Academic literature on the topic 'Cu-PGE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cu-PGE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cu-PGE"
Sproule, Rebecca, Steve Beresford, and Reid Keays. "Ni–Cu–PGE magmatic mineralisation." Applied Earth Science 116, no. 4 (December 2007): 151. http://dx.doi.org/10.1179/174327507x272012.
Full textLu, Yiguan, C. Michael Lesher, and Jun Deng. "Geochemistry and genesis of magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) deposits in China." Ore Geology Reviews 107 (April 2019): 863–87. http://dx.doi.org/10.1016/j.oregeorev.2019.03.024.
Full textSunder Raju, P. V. "12th International Ni-Cu-(PGE) Symposium." Journal of the Geological Society of India 80, no. 2 (August 2012): 293. http://dx.doi.org/10.1007/s12594-012-0142-8.
Full textMoilanen, M., E. Hanski, J. Konnunaho, T. Törmänen, S. H. Yang, Y. Lahaye, H. O’Brien, and J. Illikainen. "Composition of iron oxides in Archean and Paleoproterozoic mafic-ultramafic hosted Ni-Cu-PGE deposits in northern Fennoscandia: application to mineral exploration." Mineralium Deposita 55, no. 8 (January 11, 2020): 1515–34. http://dx.doi.org/10.1007/s00126-020-00953-1.
Full textSmith, W. D., W. D. Maier, and I. Bliss. "Contact-style magmatic sulphide mineralisation in the Labrador Trough, northern Quebec, Canada: implications for regional prospectivity." Canadian Journal of Earth Sciences 57, no. 7 (July 2020): 867–83. http://dx.doi.org/10.1139/cjes-2019-0137.
Full textKoerber, Alexander, and Joyashish Thakurta. "PGE-Enrichment in Magnetite-Bearing Olivine Gabbro: New Observations from the Midcontinent Rift-Related Echo Lake Intrusion in Northern Michigan, USA." Minerals 9, no. 1 (December 29, 2018): 21. http://dx.doi.org/10.3390/min9010021.
Full textNielsen, T. F. D., N. S. Rudashevsky, V. N. Rudashevsky, S. M. Weatherley, and J. C. Ø. Andersen. "Elemental Distributions and Mineral Parageneses of the Skaergaard PGE–Au Mineralization: Consequences of Accumulation, Redistribution, and Equilibration in an Upward-Migrating Mush Zone." Journal of Petrology 60, no. 10 (October 1, 2019): 1903–34. http://dx.doi.org/10.1093/petrology/egz057.
Full textLiao, Yuan, Qian Li, Ying Yue, and Shijun Shao. "Selective electrochemical determination of trace level copper using a salicylaldehyde azine/MWCNTs/Nafion modified pyrolytic graphite electrode by the anodic stripping voltammetric method." RSC Advances 5, no. 5 (2015): 3232–38. http://dx.doi.org/10.1039/c4ra12342e.
Full textSluzhenikin, Sergey F., and Andrey V. Mokhov. "Gold and silver in PGE–Cu–Ni and PGE ores of the Noril’sk deposits, Russia." Mineralium Deposita 50, no. 4 (August 19, 2014): 465–92. http://dx.doi.org/10.1007/s00126-014-0543-2.
Full textSappin, A. A., M. Constantin, T. Clark, and O. van Breemen. "Geochemistry, geochronology, and geodynamic setting of Ni–Cu ± PGE mineral prospects hosted by mafic and ultramafic intrusions in the Portneuf–Mauricie Domain, Grenville Province, QuebecGéologie Québec Contribution 8439-2008-2009-5. Geological Survey of Canada Contribution 20080511." Canadian Journal of Earth Sciences 46, no. 5 (May 2009): 331–53. http://dx.doi.org/10.1139/e09-022.
Full textDissertations / Theses on the topic "Cu-PGE"
Mukwakwami, Joshua. "Structural controls of Ni-Cu-PGE ores and mobilization of metals at the Garson Mine, Sudbury." Thesis, Laurentian University of Sudbury, 2013. https://zone.biblio.laurentian.ca/dspace/handle/10219/2029.
