synthesized by Thermal Evaporation of Copper Metal Plate." Advanced Materials Research 93-94 (January 2010): 316–19. http://dx.doi.org/10.4028/www.scientific.net/amr.93-94.316.
Full textSupakosl, Benjara, Vatcharinkorn Mekla, and Chakkaphan Raksapha. "Effect of Temperature and Synthesis of CuO Nanostructures on Cu Plate by Thermal Method." Advanced Materials Research 634-638 (January 2013): 2160–62. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2160.
Full textGONG, XUE-YUN, YU-PENG GAO, LI-BO WANG, and PENG-FEI GUO. "MICROWAVE-ASSISTED SYNTHESIS AND CATALYTIC PERFORMANCE OF HIERARCHICAL Cu2O NANOSTRUCTURES." Nano 08, no. 05 (2013): 1350047. http://dx.doi.org/10.1142/s1793292013500471.
Full textYang, Jin, Can Weng, Jun Lai, Tao Ding, and Hao Wang. "Molecular Dynamics Simulation on the Influences of Nanostructure Shape, Interfacial Adhesion Energy, and Mold Insert Material on the Demolding Process of Micro-Injection Molding." Polymers 11, no. 10 (2019): 1573. http://dx.doi.org/10.3390/polym11101573.
Full textSaremi, M., and M. Yeganeh. "IMPROVED CORROSION RESISTANCE OF NANOSTRUCTURED COPPER DEPOSITED BY EB-PVD IN ACIDIC MEDIA." International Journal of Modern Physics: Conference Series 05 (January 2012): 687–95. http://dx.doi.org/10.1142/s2010194512002632.
Full textRegulacio, Michelle D., Si Yin Tee, Suo Hon Lim, Zheng Zhang, and Ming-Yong Han. "Selective formation of ternary Cu–Ge–S nanostructures in solution." CrystEngComm 20, no. 42 (2018): 6803–10. http://dx.doi.org/10.1039/c8ce01443d.
Full textLomovsky, O. I., Vjacheslav I. Mali, Dina V. Dudina, et al. "Shock-Wave Synthesis of Titanium Diboride in Copper Matrix and Compaction of TiB2-Cu Nanocomposites." Materials Science Forum 534-536 (January 2007): 921–24. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.921.
Full textLee, Jae-Ho, Kwonwoo Oh, Kyungeun Jung, K. C. Wilson, and Man-Jong Lee. "Tuning the Morphology and Properties of Nanostructured Cu-ZnO Thin Films Using a Two-Step Sputtering Technique." Metals 10, no. 4 (2020): 437. http://dx.doi.org/10.3390/met10040437.
Full textSalapare, Hernando S., Juvy A. Balbarona, Léo Clerc, et al. "Cupric Oxide Nanostructures from Plasma Surface Modification of Copper." Biomimetics 4, no. 2 (2019): 42. http://dx.doi.org/10.3390/biomimetics4020042.
Full textKumar, Shalendra, Faheem Ahmed, Naushad Ahmad, et al. "Structural, Morphological, Optical and Magnetic Studies of Cu-Doped ZnO Nanostructures." Materials 15, no. 22 (2022): 8184. http://dx.doi.org/10.3390/ma15228184.
Full textMallikarjuna, Koduru, Amal M. Al-Mohaimeed, Dunia A. Al-Farraj, Lebaka Veeranjaneya Reddy, Minnam Reddy Vasudeva Reddy, and Arifullah Mohammed. "Facile Synthesis, Characterization, Anti-Microbial and Anti-Oxidant Properties of Alkylamine Functionalized Dumb-Bell Shaped Copper-Silver Nanostructures." Crystals 10, no. 11 (2020): 966. http://dx.doi.org/10.3390/cryst10110966.
Full textSoomro, Razium Ali, Ayman Nafady, Sirajuddin, et al. "Catalytic Reductive Degradation of Methyl Orange Using Air Resilient Copper Nanostructures." Journal of Nanomaterials 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/136164.
Full textBurpo, Fred, Enoch Nagelli, Lauren Morris, Kamil Woronowicz, and Alexander Mitropoulos. "Salt-Mediated Au-Cu Nanofoam and Au-Cu-Pd Porous Macrobeam Synthesis." Molecules 23, no. 7 (2018): 1701. http://dx.doi.org/10.3390/molecules23071701.
