To see the other types of publications on this topic, follow the link: Cu-PGE.

Journal articles on the topic 'Cu-PGE'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cu-PGE.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sproule, Rebecca, Steve Beresford, and Reid Keays. "Ni–Cu–PGE magmatic mineralisation." Applied Earth Science 116, no. 4 (2007): 151. http://dx.doi.org/10.1179/174327507x272012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Yiguan, C. Michael Lesher, and Jun Deng. "Geochemistry and genesis of magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) deposits in China." Ore Geology Reviews 107 (April 2019): 863–87. http://dx.doi.org/10.1016/j.oregeorev.2019.03.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sunder Raju, P. V. "12th International Ni-Cu-(PGE) Symposium." Journal of the Geological Society of India 80, no. 2 (2012): 293. http://dx.doi.org/10.1007/s12594-012-0142-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moilanen, M., E. Hanski, J. Konnunaho, et al. "Composition of iron oxides in Archean and Paleoproterozoic mafic-ultramafic hosted Ni-Cu-PGE deposits in northern Fennoscandia: application to mineral exploration." Mineralium Deposita 55, no. 8 (2020): 1515–34. http://dx.doi.org/10.1007/s00126-020-00953-1.

Full text
Abstract:
Abstract Using electron probe microanalyzer (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), we analyzed major and trace element compositions of iron oxides from Ni-Cu-PGE sulfide deposits hosted by mafic-ultramafic rocks in northern Fennoscandia, mostly focusing on Finland. The main research targets were the Archean Ruossakero Ni-(Cu) deposit; Tulppio dunite and related Ni-PGE mineralization; Hietaharju, Vaara, and Tainiovaara Ni-(Cu-PGE) deposits; and Paleoproterozoic Lomalampi PGE-(Ni-Cu) deposit. In addition, some reference samples from the Pechenga (Russ
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, W. D., W. D. Maier, and I. Bliss. "Contact-style magmatic sulphide mineralisation in the Labrador Trough, northern Quebec, Canada: implications for regional prospectivity." Canadian Journal of Earth Sciences 57, no. 7 (2020): 867–83. http://dx.doi.org/10.1139/cjes-2019-0137.

Full text
Abstract:
The Labrador Trough in northern Quebec is currently the focus of ongoing exploration for magmatic Ni-Cu-platinum group element (PGE) sulphide ores. This geological belt hosts voluminous basaltic sills and lavas of the Montagnais Sill Complex, which are locally emplaced among sulphidic metasedimentary country rocks. The recently discovered Idefix PGE-Cu prospect represents a stack of gabbroic sills that host stratiform patchy disseminated to net-textured sulphides (0.2–0.4 g/t PGE+Au) over a thickness of ∼20 m, for up to 7 km. In addition, globular sulphides occur at the base of the sill, adjac
APA, Harvard, Vancouver, ISO, and other styles
6

Koerber, Alexander, and Joyashish Thakurta. "PGE-Enrichment in Magnetite-Bearing Olivine Gabbro: New Observations from the Midcontinent Rift-Related Echo Lake Intrusion in Northern Michigan, USA." Minerals 9, no. 1 (2018): 21. http://dx.doi.org/10.3390/min9010021.

Full text
Abstract:
The Echo Lake intrusion in the Upper Peninsula (UP) of Michigan, USA, was formed during the 1.1 Ga Midcontinent Rift event in North America. Troctolite is the predominant rock unit in the intrusion, with interlayered bands of peridotite, mafic pegmatitic rock, olivine gabbro, magnetite-bearing gabbro, and anorthosite. Exploratory drilling has revealed a platinum group element (PGE)-enriched zone within a 45 m thick magnetite-ilmenite-bearing olivine gabbro unit with grades up to 1.2 g/t Pt + Pd and 0.3 wt. % Cu. Fine, disseminated grains of sulfide minerals such as pyrrhotite and chalcopyrite
APA, Harvard, Vancouver, ISO, and other styles
7

Nielsen, T. F. D., N. S. Rudashevsky, V. N. Rudashevsky, S. M. Weatherley, and J. C. Ø. Andersen. "Elemental Distributions and Mineral Parageneses of the Skaergaard PGE–Au Mineralization: Consequences of Accumulation, Redistribution, and Equilibration in an Upward-Migrating Mush Zone." Journal of Petrology 60, no. 10 (2019): 1903–34. http://dx.doi.org/10.1093/petrology/egz057.