Full textNelles, Edward William. "Genesis of Cu-PGE-rich footwall-type mineralization in the Morrison deposit, Sudbury." Thesis, Laurentian University of Sudbury, 2014. https://zone.biblio.laurentian.ca/dspace/handle/10219/2205.
Full textBrownscombe, William. "The geology and geochemistry of the Sakatti Cu-Ni-PGE deposit, N. Finland." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/61898.
Full textMukwakwami, Joshua. "STRUCTURAL CONTROLS OF Ni-Cu-PGE ORES AND MOBILIZATION OF METALS AT THE GARSON MINE, SUDBURY." Thesis, Laurentian University of Sudbury, 2014. https://zone.biblio.laurentian.ca/dspace/handle/10219/2129.
Full textHagerfors, Erika. "Formation of Sulphides in the Canadian High Arctic Large Igneous Province; Testing the Influence of Sedimentary Rocks." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-357415.
Full textStora magmatiska provinser (på engelska Large Igneous Provinces, LIPs) är vulkaniska event då enorma mängder magma avsätts över en väldigt stor yta under ett, i ett geologiskt perspektiv, kort tidsspann. Dessa stora vulkaniska utbrott har väckt stort intresse då de är samtida med flera av de största massutdöendena i jordens historia, men också för att en viss typ av sulfidmalm rik på nickel, koppar och platinametaller (Ni-Cu-PGE malmer) ofta förekommer i provinsernas magmagångar och magmakammare. En viktig faktor som till stor del avgör en magmatisk provins påverkan på klimatet och potentiella malmförekomster är inkorporering av sedimentära bergarter till magman som, när de hettas upp, kan frigöra gaser rika på svavel och kol. I Kanadas arktiska öar trängde magma tillhörande den högarktiska magmatiska provinsen (HALIP) in i svart skiffer, karbonater och evaporiter, som är sedimentära bergarter rika på flyktiga ämnen. Denna magmatiska provins erbjuder därför stora möjligheter till att studera interaktionen mellan magma och sedimentära bergarter. Syftet med denna studie är att testa om inkorporering av sedimentärt svavel kan främja bildandet av sulfidsmälta i magma och därigenom bidra till bildandet av sulfidmalmer. Detta görs genom att analysera svavelisotoper i sulfidmineral i prover från en magmagång, som trängde in i en skifferformation, tillhörande den högarktiska magmatiska provinsen i norra Kanada. Genom att analysera svavelisotopkvoten (δ34S) i sulfidmineral kan man få information om huruvida svavlet i mineralen är av sedimentärt ursprung (där skiffer generellt har negativa δ34S värden) eller om svavlet har δ34S värden liknande de från manteln (som har δ34S värden runt 0‰), vilket i så fall skulle innebära att magman inte har inkorporerat sedimentärt svavel. Genom att använda masspektrometri av typen SIMS analyseras totalt 14 sulfidmineralkorn (n = 246 individuella SIMS punkter) för deras svavelisotopkvoter. Resultatet av studien visar att alla analyserade sulfidmineral har mycket negativa δ34S värden mellan -19.5 och -5.7‰ (med ett δ34S medelvärde på -8.2 ± 0.83‰, två standardavvikelser). Genom att jämföra våra δ34S värden med δ34S och δ18O värden för andra prover från både magmagången och den omgivande skiffern kunde vi se att δ34S värdena för sulfidmineralen i de yttre delarna av magmagången har liknande negativa värden som den omgivande skiffern, och att δ34S värdena för skiffern närmast magmagången är mer positiva. Detta tyder på att sedimentärt svavel i kontakten mellan magmagången och skiffern har blivit inkorporerat i magman från den omgivande skiffern. Våra resultat tyder därför på att sulfidmineralen i våra prover från magmagången bildades genom assimilering av svavel från den omgivande skiffern. Detta innebär i sin tur att den kanadensiska högarktiska magma provinsen potentiellt kan vara en källa för sulfidmalm, även om ytterligare studier behövs. Dessutom visar våra resultat att inkorporering av sedimentärt svavel förmodligen ökade de vulkaniska gaserna i magman, vilket kan ha bidragit till klimatförändringar relaterade till den vulkaniska aktiviteten av den högarktiska magmatiska provinsen.
