Academic literature on the topic 'Cu poor layer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cu poor layer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cu poor layer"
Li, Zhang, Xue Yu-Ming, Xu Chuan-Ming, He Qing, Liu Fang Fang, Li Chang-Jian, and Sun Yun. "Microstructural characterization of Cu-poor Cu (In, Ga)Se2 surface layer." Thin Solid Films 520, no. 7 (January 2012): 2873–77. http://dx.doi.org/10.1016/j.tsf.2011.11.077.
Full textNishimura, Takahito, Yoshiaki Hirai, Yasuyoshi Kurokawa, and Akira Yamada. "Theoretical and experimental investigation of the recombination reduction at surface and grain boundaries in Cu(In,Ga)Se2 solar cells by valence band control." MRS Proceedings 1771 (2015): 125–31. http://dx.doi.org/10.1557/opl.2015.387.
Full textZhang, Man, Yue Bin Lin, Jian Qiang Lv, and Hai Lin Jiang. "Effect of Al on Zn-Al Filler Metal Wettability on Pure Copper Surface." Advanced Materials Research 538-541 (June 2012): 196–99. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.196.
Full textSung, Po-Hsien, and Tei-Chen Chen. "Performance of Cu–Ag Thin Films as Diffusion Barrier Layer." Coatings 10, no. 11 (November 13, 2020): 1087. http://dx.doi.org/10.3390/coatings10111087.
Full textTerajima, Takeshi. "Development of Cu-Clad Metallic Glass for Soldering." Materials Science Forum 706-709 (January 2012): 1343–47. http://dx.doi.org/10.4028/www.scientific.net/msf.706-709.1343.
Full textJiang, N., and J. Silcox. "On The Formation Of Diffusion Layer Between Cr Film And Glass." Microscopy and Microanalysis 5, S2 (August 1999): 166–67. http://dx.doi.org/10.1017/s143192760001415x.
Full textTING, WU, T. EGI, R. ITTI, K. KURODA, N. KOSHIZUKA, and S. TANAKA. "IDENTIFICATION OF THE NATURAL TERMINATION LAYER ON THE SURFACES OF As-PREPARED Nd1Ba2Cu3Oy SINGLE CRYSTALS AND SURFACE DEFECT STRUCTURES." Modern Physics Letters B 09, no. 20 (August 30, 1995): 1297–301. http://dx.doi.org/10.1142/s0217984995001273.
Full textLiu, Chung Ping, Ming Wei Chang, Chuan Lung Chuang, and Nien Po Chen. "Synthesis of Cu-Poor Copper-Indium-Gallium-Diselenide Nanoparticles by Solvothermal Route for Solar Cell Applications." International Journal of Photoenergy 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/976030.
Full textGhanta, Sivaprasad, Nilanjan Roy, and Partha Pratim Jana. "Crystal structures of two very similar 2 × 2 × 2 superstructures of γ-brass-related phases in ternary Ir–Cd–Cu system." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, no. 1 (January 15, 2020): 47–55. http://dx.doi.org/10.1107/s2052520619015488.
Full textLiu, Chih-Yi, Chao-Cheng Lin, Chun-Hung Lai, Shih-Kun Liu, Chang-Sin Ye, Wei-Chen Tien, and Meng-Ren Hsu. "Characteristics of GZO-based multilayer transparent conducting films." International Journal of Modern Physics B 35, no. 14n16 (June 30, 2021): 2140004. http://dx.doi.org/10.1142/s021797922140004x.
Full textDissertations / Theses on the topic "Cu poor layer"
Patikirige, Yasas R. A. "Optimization of The Absorber/Buffer Interface Region of Cu(In,Ga)Se2 Photovoltaic Devices: A Numerical Simulation Study." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1562432266285967.
Full textGião, Madalena Alice Priante. "Caracterização do vapor gerado por ablação de tungstênio por laser de "Cu-HBr"." Instituto Tecnológico de Aeronáutica, 2006. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=287.