Full text
Abstract:
Abstract The Skaergaard PGE–Au mineralization, aka the Platinova Reef, is a syn-magmatic Platinum Group Element (PGE) and gold (Au) mineralization that formed after crystallization of ∼74% of the bulk melt of the intrusion. It is hosted in a more than 600 m deep and bowl-shaped succession of gabbroic macro-rhythmic layers in the upper 100 m of the Middle Zone. The precious metal mineralization comprises a series of concordant, but compositionally zoned, mineralization levels identified by distinct PGE, Au and Cu peaks. They formed due to local sulphide saturation in stratiform concentrations o
APA, Harvard, Vancouver, ISO, and other styles
8

Liao, Yuan, Qian Li, Ying Yue, and Shijun Shao. "Selective electrochemical determination of trace level copper using a salicylaldehyde azine/MWCNTs/Nafion modified pyrolytic graphite electrode by the anodic stripping voltammetric method." RSC Advances 5, no. 5 (2015): 3232–38. http://dx.doi.org/10.1039/c4ra12342e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sluzhenikin, Sergey F., and Andrey V. Mokhov. "Gold and silver in PGE–Cu–Ni and PGE ores of the Noril’sk deposits, Russia." Mineralium Deposita 50, no. 4 (2014): 465–92. http://dx.doi.org/10.1007/s00126-014-0543-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sappin, A. A., M. Constantin, T. Clark, and O. van Breemen. "Geochemistry, geochronology, and geodynamic setting of Ni–Cu ± PGE mineral prospects hosted by mafic and ultramafic intrusions in the Portneuf–Mauricie Domain, Grenville Province, QuebecGéologie Québec Contribution 8439-2008-2009-5. Geological Survey of Canada Contribution 20080511." Canadian Journal of Earth Sciences 46, no. 5 (2009): 331–53. http://dx.doi.org/10.1139/e09-022.

Full text
Abstract:
The Portneuf–Mauricie Domain in the Grenville Province consists of the Montauban group rocks (1.45 Ga), intruded by the La Bostonnais complex plutons (1.40–1.37 Ga). This assemblage was formed in a magmatic arc setting. The sequence was intruded by mafic–ultramafic tholeiitic plutons, some of which host Ni–Cu ± PGE (platinum group element) prospects. U–Pb zircon ages determined from these plutons indicate that the mineralized intrusions were emplaced between 1.40 and 1.39 Ga and that they are coeval with the La Bostonnais complex plutons. The Ni–Cu ± PGE-bearing intrusions have mature island-a
APA, Harvard, Vancouver, ISO, and other styles
11

Припачкин, Павел Валентинович. "О роли дайковых и жильных тел в распределении Cu-Ni-PGE минерализации в Мончегорском расслоенном комплексе (Кольский полуостров, Россия)". Вестник ВГУ. Серия: Геология, № 2 (6 квітня 2018): 84–92. http://dx.doi.org/10.17308/geology.2018.2/1526.

Full text
Abstract:
Приводится краткий обзор роли дайковых и жильных тел в составе дифференцированных интрузий для концентрации Cu-Ni-PGE минерализации. В результате наших исследований в пределах Мончегорского расслоенного ультрамафит-мафитового комплекса Кольского полуострова установлено, что минерализация Южносопчинского расслоенного массива, связана не с расслоенной серией пород (пироксениты, нориты, габбронориты), а с жильными телами магнетит-амфибол-плагиоклазового состава в пироксенитах краевой серии. Предполагается также, что перспективное PGE оруденение зоны сочленения Мончеплутона и Мончетундровской интр
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Wei, Gu Chang Zhu, and Yan Zhi Wu. "The Enrichment Mechanism of PGE and Characteristic of MSZ in HW Mining Area in Great Dyke Zimbabwe." Advanced Materials Research 616-618 (December 2012): 90–95. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.90.