Augustin, Cláudia Tharis. "Evolução magmática e metamórfica da intrusão máfica ultramáfica mineralizada a Ni-Cu-PGE de Mangabal, Brasil Central." reponame:Repositório Institucional da UnB, 2018. http://repositorio.unb.br/handle/10482/32460.
Full textSubmitted by Fabiana Santos (fabianacamargo@bce.unb.br) on 2018-08-21T18:49:57Z No. of bitstreams: 1 2018_CláudiaTharisAugustin.pdf: 5210708 bytes, checksum: 99f53f29a2d8ff706c6e29a34801ff12 (MD5)
Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-08-21T19:18:25Z (GMT) No. of bitstreams: 1 2018_CláudiaTharisAugustin.pdf: 5210708 bytes, checksum: 99f53f29a2d8ff706c6e29a34801ff12 (MD5)
Made available in DSpace on 2018-08-21T19:18:25Z (GMT). No. of bitstreams: 1 2018_CláudiaTharisAugustin.pdf: 5210708 bytes, checksum: 99f53f29a2d8ff706c6e29a34801ff12 (MD5) Previous issue date: 2018-08-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
Inserido no contexto do Arco Magmático de Goiás, o Complexo máfico-ultramáfico Mangabal está associado a um conjunto de diversas intrusões neoproterozóicas formadas durante o a orogenia brasiliana, no centro do Brasil. Este trabalho tem como objetivo apresentar a evolução magmática e o metamorfismo do Complexo máfico-ultramáfico Mangabal. Para tanto foram realizados trabalhos de campo, descrição e amostragem de testemunhos de sondagem, descrições petrográficas em seções delgadas e polidas, química mineral, imageamento em microscópio eletrônico de varredura (MEV) e análises químicas isotópicas de isótopos de Sm e Nd. O Complexo Mangabal está inserido na Zona de Cisalhamento São Luís dos Montes Belos e é composto por dois corpos máfico-ultramáficos acamadados metamorfizados. O membro norte apresenta aproximadamente 6 km²; já o membro sul, distante aproximadamente 2 km do anterior, possui aproximadamente 29 km² de área em superfície. Ambos os corpos exibem a mesma mineralogia, sequência de cristalização ígnea e composição química mineral. A estratigrafia do Complexo de Mangabal pode ser dividida em três zonas principais: i. Zona Máfica Inferior, localizada na porção basal da intrusão, composta por norito adcumulático; ii. Zona Ultramáfica, caracterizada por dunito e harzburgito e iii. Zona Máfica Superior, predominantemente de composição norito, com porções isoladas de dunito feldspático. O complexo apresenta sequência de cristalização composta por: Olivina + Cromo-Espinélio > Olivina + Ortopiroxênio > Ortopiroxênio + Plagioclásio > Clinopiroxênio. A mineralogia primária das rochas é frequentemente substituída por mineralogia metamórfica, devido ao metamorfismo heterogêneo sobreposto ao Complexo. Apesar da recristalização mineralógica, tal transformação metamórfica muitas vezes preserva as texturas magmáticas. O metamorfismo sobreposto ao complexo atingiu fácies metamórfica anfibolito de alta pressão, marcada pela presença da paragênese cianita-ortoanfibólio-hornblenda-plagioclásio, atingindo pressões de aproximadamente 8.5 kbar e temperaturas de até aproximadamente 750 °C. A mineralização primária de Ni-Cu-EGP sulfetado ocorre em rochas máficas e ultramáficas do complexo, porém a deformação superimposta no complexo pode localmente remobiliza-la. A mineralização é predominantemente do tipo disseminada, tanto nas rochas máficas quanto ultramáficas, porem localmente ocorrem em textura maciça.