Full textSantos, Jonadabe Martins dos. "Atomização e consolidação por fusão seletiva a laser da liga Cu-11,3Al-3,2Ni-3,0Mn-0,5Zr com efeito de memória de forma." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/8078.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:49:46Z (GMT) No. of bitstreams: 1 DissJMS.pdf: 4383574 bytes, checksum: 04172fa81fb0f3d2e00439bbeaf3cbd4 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:49:51Z (GMT) No. of bitstreams: 1 DissJMS.pdf: 4383574 bytes, checksum: 04172fa81fb0f3d2e00439bbeaf3cbd4 (MD5)
Made available in DSpace on 2016-10-20T19:49:57Z (GMT). No. of bitstreams: 1 DissJMS.pdf: 4383574 bytes, checksum: 04172fa81fb0f3d2e00439bbeaf3cbd4 (MD5) Previous issue date: 2015-12-16
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
The aim of the present work was the study of the viability of a manufacturing route of parts with the Cu-based Shape Memory Alloy (SMA) Cu- 11,3Al-3,2Ni-3Mn-0,5Zr through gas atomization followed by Selective Laser Melting (SLM) consolidation. The alloy was prepared from high purity elements in an induction furnace with a concentrate argon flow shield above the molten metal. The atomization was carried out using an induction furnace for melting and argon as atomizer gas. The atomized powder was sieved in 32-106 μm range particles sizes and consolidated by SLM 250 HL device settled at the Leibniz Institute for Solid State and Materials Research, Dresden, Germany. In the consolidation step the best combination of power (P in Watts) and velocity (V in mm/s) were selected through the visual aspect criteria. In the following step the hatching track percentage (S) guided by relative density criteria was included. The atomized powder and the consolidated samples were characterized by optical and electron microscopy, X-ray diffraction and differential scanning calorimetry. The composition and the powder morphology were suitable for the SLM processing. The parameters optimization point out that the best combinations were P310v740S40 and P310v740S50, their relative density were around 97 %. The β’ “zig-zag” martensite phase, the SMA effect cause, was prevailing in the consolidated samples microstructure, still, the microstructure although was not-uniform it was relatively grain refined, pointing out the effect of Zr addition. The consolidated samples transformation temperatures were As=172-174C, Af=194-197C, Ms=156-160C, Mf=132- 138C. The results point to a strong indicative of the viability of a manufacturing route of parts with Cu-based SMA through gas atomization followed by SLM consolidation.
O objetivo da dissertação foi o estudo da viabilidade de uma rota de fabricação de peças com liga Cu-11,3Al-3,2Ni-3Mn-0,5Zr a base de cobre com Efeito de Memória de Forma (EMF) por atomização a gás da liga, seguida pela consolidação por Fusão Seletiva por Laser (FSL). A liga foi elaborada a partir de elementos de alta pureza em forno de indução com proteção de fluxo de argônio concentrado acima do banho. As atomizações foram realizadas com fusão por indução e utilizando argônio como gás de atomização. Os pós, separados na faixa granulométrica 32-106 μm foram consolidados por FSL utilizando o equipamento SLM 250 HL do Leibniz Institute for Solid State and Materials Research, Dresden, Alemanha. Para consolidação foram selecionadas as melhores combinações de potência (P em W) e velocidade (V em mm/s) do feixe de laser pelo critério de aspecto visual das trilhas simples. Na etapa seguinte foi considerada a porcentagem de sobreposição de pistas (S) avaliada pelo critério de densidade relativa. O pó atomizado e os corpos consolidados por FSL foram caracterizados por microscopia ótica e eletrônica de varredura, difração de raios-X e por calorimetria diferencial de varredura. A composição e a morfologia do pó atomizado foram adequadas para o processo de FSL. A otimização dos parâmetros de processamento indicaram que as melhores combinações foram de P310v740S40 e P310v740S50, com densidade relativa alcançada em torno de 97%. A fase martensítica β’ “zigzag”, responsável pelo EMF, foi predominante nos corpos consolidados por FSL sendo que a microestrutura, embora não uniforme, foi relativamente refinada, indicando o efeito da adição de Zr na composição da liga. As temperaturas de transformação dos corpos consolidados foram de As=172- 174C, Af=194-197C, Ms=156-160C, Mf=132-138C. Os resultados indicam a viabilidade da rota de fabricação de peças em ligas a base de cobre com EMF por atomização a gás da liga, seguida pela consolidação por FSL.
Bugot, Cathy. "Elaboration d'oxydes et de sulfures à grande bande interdite pour les cellules photovoltaïques à base de Cu(In,Ga)Se2 par dépôt chimique en phase vapeur par flux alternés (ALD) activé par plasma." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066499/document.