Full text
Abstract:
Zimbabwe Great Dyke is a mafic-ultramafic lithosome intruded the Zimbabwe Craton. MSZ(Main Sulfide Zone) is the most important layer which contains substantial amount of PGE(Platinum Group Elements). PGE are concentrated in bottom of MSZ layer because of the intimate relationship between the content of Cu&Ni and enrichment of PGE. Acid vein rocks did not formed in the same period with the ore and adjacent rocks. Plenty of sulfide can be found in MSZ in pyroxenite, Sulfide in ore was owe to homogeneous of geochemistry process in the magamtic segregation cycle, while them in gabbro and fract
APA, Harvard, Vancouver, ISO, and other styles
13

Akizawa, Norikatsu, Tetsu Kogiso, Akira Miyake, Akira Tsuchiyama, Yohei Igami, and Masayuki Uesugi. "Formation process of sub-micrometer-sized metasomatic platinum-group element-bearing sulfides in a Tahitian harzburgite xenolith." Canadian Mineralogist 58, no. 1 (2020): 99–114. http://dx.doi.org/10.3749/canmin.1800082.

Full text
Abstract:
ABSTRACT Base-metal sulfides (BMSs) are minerals that host platinum-group elements (PGE) in mantle peridotites and significantly control the bulk PGE content. They have been investigated in detail down to the sub-micrometer scale to elucidate PGE behavior in the Earth's interior. Base-metal sulfides are supposedly subjected to supergene and seawater weathering, leading to the redistribution of PGEs at low temperatures. Careful and thorough measurements of BMSs are thus required to elucidate PGE behavior in the Earth's interior. In the present study, a sub-micrometer-sized PGE-bearing sulfide i
APA, Harvard, Vancouver, ISO, and other styles
14

Thériault, Robert D., Sarah-Jane Barnes, and Mark J. Severson. "The influence of country-rock assimilation and silicate to sulfide ratios (R factor) on the genesis of the Dunka Road Cu – Ni – platinum-group element deposit, Duluth Complex, Minnesota." Canadian Journal of Earth Sciences 34, no. 4 (1997): 375–89. http://dx.doi.org/10.1139/e17-033.

Full text
Abstract:
The Dunka Road deposit is one of several Cu – Ni – platinum-group element (PGE) sulfide occurrences found along the northwestern margin of the Duluth Complex, where the host troctolitic rocks are in contact with metasedimentary rocks of the Animikie Group. Magma contamination through assimilation of sulfidic argillaceous country rocks is generally recognized as having played a key role in the genesis of the mineralization. Three main types of disseminated sulfide mineralization have been identified within the Dunka Road deposit: (i) norite-hosted sulfides, (ii) troctolite-hosted sulfides, and
APA, Harvard, Vancouver, ISO, and other styles
15

Jowitt, S. M., and R. R. Keays. "Shale-hosted Ni–(Cu–PGE) mineralisation: a global overview." Applied Earth Science 120, no. 4 (2011): 187–97. http://dx.doi.org/10.1179/1743275812z.00000000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lesher, C. M., and P. C. Lightfoot. "Preface for thematic issue on Ni–Cu–PGE deposits." Mineralium Deposita 47, no. 1-2 (2011): 1–2. http://dx.doi.org/10.1007/s00126-011-0379-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Duran, Charley J., Sarah-Jane Barnes, Eduardo T. Mansur, Sarah A. S. Dare, L. Paul Bédard, and Sergey F. Sluzhenikin. "Magnetite Chemistry by LA-ICP-MS Records Sulfide Fractional Crystallization in Massive Nickel-Copper-Platinum Group Element Ores from the Norilsk-Talnakh Mining District (Siberia, Russia): Implications for Trace Element Partitioning into Magnetite." Economic Geology 115, no. 6 (2020): 1245–66. http://dx.doi.org/10.5382/econgeo.4742.