Inserted in the context of the Goiás Magmatic Arc, the mafic-ultramafic complex of Mangabal is associated with several neoproterozoic mafic-ultramafic intrusions formed during the Brasiliano Orogeny in the center of Brazil. This study included fieldwork data, systematic drill-core sampling, mineral chemistry and Sm-Nd isotopic geochemistry in order to better understand the petrology of the mafic-ultramafic complex of Mangabal and associated Ni-Cu-PGE mineralization. The Mangabal Complex is inserted in the São Luís dos Montes Belos Shear Zone and is composed of two metamorphosed mafic-ultramafic bodies. The northern limb is approximately 6 km² and is stretched towards E-W; already the south member, distant approximately 2 km of the previous one, is approximately 10km wide by 5.5km long. Both bodies exhibit the same mineralogy, igneous crystallization sequence and mineral chemistry. The stratigraphy of the Mangabal Complex can be divided into three main zones: i. Lower Mafic Zone, located in the basal portion of the intrusion, composed by addcumulatic norite; ii. Ultramafic Zone, characterized by dunite and harzburgite and iii. Upper Mafic Zone, consisting predominantly of norite composition, with isolated portions of feldspathic dunite. The complex has the following crystallization: Olivine + Chromium-Spinel> Olivine + Orthopyroxene> Orthopyroxene + Plagioclase > Clinopyroxene. The primary mineralogy is often replaced due to an overlapping heterogeneous metamorphic transformation. Despite the mineralogical recrystallization, metamorphic transformation often preserves the magmatic textures. The metamorphism superimposed on the complex reached high-pressure amphibolite facies, marked by the presence of kyanite-ortoamphibole-hornblende, reaching pressures of approximately 8.5 kbar and temperatures up to 780 ° C. The primary Ni-Cu-EGP sulfide mineralization occurs in mafic and ultramafic rocks of the complex, but the deformation in the complex can locally remobilize the sulfides and, particularly, nickel and palladium. The mineralization is predominantly disseminated, occurring in both mafic and ultramafic rocks, but massive sulfide levels occur locally, mainly in metamorphic portions.
Fletcher, Timothy Andrew. "The geology, mineralisation (Ni-Cu-PGE) and isotope systematics of Caledonian mafic intrusions near Huntly, NE Scotland." Thesis, University of Aberdeen, 1989. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=88127.
Full textSong, Xieyan, and 宋謝炎. "Geochemistry of permian flood basalts and related ni-cu-(pge) sulfide-bearing sills in Yangliuping, Sichuan province, China." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B3124595X.
Full textSilva, Jonas Mota e. "O depósito sulfetado Ni-Cu-(pge) de Limoeiro : metalogênese, magmatismo máfico e metamorfismo no leste da Província Borborema." reponame:Repositório Institucional da UnB, 2014. http://repositorio.unb.br/handle/10482/18079.
Full textSubmitted by Ana Cristina Barbosa da Silva (annabds@hotmail.com) on 2015-04-30T19:31:10Z No. of bitstreams: 1 2014_JonasMotaeSilva.pdf: 23053512 bytes, checksum: 47ee6942746173aecae50290d8979fb8 (MD5)
Approved for entry into archive by Ruthléa Nascimento(ruthleanascimento@bce.unb.br) on 2015-05-04T14:05:23Z (GMT) No. of bitstreams: 1 2014_JonasMotaeSilva.pdf: 23053512 bytes, checksum: 47ee6942746173aecae50290d8979fb8 (MD5)
Made available in DSpace on 2015-05-04T14:05:23Z (GMT). No. of bitstreams: 1 2014_JonasMotaeSilva.pdf: 23053512 bytes, checksum: 47ee6942746173aecae50290d8979fb8 (MD5)