Full textDe Padova, Paola, Amanda Generosi, Barbara Paci, et al. "Cu Nano-Roses Self-Assembly from Allium cepa, L., Pyrolysis by Green Synthesis of C Nanostructures." Applied Sciences 10, no. 11 (2020): 3819. http://dx.doi.org/10.3390/app10113819.
Full textTan, Michael, Lance de Jesus, Kathy Lois Amores, Ellaine Datu, and Mary Donnabelle Balela. "Electroless Deposition of Copper Nanostructures in Aqueous Solution." Advanced Materials Research 1043 (October 2014): 114–18. http://dx.doi.org/10.4028/www.scientific.net/amr.1043.114.
Full textArnaudas, Jose Ignacio, A. Badia-Majós, L. Berbil-Bautista, et al. "Magnetoelastic Effects in Nanostructures." Solid State Phenomena 168-169 (December 2010): 177–84. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.177.
Full textExconde, Mark Keanu James, and Mary Donnabelle L. Balela. "Parametric Study of the Galvanic Reaction Parameters on the Synthesis of 1-Dimensional Cu-Ag Nanostructures." Materials Science Forum 1097 (September 27, 2023): 131–37. http://dx.doi.org/10.4028/p-d6zsd0.
Full textHu, Yao, Muwei Ji, Yiqing He, et al. "Cu-enhanced photoelectronic and ethanol sensing properties of Cu2O/Cu nanocrystals prepared by one-step controllable synthesis." Inorganic Chemistry Frontiers 5, no. 2 (2018): 425–31. http://dx.doi.org/10.1039/c7qi00657h.
Full textJ. Khudhayer, Wisam. "Cu Nanostructures for Enhanced Heat Transferin Micro Systems." University of Thi-Qar Journal for Engineering Sciences 8, no. 3 (2017): 66–80. http://dx.doi.org/10.31663/utjes.v8i3.99.
Full textMenon, Mahesh, and Badal C. Khanra. "Alloying behaviour in Cu–Pd nanostructures." Physica B: Condensed Matter 304, no. 1-4 (2001): 181–85. http://dx.doi.org/10.1016/s0921-4526(01)00340-4.
Full textEbrahimi, Fereshteh, and Alirio J. Liscano. "Failure of Ni/Cu Laminated Nanostructures." MATERIALS TRANSACTIONS 42, no. 1 (2001): 120–27. http://dx.doi.org/10.2320/matertrans.42.120.
Full textLi, Yun-Fei, Jing Feng, Feng-Xi Dong, et al. "Surface plasmon-enhanced amplified spontaneous emission from organic single crystals by integrating graphene/copper nanoparticle hybrid nanostructures." Nanoscale 9, no. 48 (2017): 19353–59. http://dx.doi.org/10.1039/c7nr06750j.
Full textSultana, Parvin, Rahima Nasrin, I. Z. Zebin, Tuli Halder, S. M. T. Islam, and Mohammad Jellur Rahman. "A Comparative Study on Surface Morphology, Optical and Thermal Behaviour of Undoped and Cu Doped ZnO Nanostructures." Bangladesh Journal of Physics 31, no. 2 (2024): 75–81. https://doi.org/10.3329/bjphy.v31i2.79521.
Full textMa, Honghong, Meiling Bao, Liangliang Cai, Qiang Sun, and Chunxue Yuan. "Self-assembled nanostructures of a di-carbonitrile molecule on copper single-crystal surfaces." RSC Advances 7, no. 3 (2017): 1771–75. http://dx.doi.org/10.1039/c6ra28157e.
Full textBoukhoubza, Issam, Elena Matei, Anouar Jorio, Monica Enculescu, and Ionut Enculescu. "Electrochemical Deposition of ZnO Nanowires on CVD-Graphene/Copper Substrates." Nanomaterials 12, no. 16 (2022): 2858. http://dx.doi.org/10.3390/nano12162858.