Full text
Abstract:
Abstract Mineralogical and chemical zonations observed in massive sulfide ores from Ni-Cu-platinum group element (PGE) deposits are commonly ascribed to the fractional crystallization of monosulfide solid solution (MSS) and intermediate solid solution (ISS) from sulfide liquid. Recent studies of classic examples of zoned orebodies at Sudbury and Voisey’s Bay (Canada) demonstrated that the chemistry of magnetite crystallized from sulfide liquid was varying in response to sulfide fractional crystallization. Other classic examples of zoned Ni-Cu-PGE sulfide deposits occur in the Norilsk-Talnakh m
APA, Harvard, Vancouver, ISO, and other styles
18

Hall, M. F., B. Lafrance, and H. L. Gibson. "Emplacement of sharp-walled sulfide veins during the formation and reactivation of impact-related structures at the Broken Hammer Mine, Sudbury, Ontario." Canadian Journal of Earth Sciences 57, no. 10 (2020): 1149–66. http://dx.doi.org/10.1139/cjes-2019-0229.

Full text
Abstract:
Broken Hammer is a hybrid Cu–Ni–Platinum Group Element (PGE) footwall deposit located in Archean basement rocks below the impact-induced Sudbury Igneous Complex (SIC), Canada. The deposit consists of massive chalcopyrite veins surrounded by thin epidote, actinolite, and quartz selvedges and low-sulfide, high-PGE mineralization consisting of disseminated chalcopyrite (<5%) and platinum group minerals, associated with Ni-bearing chlorite overprinting alteration patches of epidote, actinolite, and quartz. The veins are grouped into five steeply-dipping sets, striking northeast-, southwest-, so
APA, Harvard, Vancouver, ISO, and other styles
19

Martínez, C., F. Tornos, C. Casquet, and C. Galindo. "4-1: The Aguablanca Ni–(Cu–PGE) deposit, SW Spain." Ore Geology Reviews 27, no. 1-4 (2005): 164–65. http://dx.doi.org/10.1016/j.oregeorev.2005.07.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Makkonen, Hannu V., Tapio Halkoaho, Jukka Konnunaho, Kalevi Rasilainen, Asko Kontinen, and Pasi Eilu. "Ni-(Cu-PGE) deposits in Finland – Geology and exploration potential." Ore Geology Reviews 90 (November 2017): 667–96. http://dx.doi.org/10.1016/j.oregeorev.2017.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Song, Xieyan. "Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis." Geoscience Frontiers 3, no. 6 (2012): 945. http://dx.doi.org/10.1016/j.gsf.2012.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Acosta-Góngora, P., S. J. Pehrsson, H. Sandeman, E. Martel, and T. Peterson. "The Ferguson Lake deposit: an example of Ni–Cu–Co–PGE mineralization emplaced in a back-arc basin setting?" Canadian Journal of Earth Sciences 55, no. 8 (2018): 958–79. http://dx.doi.org/10.1139/cjes-2017-0185.

Full text
Abstract:
The world’s largest Ni–Cu–Platinum group element (PGE) deposits are dominantly hosted by ultramafic rocks within continental extensional settings (e.g., Raglan, Voisey’s Bay), resulting in a focus on exploration in similar geodynamic settings. Consequently, the economic potential of other extensional tectonic environments, such as ocean ridges and back-arc basins, may be underestimated. In the northeastern portion of the ca. 2.7 Ga Yathkyed greenstone belt of the Chesterfield block (western Churchill Province, Canada), the Ni–Cu–Co–PGE Ferguson Lake deposit is hosted by >2.6 Ga hornblenditi
APA, Harvard, Vancouver, ISO, and other styles
23

Järvinen, Ville, Tapio Halkoaho, Jukka Konnunaho, Jussi S. Heinonen, and O. Tapani Rämö. "Parental magma, magmatic stratigraphy, and reef-type PGE enrichment of the 2.44-Ga mafic-ultramafic Näränkävaara layered intrusion, Northern Finland." Mineralium Deposita 55, no. 8 (2019): 1535–60. http://dx.doi.org/10.1007/s00126-019-00934-z.

Full text
Abstract:
AbstractAbout 20 mafic-ultramafic layered intrusions in the northern Fennoscandian shield were emplaced during a widespread magmatic event at 2.5–2.4 Ga. The intrusions host orthomagmatic Ni-Cu-PGE and Cr-V-Ti-Fe deposits. We update the magmatic stratigraphy of the 2.44-Ga Näränkävaara mafic-ultramafic body, northeastern Finland, on the basis of new drill core and outcrop observations. The Näränkävaara body consists of an extensive basal dunite (1700 m thick), and a layered series comprising a peridotitic–pyroxenitic ultramafic zone (600 m thick) and a gabbronoritic–dioritic mafic zone (700 m
APA, Harvard, Vancouver, ISO, and other styles
24

Prendergast, M. D. "Variant Offset-Type Platinum Group Element Reef Mineralization in Basal Olivine Cumulates of the Kapalagulu Intrusion, Western Tanzania." Economic Geology 116, no. 4 (2021): 1011–33. http://dx.doi.org/10.5382/econgeo.4816.