Complexos máficos, máfico-ultramáficos e ultramáficos são os típicos hospedeiros de mineralizações magmáticas sulfetadas de níquel, cobre e elementos do grupo da platina (PGE). Em 2009 a Votorantim Metais descobriu o depósito Ni-Cu- (PGE) sulfetado de Limoeiro no leste do estado do Pernambuco. Motivado pela descoberta, esta tese objetivou entender a gênese e evolução geológica do Complexo Limoeiro e sua mineralização de Ni-Cu-(PGE) nas escalas local e regional. Para isso foram realizados trabalhos de campo, mapeamento geológico, descrição de testemunhos de sondagem, interpretação de seção de sondagem, amostragem seletiva de rochas frescas e de mineralizações, petrografia óptica, química de rocha total, química de minério, química mineral, imageamento em microscópio eletrônico de varredura (MEV), análises químicas pontuais por espectrômetro de massa acoplado a feixe laser (LA-ICP-MS), imagamento de zircões por cátodo luminescência (CL) e datação U-Pb. A mineralização do depósito Limoeiro é essencialmente disseminada [pirrotita (~70%), calcopirita (~15%) e pentlandita (~15%)] e hospeda-se no topo de uma intrusão tubular (Sequencia Superior), sub-horizontal, concentricamente zonada (harzburgito no centro e ortopiroxenito na borda) com centenas de metros na transversal e alguns quilômetros na longitudinal. Esta intrusão faz parte de um sistema de condutos que ocupa uma área de 70 x 15 km, orientado na direção ENE-WSW, totalizando cerca de 150 km lineares de rochas intrusivas. A estratigrafia da intrusão é formada por pelo menos quatro pulsos magmáticos principais (Baixo Cr, Superior, Zona de Transição e Inferior), sendo cada um deles distintos em termos de fracionamento e mineralização na região do depósito. Apesar disso, o magma parental formador de cada pulso magmático é similar entre eles. Trata-se de um magma toleítico picrítico de alto MgO com forte assinatura de contaminação crustal. O progressivo aumento da razão Cu/Pd (de 5200 para 5800) das rochas da Sequencia Superior em harmonia com a diminuição do tenor evidencia fluxo horizontal do magma para leste. Todo o complexo foi metamorfisado na fácies granulito baixo (750-800ºC em 634±6 Ma) o que promoveu a recristalização dos zircões, dos sulfetos de metal base e provavelmente a fusão dos bismutoteluretos portadores de PGE. O tipo de intrusão conolítica como de Limoeiro é típico de intrusões relativamente rasas em ambientes compressivos. Não foi alcançada uma idade precisa para cristalização da intrusão que hospeda o depósito Limoeiro, mas correlação entre razões Th/U e idades U/Pb em zircões metamorfisados sugerem uma idade de ca. 800 Ma. Nesta idade é possível que o sul da Província Borborema e sua continuidade na Africa experimentaram de modo concomitante extensão com abertura de assoalho oceânico e colisão continental. Ao mesmo tempo em que se desenvolvia crosta oceânica na parte oeste (Riacho do Pontal), na parte leste dominava ambiente colisional compressivo (Limoeiro). Em uma escala global a intrusão de Limoeiro é contemporânea à quebra do supercontinente de Rodínia e a existência de uma superpluma que tornou o manto extraordinariamente quente. _______________________________________________________________________________________ ABSTRACT
Magmatic sulfide nickel, copper and platinum-group elements (PGE) are typically hosted by mafic, mafic-ultramafic and ultramafic complexes. The Limoeiro Ni- Cu-(PGE) sulfide deposit was discovered in 2009 by Votorantim Metais in the eastern part of Pernambuco state, northeastern Brazil. Driven by this discovery, this thesis was undertaken to understand the geological evolution of the Limoeiro Complex and the genesis of its Ni-Cu-(PGE) deposit in local and regional scales. The methods involved field work, geological mapping, drill core descriptions, drilling section interpretation, fresh rock and ore sampling, optical petrography, whole rock and ore chemistry, mineral chemistry, electronic petrography using MEV, trace element mineral chemistry using LA-ICP-MS, zircon petrography using CL and U-Pb dating. The mineralization is essentially disseminated sulfide [pyrrhotite (~70%), chalcopyrite (~15%) and pentlandite (~15%)] and is hosted in the upper part (Upper Sequence) of a tubular, sub-horizontal, concentrically zoned (harzburgite core surrounded by orthopyroxenite shell) intrusion, of scale of hundreds meters in crosssection by