Full textThis thesis focuses on the development of innovative and efficient materials for the fabrication of the buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cells. For the first time, In2(S,O)3 and Zn(O,S) thin films were synthesized by Plasma Enhanced Atomic Layer Deposition (PEALD) in order to substitute the conventional cadmium sulfide buffer layer. By creating reactive species, this deposition technique allows reactions which could not be possible using thermal ALD. The comparison of both methods allows the evaluation of their respective assets and constraints. For instance, In2(S,O)3 thin films could only be achieved using PEALD through exchange reaction mechanisms between oxygen radicals from the plasma and sulfur atoms of In2S3 growing film. In order to obtain CIGS/In2(S,O)3 solar cells with efficiencies of 11.9%, the initial deposition process was improved by correlating X-Ray Photoelectron Spectroscopy and Quadrupole Mass Spectrometry analyses. At the same time, the deposition temperature proved to have a crucial effect on CIGS/Zn(O,S)-ALD device opto-electronic properties and we evidenced the existence of two deposition temperature ranges, at Tdep < 160°C and Tdep > 200°C, where the performances are enhanced. In the low temperature range, the high performances were explained by specific Zn(O,S) properties, while at high temperature they are enhanced by favorable interdiffusion mechanisms at the CIGS/Zn(O,S) interface. Increasing the deposition temperature allowed the fabrication of CIGS/Zn(O,S) solar cells with efficiencies up to 15.6%
Lamirault, Sylvie. "Comportement du cuivre dans les melanges hf-mf (m = k ou nh : :(4)) fondus utilises pour l'obtention electrolytique du fluor." Paris 6, 1987. http://www.theses.fr/1987PA066467.
Full textBook chapters on the topic "Cu poor layer"
Barcones, B., A. Romano-Rodríguez, J. Álvarez-Garcia, L. Calvo-Barrio, A. Pérez-Rodríguez, J. R. Morante, R. Scheer, et al. "Rapid thermal sulphurisation of Cu-rich and Cu-poor Cu-In precursors for the production of CuInS2 layers for photovoltaic applications: a microstructural study." In Microscopy of Semiconducting Materials 2001, 507–10. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-109.
Full textConference papers on the topic "Cu poor layer"
Younan, Hua, Zhou Yongkai, Chen Yixin, Fu Chao, and Li Xiaomin. "Failure Mechanism Studies and Root Cause Identification of Nonstick on Pad on Microchip Al Bondpads." In ISTFA 2014. ASM International, 2014. http://dx.doi.org/10.31399/asm.cp.istfa2014p0215.
Full textHung, L. Y., Y. P. Wang, and C. S. Hsiao. "Evaluation of Surface Finish on Build Up Substrate." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35153.
Full textTalukdar, Tushar K., Liang Wang, and Sergio D. Felicelli. "Simulation of Residual Stress in Lens Deposited H13 Tool Steel on Copper Substrate." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62321.
Full textUdupa, Anirudh, Tatsuya Sugihara, and James B. Mann. "Glues Make Gummy Metals Easy to Cut." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2922.
Full textBabbe, Finn, Leo Choubrac, and Susanne Siebentritt. "Study on the quasi Fermi level splitting of Cu(In, Ga)Se2 absorber layers with Cu-rich and Cu-poor composition." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749793.
Full textRahman, M. Shafiqur, Paul J. Schilling, Paul D. Herrington, and Uttam K. Chakravarty. "Thermal Behavior and Melt-Pool Dynamics of Cu-Cr-Zr Alloy in Powder-Bed Selective Laser Melting Process." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11087.
Full textRishi, Aniket M., and Anju Gupta. "Fundamental Insight on Morphological Changes of Graphene Nanoplatelets-Copper (GNP-Cu) Coatings: Effects of Repetitive Pool Boiling Tests." In ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icnmm2020-1027.
Full textSuszko, Arthur, and Mohamed S. El-Genk. "A Composite Cu/HOPG Heat Spreader for Immersion Cooling of High Power Chips." In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48678.
Full textShuting, Chen, Zhu Lei, Teo Han Wei, Liu Binghai, Huang Yanhua, Ong Kenny, Mo Zhiqiang, et al. "A Comprehensive Failure Analysis Method and Mechanism Study on Ultra-Low-K Film Adhesion Failure." In ISTFA 2012. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.istfa2012p0203.
Full textZhong, Zhaoping, Basheng Jin, Jixiang Lan, Changqing Dong, and Hongchang Zhou. "Experimental Study of Municipal Solid Waste (MSW) Incineration and Its Flue Gas Purification." In 17th International Conference on Fluidized Bed Combustion. ASMEDC, 2003. http://dx.doi.org/10.1115/fbc2003-011.
Full text