Full text
Abstract:
Abstract The Kapalagulu intrusion in eastern Tanzania hosts a major, 420-m-thick, stratiform/stratabound platinum group element (PGE)-bearing sulfide zone—the Lubalisi reef—within a prominent, chromititiferous, harzburgite unit close to its stratigraphic base. Several features of the vertical base and precious metal distributions (in a composite stratigraphic section based upon two deep exploration drill holes) display similarities to those of offset-type PGE reefs that formed under the overall control of Rayleigh fractionation: (1) composite layering (at several scales) defined by systematic
APA, Harvard, Vancouver, ISO, and other styles
25

MA, GEORGE S. K., JOHN MALPAS, JIAN-FENG GAO, KUO-LUNG WANG, LIANG QI, and COSTAS XENOPHONTOS. "Platinum-group element geochemistry of intraplate basalts from the Aleppo Plateau, NW Syria." Geological Magazine 150, no. 3 (2012): 497–508. http://dx.doi.org/10.1017/s0016756812000696.

Full text
Abstract:
AbstractEarly–Middle Miocene intraplate basalts from the Aleppo Plateau, NW Syria have been analysed for their platinum-group elements (PGEs). They contain extremely low PGE abundances, comparable with most alkali basalts, such as those from Hawaii, and mid-ocean ridge basalts. The low abundances, together with high Pd/Ir, Pt/Ir, Ni/Ir, Cu/Pd, Y/Pt and Cu/Zr are consistent with sulphide fractionation, which likely occurred during partial melting and melt extraction within the mantle. Some of the basalts are too depleted in PGEs to be explained solely by partial melting of a primitive mantle-li
APA, Harvard, Vancouver, ISO, and other styles
26

Barkov, Andrei Y., Gennadiy I. Shvedov, Andrey A. Nikiforov, and Robert F. Martin. "Platinum-group minerals from Seyba, Eastern Sayans, Russia, and substitutions in the PGE-rich pentlandite and ferhodsite series." Mineralogical Magazine 83, no. 4 (2019): 531–38. http://dx.doi.org/10.1180/mgm.2019.16.

Full text
Abstract:
AbstractChromitite zones associated with ultramafic units of the Lysanskiy layered complex of dunite–peridotite–gabbro composition could well represent the primary source for the placers bearing platinum-group minerals (PGM) of the entire drainage of the River Sisim and its tributaries, the rivers Ko and Seyba, eastern Sayans. Alluvial gold present in the placers of River Seyba, as elsewhere in the Sisim Placer Zone, reflects mineralisation during a recent period of tectonic activity. We focus on the PGM in the Seyba suite, and in particular on the attributes of pentlandite enriched in platinu
APA, Harvard, Vancouver, ISO, and other styles
27

Barkov, Andrei Y., Nadezhda D. Tolstykh, Gennadiy I. Shvedov, and Robert F. Martin. "Ophiolite-related associations of platinum-group minerals at Rudnaya, western Sayans and Miass, southern Urals, Russia." Mineralogical Magazine 82, no. 3 (2018): 515–30. http://dx.doi.org/10.1180/mgm.2018.82.

Full text
Abstract:
ABSTRACTWe describe similar assemblages of minerals found in two placers in Russia, both probably derived from an ophiolitic source. The first is located along the River Rudnaya in the western Sayan province, Krasnoyarskiy kray, and the second pertains to the Miass placer zone, Chelyabinsk oblast, in the southern Urals. The platinum-group element (PGE) mineralization in both cases is mostly (at least 80%) represented by alloy minerals in the system Ru–Os–Ir, in the order of occurrence osmium, ruthenium and iridium. The remainder consists of Pt–Fe alloys and species of PGE sulfides, arsenides,
APA, Harvard, Vancouver, ISO, and other styles
28

Smith, W. D., W. D. Maier, I. Bliss, and L. Martin. "In Situ Multiple Sulfur Isotope and S/Se Composition of Magmatic Sulfide Occurrences in the Labrador Trough, Northern Quebec." Economic Geology 116, no. 7 (2021): 1669–86. http://dx.doi.org/10.5382/econgeo.4843.