a few kilometers long. This intrusion is part of a conduit system (150 linear km of intrusive rocks), which occurs in an area of 70 x 15 km elongated in the ENEWSW direction. The intrusion stratigraphy can be divided into at least four main magmatic pulses (Low-Cr, Upper, Transition Zone and Lower), which differ in terms of fractionation and mineralization-content. However, their parental magmas are similar, and can be classified as a high-MgO tholeiitic picrite with intense crustal contamination. The progressive increase of Upper Sequence Cu/Pd ratio (5200 to 5800) together with metal tenor decrease suggests horizontal magma flux to the east. The whole complex was metamorphosed in lower granulite facies (750-800ºC at 634±6 Ma), which resulted in the zircons and base metal sulfides recrystallization and probably in the melt of the PGE-bearing bismuthotelurides. Compressive geological settings are commonly associated with chonolithic intrusions, such as the Limoeiro Complex. The metamorphic zircons within the complex show a positive correlation between U/Pb age and Th/U ratio, which alow infer crystallization age of ca. 800 Ma for Limoeiro. During that time the Southern part of Borborema Province and its African continuity have experienced contrasting tectonic settings. The Western side was rifting and forming oceanic crust (Riacho do Pontal), whereas in the Eastern counterpart collisional and compressive settings (Limoeiro) prevail. In a global scale, the Limoeiro intrusion emplacement was coeval to the Rodinia supercontinent break-up and to a superplume activity, which overheated the mantle at ca. 800 Ma.
Viljoen, Willemien. "Phase relations in the system Cu-Fe-Ni-S and their application to the slow cooling of PGE matte." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-10132005-100921/.
Full textBooks on the topic "Cu-PGE"
Piña, Rubén. The Ni-Cu-(PGE) Aguablanca Ore Deposit (SW Spain). Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93154-8.
Full textHuminicki, Michelle A. E. Geology, mineralogy, and geochemistry of the Kelly Lake Ni-Cu-PGE deposit, Sudbury, Ontario. Sudbury, Ont: Laurentian University, School of Graduate Studies, 2002.
Find full textGunn, A. G. Investigations for Cu-Ni and PGE in the Hill of Barra area, near Oldmeldrum, Aberdeenshire. Keyworth: British Geological Survey, 1991.
Find full textKormos, Steven E. Metal distribution within zone 39, a proterozoic vein-type Cu-Ni-Au-Ag-PGE deposit, Strathcona Mine, Ontario, Canada. Sudbury, Ont: Laurentian University, Department of Earth Sciences, 1999.
Find full textGregory, Steven Kelvey. Geology, mineralogy, and geochemistry of transitional contact/footwall mineralization in the McCreedy East NI-CU-PGE deposit, Sudbury igneous complex. Sudbury, Ont: Laurentian University, School of Graduate Studies, 2005.
Find full textChisholm, Kevin Malcolm. Nature and origin of ore-localizing embayments at the Katinniq Ni-Cu-(PGE) sulphide deposit, Cape Smith Belt, Northern Quebec. Sudbury, Ont: Laurentian University, Department of Earth Sciences, 2002.
Find full textHulbert, L. J. Geology and metallogeny of the Kluane mafic-ultramafic belt, Yukon Territory, Canada: Eastern Wrangellia - a new Ni-Cu-PGE metallogenic terrane. Ottawa, Ont: Geological Survey of Canada, 1997.
Find full textNew Results and Advances in PGE Mineralogy in Ni-Cu-Cr-PGE Ore Systems. MDPI, 2019. http://dx.doi.org/10.3390/books978-3-03921-717-5.
Full textLi, Chusi, and Edward M. Ripley. Magmatic Ni-Cu and PGE DepositsGeology, Geochemistry, and Genesis. Society of Economic Geologists, 2011. http://dx.doi.org/10.5382/rev.17.
Full textChai, Gang. Geology, petrology, geochemistry, and Ni-Cu-PGE mineralization of the Jinchuan intrusion, Northwest China. 1992.
Find full textBook chapters on the topic "Cu-PGE"
Piña, Rubén. "The Aguablanca Ni–Cu–(PGE) Sulfide Deposit." In SpringerBriefs in World Mineral Deposits, 31–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93154-8_4.