Full textPrado, André Luiz Ramos, and Jocenir Boita. "Proposta de um supercapacitor nanoestruturado." Ciência e Natura 40 (March 12, 2019): 34. http://dx.doi.org/10.5902/2179460x35492.
Full textRehnlund, David, Mario Valvo, Cheuk-Wai Tai, et al. "Electrochemical fabrication and characterization of Cu/Cu2O multi-layered micro and nanorods in Li-ion batteries." Nanoscale 7, no. 32 (2015): 13591–604. http://dx.doi.org/10.1039/c5nr03472h.
Full textYang, Lei, Zhi-Gang Chen, Guang Han, Min Hong, Liqing Huang, and Jin Zou. "Te-Doped Cu2Se nanoplates with a high average thermoelectric figure of merit." Journal of Materials Chemistry A 4, no. 23 (2016): 9213–19. http://dx.doi.org/10.1039/c6ta02998a.
Full textBakina, Olga Vladimirovna, Elena Alekseevna Glazkova, Alexander Vasiljevich Pervikov, and Natalia Valentinovna Svarovskaya. "Flower-shaped Micro/nanostructures Based on AlOOH with Antimicrobial Activity Against E. coli." Current Nanoscience >15, no. 5 (2019): 525–31. http://dx.doi.org/10.2174/1573413715666190213143514.
Full textCai, Liangliang, Qiang Sun, and Andrew Wee. "On-Surface Synthesis and Coordination Assisted by Computer Version Tools and High-Throughput Techniques." ECS Meeting Abstracts MA2025-01, no. 18 (2025): 1316. https://doi.org/10.1149/ma2025-01181316mtgabs.
Full textWang, Huan, Shouli Ming, Liren Zhang, Xin Li, Wenhua Li, and Zhishan Bo. "A simple strategy to achieve shape control of Au-Cu2−xS colloidal heterostructured nanocrystals and their preliminary use in organic photovoltaics." Nanoscale 10, no. 25 (2018): 11745–49. http://dx.doi.org/10.1039/c8nr03928c.
Full textKano, Emi, Ayako Hashimoto, Tomoaki Kaneko, Nobuo Tajima, Takahisa Ohno, and Masaki Takeguchi. "Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling." Nanoscale 8, no. 1 (2016): 529–35. http://dx.doi.org/10.1039/c5nr05913e.
Full textYang, Lan, and Jiangbin Su. "Controllable fabrication and self-assembly of Cu nanostructures: the role of Cu2+ complexes." RSC Advances 11, no. 29 (2021): 17715–20. http://dx.doi.org/10.1039/d1ra02408f.
Full textZhang, X., K. Turcheniuk, B. Zusmann, et al. "Synthesis of copper oxide nanowires and nanoporous copper via environmentally friendly transformation of bulk copper–calcium alloys." Chemical Communications 54, no. 43 (2018): 5446–49. http://dx.doi.org/10.1039/c8cc02240b.
Full textMansouri, Fariba, Somayeh Panahibakhsh, and Mahmoud Nikoufard. "Cu-Au core-shell nanostructures induced by ArF excimer laser irradiation." Journal of Laser Applications 35, no. 1 (2023): 012010. http://dx.doi.org/10.2351/7.0000835.
Full textAnioł, Wojciech Jan, Piotr Dobroń, Katarzyna Tomczyk, and Wojciech J. Stępniowski. "Nanostructures Formed by Brass Electrochemical Oxidation—Fabrication Strategies and Emerging Applications." Materials 18, no. 8 (2025): 1728. https://doi.org/10.3390/ma18081728.
Full textCheng, Shi, Zitao Guo, Chaojuan Liang, et al. "Immobilization of Phospholipase A1 Using a Protein-Inorganic Hybrid System." Polymers 13, no. 17 (2021): 2865. http://dx.doi.org/10.3390/polym13172865.
Full textLi, Na, Wenjun Yan, Wei Zhang, Zhijian Wang, and Jiazang Chen. "Photoinduced formation of Cu@Cu2O@C plasmonic nanostructures with efficient interfacial charge transfer for hydrogen evolution." Journal of Materials Chemistry A 7, no. 33 (2019): 19324–31. http://dx.doi.org/10.1039/c9ta05846j.
Full text