Full text
Abstract:
Abstract The interaction between mafic-ultramafic magma and crustal sulfide is considered a key process in the formation of magmatic Ni-Cu-platinum group element (PGE) sulfide deposits. Integrated S/Se and multiple sulfur isotope studies are the most robust in constraining the role of crustal sulfur during ore genesis. In the present study, we report the first integrated S/Se and multiple sulfur isotope study of magmatic sulfide occurrences in the Labrador Trough, namely, on the recently discovered Idefix PGE-Cu and Huckleberry Cu-Ni-(PGE) prospects. Whole-rock and in situ S/Se values (~810–31
APA, Harvard, Vancouver, ISO, and other styles
29

Begg, G. C., J. A. M. Hronsky, N. T. Arndt, W. L. Griffin, S. Y. O'Reilly, and N. Hayward. "Lithospheric, Cratonic, and Geodynamic Setting of Ni-Cu-PGE Sulfide Deposits." Economic Geology 105, no. 6 (2010): 1057–70. http://dx.doi.org/10.2113/econgeo.105.6.1057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ziramov, S., A. Dzunic, and M. Urosevic. "Kevitsa Ni-Cu-PGE deposit, North Finland - A seismic case study." ASEG Extended Abstracts 2015, no. 1 (2015): 1–4. http://dx.doi.org/10.1071/aseg2015ab122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yakubchuk, Alexander, and Anatoly Nikishin. "Noril?sk?Talnakh Cu?Ni?PGE deposits: a revised tectonic model." Mineralium Deposita 39, no. 2 (2004): 125–42. http://dx.doi.org/10.1007/s00126-003-0373-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Naldrett, A. J. "World-class Ni-Cu-PGE deposits: key factors in their genesis." Mineralium Deposita 34, no. 3 (1999): 227–40. http://dx.doi.org/10.1007/s001260050200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cao, Yonghua, Robert Linnen, David Good, Iain Samson, and John McBride. "Igneous architecture and implications for diverse Cu-PGE mineralization styles in a conduit system: an example from the Area 41 Cu-PGE occurrence, Coldwell Complex, Canada." Mineralium Deposita 54, no. 6 (2018): 867–84. http://dx.doi.org/10.1007/s00126-018-0844-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Prichard, Hazel M., Saioa Suárez, Peter C. Fisher, Robert D. Knight, and John S. Watson. "Placer platinum-group minerals in the Shetland ophiolite complex derived from anomalously enriched podiform chromitites." Mineralogical Magazine 82, no. 3 (2018): 491–514. http://dx.doi.org/10.1180/minmag.2017.081.099.

Full text
Abstract:
ABSTRACTHighly anomalous platinum-group element (PGE) concentrations in the podiform chromitites at the Cliff and Harold's Grave localities in the Shetland ophiolite complex have been well documented previously. The focus of this study is alluvial platinum-group minerals (PGM) located in small streams that drain from the PGE-rich chromitites. The placer PGM assemblage at Cliff is dominated by Pt-arsenides (64%) and Pd-antimonides (17%), with less irarsite–hollingworthite (11%) and minor Pd-sulfides, Pt–Pd–Cu and Pt–Fe alloys and laurite. Gold also occurs with the PGM. Alluvial PGM have average
APA, Harvard, Vancouver, ISO, and other styles
35

Lesher, C. M. "Up, down, or sideways: emplacement of magmatic Fe–Ni–Cu–PGE sulfide melts in large igneous provinces." Canadian Journal of Earth Sciences 56, no. 7 (2019): 756–73. http://dx.doi.org/10.1139/cjes-2018-0177.