Full textKislov, E. V. "Ni-Cu-PGE mineralization in the Upper Proterozoic loko-Dovyren mafic-ultramafic massif, Russia." In Mineral Deposit Research: Meeting the Global Challenge, 413–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_108.
Full textNaldrett, A. J., and J. Lehmann. "Spinel Non-stoichiometry as the Explanation for Ni-, Cu- and PGE-enriched Sulphides in Chromitites." In Geo-Platinum 87, 93–109. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1353-0_10.
Full textPirajno, Franco, and Paul Morris. "Large igneous provinces in Western Australia: Implications for Ni-Cu and Platinum Group Elements (PGE) mineralization." In Mineral Deposit Research: Meeting the Global Challenge, 1049–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_268.
Full textKrivolutskaya, Nadezhda, Maria Nesterenko, Bronislav Gongalsky, Dmitry Korshunov, Yana Bychkova, and Natalia Svirskaya. "Unique PGE-Cu-Ni Oktyabr’skoe Deposit (Noril’sk Area, Siberia, Russia): New Data on Its Structure and Mineralization." In Petrogenesis and Exploration of the Earth’s Interior, 253–55. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01575-6_61.
Full textWenyuan, Li, Wang Wei, and Guo Zhouping. "Magmatic Ni-Cu-PGE deposits in the Qilian-Longshou mountains, Northwest China — part of a Proterozoic large igneous province." In Mineral Deposit Research: Meeting the Global Challenge, 429–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_112.
Full textPaniagua, A., I. Fanlo, B. Garcia, I. Subias, F. Gervilla, and R. D. Acevedo. "Unusual PGE concentration in early disulfides of a low-temperature hydrothermal Cu-Ni-Co-Au deposit at Villamanin (Leon, northern Spain)." In Mineral Deposit Research: Meeting the Global Challenge, 1033–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_264.
Full textRipley, E. M., C. Li, and J. Thakurta. "Magmatic Cu-Ni-PGE mineralization at a convergent plate boundary: Preliminary mineralogic and isotopic studies of the Duke Island Complex, Alaska." In Mineral Deposit Research: Meeting the Global Challenge, 49–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_13.
Full textLightfoot, Peter C., and Chris J. Hawkesworth. "Flood Basalts and Magmatic Ni, Cu, and PGE Sulphide Mineralization: Comparative Geochemistry of the Noril'sk (Siberian Traps) and West Greenland Sequences." In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, 357–80. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm100p0357.
Full textBorg, G., M. Tredoux, K. J. Maiden, J. P. F. Sellschop, and O. F. D. Wayward. "PGE- and Au-Distribution in Rift-related Volcanics, Sediments and Stratabound Cu/Ag Ores of Middle Proterozoic Age in Central SWA/Namibia." In Geo-Platinum 87, 303–17. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1353-0_33.
Full textConference papers on the topic "Cu-PGE"
Lesher, C. Michael. "THE RISE AND FALL OF MAGMATIC NI-CU-PGE SULFIDES." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-321594.
Full textBalch, S. J. "Exploration strategies for small high‐grade Ni‐Cu‐PGE deposits." In SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 2002. http://dx.doi.org/10.1190/1.1817268.
Full textBrzozowski, Matthew, Weiqiang Li, David Good, and Changzhi Wu. "Cu Isotope Fractionation by Cu–PGE Mineralizing Processes in the Eastern Gabbro, Coldwell Complex, Canada." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.276.
Full textRogge, D., B. Rivard, B. Grant, and J. Pardy. "Mapping Ni-Cu (PGE) bearing ultramafic rocks with hyperspectral imagery, Nunavik, Canada." In 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2010. http://dx.doi.org/10.1109/whispers.2010.5594870.
Full textОкругин, А. В., А. Л. Земнухов, and А. И. Журавлев. "ЛИКВАЦИОННОЕ PGE-CU-NI СУЛЬФИДНОЕ РУДОПРОЯВЛЕНИЕ В ДОЛЕРИТАХ ВОСТОЧНОГО СКЛОНА АНАБАРСКОГО ЩИТА." In Геология и минерально-сырьевые ресурсы Северо-Востока России. Якутск: Северо-Восточный федеральный университет имени М.К. Аммосова, 2021. http://dx.doi.org/10.52994/9785751331399_2021_57.