Full text
Abstract:
The preferential localization of Fe–Ni–Cu–PGE sulfides within the horizontal components of dike–sill–lava flow complexes in large igneous provinces (LIPs) indicates that they were fluid dynamic traps for sulfide melts. Many authors have interpreted them to have collected sulfide droplets transported upwards, often from deeper “staging chambers”. Although fine (<1–2 cm) dilute (<10%–15%) suspensions of dense (∼4–5 g/cm3) sulfide melt can be transported in ascending magmas, there are several problems with upward-transport models for almost all LIP-related deposits: (1) S isotopic data are
APA, Harvard, Vancouver, ISO, and other styles
36

Ding, Xin, Edward M. Ripley, and Chusi Li. "PGE geochemistry of the Eagle Ni–Cu–(PGE) deposit, Upper Michigan: constraints on ore genesis in a dynamic magma conduit." Mineralium Deposita 47, no. 1-2 (2011): 89–104. http://dx.doi.org/10.1007/s00126-011-0350-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kamenetsky, Vadim S., and Michael Zelenski. "Origin of noble-metal nuggets in sulfide-saturated arc magmas: A case study of olivine-hosted sulfide melt inclusions from the Tolbachik volcano (Kamchatka, Russia)." Geology 48, no. 6 (2020): 620–24. http://dx.doi.org/10.1130/g47086.1.

Full text
Abstract:
Abstract Minerals that contain platinum-group elements (PGEs) and occur in some magmatic Cu-Ni sulfide deposits have been ascribed to crystallization from an originally PGE-rich sulfide liquid. The occurrence of PGE-bearing minerals (PGMs) in some sulfide-undersaturated primitive melts has been envisaged and recently reported, whereas direct crystallization of PGMs in sulfide-saturated silicate magmas is seemingly hindered by strong partitioning of PGE into immiscible sulfide melts. In this study, we discovered abundant nanoparticles containing noble metals in association with sulfide melt inc
APA, Harvard, Vancouver, ISO, and other styles
38

Gervilla, Fernando, Alejandro Sáncnez-Anguita, Rogelio D. Acevedo, Purificación Fenoll Hach-Ali, and Andres Paniagua. "Platinum-group element sulpharsenides and Pd bismuthotellurides in the metamorphosed Ni-Cu deposit at Las Aguilas (Province of San Luis, Argentina)." Mineralogical Magazine 61, no. 409 (1997): 861–77. http://dx.doi.org/10.1180/minmag.1997.061.409.09.

Full text
Abstract:
AbstractThe Las Aguilas Ni-Cu-PGE deposit is associated with a sequence of basic-ultrabasic rocks made up of dunite, harzurgite, norite and amphibolite. These igneous (partially metamorphosed) rocks, and their host granulites, gneisses and migmatites of probable Precambrian age, are highly folded. The sulphide ore, consisting of pyrrhotite, pentlandite and chalcopyrite, occurs in the cores of both antiform and synform structures, within dunite, harzburgite and mainly along shear zones in bronzitite, replacing small mylonitic subgrains. The platinum-group mineral assemblage is dominated by Pd b
APA, Harvard, Vancouver, ISO, and other styles
39

Larson, Michelle S., William E. Stone, William A. Morris, and James H. Crocket. "Magnetic signature of magnetite‐enriched rocks hosting platinum‐group element mineralization within the Archean Boston Creek Flow, Ontario." GEOPHYSICS 63, no. 2 (1998): 440–45. http://dx.doi.org/10.1190/1.1444344.

Full text
Abstract:
Ground‐based magnetometer surveys detect high‐positive magnetic anomalies (up to 72 000 nT) which coincide with the location of subeconomic, magnetite‐associated platinum‐group element (PGE) mineralization within the Boston Creek Flow iron‐rich basalt, Archean Abitibi Greenstone Belt, Ontario. The magnetic anomalies confirm the presence of magnetite‐enriched zones (up to 20 modal%), and reveal that they are ovoid in shape, up to 10 m in size, and along strike from each other in the central gabbro‐diorite layer. Geological and geochemical surveys and mineralogical studies indicate that these zo
APA, Harvard, Vancouver, ISO, and other styles
40

Shahabi Far, Maryam, Iain M. Samson, Joel E. Gagnon, David J. Good, Robert L. Linnen, and Doreen Ames. "Evolution of a Conduit System at the Marathon PGE–Cu Deposit: Insights from Silicate Mineral Textures and Chemistry." Journal of Petrology 60, no. 7 (2019): 1427–60. http://dx.doi.org/10.1093/petrology/egz035.

Full text
Abstract:
Abstract The Marathon platinum group element (PGE)–Cu deposit is hosted by the Two Duck Lake Gabbro of the Mesoproterozoic Coldwell Complex, Canada, and comprises three zones of mineralization, which have different textural, mineralogical and geochemical characteristics. The Footwall Zone occurs at the base of the Two Duck Lake Gabbro, at the contact with the Archean country rocks. The Main Zone occurs within the Two Duck Lake Gabbro, above the Footwall Zone. The W Horizon is an extraordinarily PGE-enriched zone that is characterized by very low Cu/Pd values, less pyrrhotite, and appreciably m
APA, Harvard, Vancouver, ISO, and other styles
41

Fiorentini, M. L., S. W. Beresford, and M. E. Barley. "Controls on the genesis and emplacement of komatiite-hosted Ni–Cu–PGE-sulphides at Albion Downs (Agnew-Wiluna Belt, Western Australia): a case study on the development of PGE lithogeochemical vectors to Ni–Cu–PGE-sulphide deposits." Applied Earth Science 116, no. 4 (2007): 152–66. http://dx.doi.org/10.1179/174327507x207500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Barkov, A. Y., J. H. G. Laflamme, L. J. Cabri, and R. F. Martin. "PLATINUM-GROUP MINERALS FROM THE WELLGREEN Ni Cu PGE DEPOSIT, YUKON, CANADA." Canadian Mineralogist 40, no. 2 (2002): 651–69. http://dx.doi.org/10.2113/gscanmin.40.2.651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Li, C., W. D. Maier, and S. A. de Waal. "Magmatic Ni-Cu versus PGE deposits: Contrasting genetic controls and exploration implications." South African Journal of Geology 104, no. 4 (2001): 309–18. http://dx.doi.org/10.2113/gssajg.104.4.309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Barnes, Stephen J., Alexander R. Cruden, Nicholas Arndt, and Benoit M. Saumur. "The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits." Ore Geology Reviews 76 (July 2016): 296–316. http://dx.doi.org/10.1016/j.oregeorev.2015.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fiorentini, M. L., S. W. Beresford, N. Rosengren, M. E. Barley, and T. C. McCuaig. "Contrasting komatiite belts, associated Ni–Cu–(PGE) deposit styles and assimilation histories." Australian Journal of Earth Sciences 57, no. 5 (2010): 543–66. http://dx.doi.org/10.1080/08120099.2010.492911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hulbert, L., and W. Stone. "Eastern Wrangellia – A New Ni-Cu-PGE Metallogenic Terrane in North America." ASEG Extended Abstracts 2006, no. 1 (2006): 1–7. http://dx.doi.org/10.1071/aseg2006ab070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Boutroy, Emilie, Sarah A. S. Dare, Georges Beaudoin, Sarah-Jane Barnes, and Peter C. Lightfoot. "Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration." Journal of Geochemical Exploration 145 (October 2014): 64–81. http://dx.doi.org/10.1016/j.gexplo.2014.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Le Vaillant, Margaux, Marco L. Fiorentini, and Stephen J. Barnes. "Review of lithogeochemical exploration tools for komatiite-hosted Ni-Cu-(PGE) deposits." Journal of Geochemical Exploration 168 (September 2016): 1–19. http://dx.doi.org/10.1016/j.gexplo.2016.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lawley, Christopher J. M., Victoria Tschirhart, Jennifer W. Smith, et al. "Prospectivity modelling of Canadian magmatic Ni (±Cu ± Co ± PGE) sulphide mineral systems." Ore Geology Reviews 132 (May 2021): 103985. http://dx.doi.org/10.1016/j.oregeorev.2021.103985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

McDonald, Iain, R. E. (Jock) Harmer, David A. Holwell, Hannah S. R. Hughes, and Adrian J. Boyce. "Cu-Ni-PGE mineralisation at the Aurora Project and potential for a new PGE province in the Northern Bushveld Main Zone." Ore Geology Reviews 80 (January 2017): 1135–59. http://dx.doi.org/10.1016/j.oregeorev.2016.09.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!