Full textMorrison, Jean M., Andrew H. Manning, and Richard B. Wanty. "METAL CONCENTRATIONS IN COVER OVERLYING DULUTH COMPLEX NI-CU-PGE DEPOSITS, NE MINNESOTA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-285031.
Full textPeterson, Dean M. "ANATOMY OF A DULUTH COMPLEX CU-NI-PGE MINERALIZED SYSTEM: THE SOUTH KAWISHIWI INTRUSION." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-285585.
Full textManning, Andrew H., Richard B. Wanty, Jean M. Morrison, and Stefania Da Pelo. "CHEMICAL SIGNATURE OF GROUNDWATER IN COVER OVERLYING DULUTH COMPLEX NI-CU-PGE DEPOSITS, NE MINNESOTA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-279731.
Full textSmith, Joshua M., Edward M. Ripley, Chusi Li, Benjamin Wernette, and V. Taranovic. "S, OS AND CU ISOTOPE VARIATIONS BETWEEN SHEET- AND CONDUIT-STYLE NI-CU-PGE MINERALIZATION IN THE MIDCONTINENT RIFT SYSTEM, USA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-281454.
Full textBenson, Erin, Edward M. Ripley, Chusi Li, and Robert Mahin. "MULTIPLE SULFUR ISOTOPE STUDY OF EAGLE EAST, MICHIGAN: UNDERSTANDING THE GENESIS OF NI-CU-PGE DEPOSITS." In 52nd Annual North-Central GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018nc-311727.
Full textReports on the topic "Cu-PGE"
Green, A., and D. Maceachern. Komatiite - Associated Ni - Cu - Pge Mineralization. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132296.
Full textHoulé, M. G., C. M. Lesher, E. M. Schetselaar, R. T. Metsaranta, and V. J. McNicoll. Architecture of magmatic conduits in Cr-(PGE)/Ni-Cu-(PGE) ore systems. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/299589.
Full textGood, D. J., O. R. Eckstrand, A. Yakubchuk, and Q. Gall. World Ni-Cu-PGE-Cr deposit database. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/297321.
Full textNixon, G. T., J. S. Scoates, D. Milidragovic, J. Nott, N. Moerhuis, T J Ver Hoeve, M. J. Manor, and I M Kjarsgaard. Convergent margin Ni-Cu-PGE-Cr ore systems: U-Pb petrochronology and environments of Cu-PGE versus Cr-PGE mineralization in Alaskan-type intrusions. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2020. http://dx.doi.org/10.4095/326897.
Full textNixon, G. T., M. J. Manor, S. Jackson-Brown, J. S. Scoates, and D. E. Ames. Magmatic Ni-Cu-PGE sulphide deposits at convergent margins. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296676.
Full textAmes, D. E., I. Kjarsgaard, and B. McClenaghan. Target characterization of Footwall Cu-(Ni)-PGE deposits, Sudbury. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292379.
Full textAmes, D. E., I. M. Kjarsgaard, and S. L. Douma. Sudbury Ni-Cu-PGE ore mineralogy compilation: Sudbury Targeted Geoscience Initiative (TGI). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2003. http://dx.doi.org/10.4095/214521.
Full textNixon, G. T., D. Milidragovic, and J. S. Scoates. Convergent margin Ni-Cu-PGE-Cr ore systems: temporal and magmatic evolution. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/315001.
Full textAmes, D. E., and M. G. Houlé. A synthesis of the TGI-4 Canadian nickel-copper-platinum group elements-chromium ore systems project -- revised and new genetic models and exploration tools for Ni-Cu-PGE, Cr-(PGE), Fe-Ti-V-(P), and PGE-Cu deposits. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296675.
Full textSmith, J., W. Bleeker, D. A. Liikane, M. Hamilton, R. Cundari, and P. Hollings. Characteristics of Ni-Cu-PGE sulphide mineralization within the 1.1 Ga Midcontinent Rift. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/313676.
Full text