To see the other types of publications on this topic, follow the link: Cu2V2O7.

Journal articles on the topic 'Cu2V2O7'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cu2V2O7.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Suganya, P., J. Princy, N. Mathivanan, and Krishnasamy K. "One-Pot Synthesis of rGO@Cu2V2O7 Nanocomposite as High Stabled Electrode for Symmetric Electrochemical Capacitors." ECS Journal of Solid State Science and Technology 11, no. 4 (2022): 041005. http://dx.doi.org/10.1149/2162-8777/ac62f1.

Full text
Abstract:
The rGO anchored copper vanadate nanostructures have been synthesized through facile hydrothermal synthesis for the high efficient energy storage applications. The prepared Cu2V2O7 and rGO@Cu2V2O7 nanostructures are fabricated as the electrode materials for three electrode and symmetric type electrochemical supercapacitors. Based on the electrochemical the electrodes shows the outstanding areal capacitance values of 340 and 545 F g−1 for Cu2V2O7 and rGO@Cu2V2O7 electrodes, respectively. Also the charge discharge curves of the rGO@Cu2V2O7 electrode revealed the higher specific capacitance value
APA, Harvard, Vancouver, ISO, and other styles
2

Shuang, Shuang, Leonardo Girardi, Gian Rizzi та ін. "Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/β-Cu2V2O7/TiO2 Nanorods Composites". Nanomaterials 8, № 7 (2018): 544. http://dx.doi.org/10.3390/nano8070544.

Full text
Abstract:
This paper describes the preparation and the photoelectrochemical performances of visible light driven photoanodes based on novel r-GO/β-Cu2V2O7/TiO2 nanorods/composites. β-Cu2V2O7 was deposited on both fluorine doped tin oxide (FTO) and TiO2 nanorods (NRs)/FTO by a fast and convenient Aerosol Assisted Spray Pyrolysis (AASP) procedure. Ethylenediamine (EN), ammonia and citric acid (CA) were tested as ligands for Cu2+ ions in the aerosol precursors solution. The best-performing deposits, in terms of photocurrent density, were obtained when NH3 was used as ligand. When β-Cu2V2O7 was deposited on
APA, Harvard, Vancouver, ISO, and other styles
3

Krivovichev, S. V., S. K. Filatov, P. N. Cherepansky, T. Armbruster, and O. Yu Pankratova. "CRYSTAL STRUCTURE OF -Cu2V2O7 AND ITS COMPARISON TO BLOSSITE ( -Cu2V2O7) AND ZIESITE ( -Cu2V2O7)." Canadian Mineralogist 43, no. 2 (2005): 671–77. http://dx.doi.org/10.2113/gscanmin.43.2.671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fontaine, Blandine, Youssef Benrkia, Jean-François Blach, et al. "Photoelectrochemical properties of copper pyrovanadate (Cu2V2O7) thin films synthesized by pulsed laser deposition." RSC Advances 13, no. 18 (2023): 12161–74. http://dx.doi.org/10.1039/d3ra01509b.

Full text
Abstract:
The photoelectrochemical properties of copper pyrovanadate (bulk α-Cu2V2O7 and thin films β-Cu2V2O7 elaborated by pulsed laser deposition) were investigated. For thin films, the best photocurrent efficiency was obtained under blue light (450 nm).
APA, Harvard, Vancouver, ISO, and other styles
5

Krasnenko, Tatiana, Nadezhda Medvedeva, and Vitalii Bamburov. "Atomic and Electronic Structure of Zinc and Copper Pyrovanadates with Negative Thermal Expansion." Advances in Science and Technology 63 (October 2010): 358–63. http://dx.doi.org/10.4028/www.scientific.net/ast.63.358.

Full text
Abstract:
Zinc and copper pyrovanadates are promising materials for micro- and optoelectronics due to their negative coefficient of volume thermal expansion (NTE). Besides, solid solutions on the base of these compounds can be used to obtain grade materials with variable thermal coefficients. Thermal deformation of both Zn2V2O7 and Cu2V2O7 structures was studied. According to the structural data, NTE of these substances is provided by the zigzag shape of zinc (copper) chains alongside with stable distances between layers. The structural and electronic characteristics depending on temperature were studie
APA, Harvard, Vancouver, ISO, and other styles
6

Benko, F. A., and F. P. Koffyberg. "Semiconductivity and optical interband transitions of CuV2O6 and Cu2V2O7." Canadian Journal of Physics 70, no. 2-3 (1992): 99–103. http://dx.doi.org/10.1139/p92-011.

Full text
Abstract:
CuV2O6 and Cu2V2O7 are low-mobility n-type semiconductors; at room temperature [Formula: see text]. From photoelectron-chemical measurements optical interband transitions are found at 2.02 and 3.15 eV for indium-doped CuV2O6, and at 1.87 and 2.88 eV for Cu2V2O7. In both materials the valence band edge is 6.9 eV below the vacuum level; a qualitative analysis of all data indicates that the upper valence band is made up mainly of oxygen-2p wave functions, as in V2O5.
APA, Harvard, Vancouver, ISO, and other styles
7

Ponomarenko, L. A., A. N. Vasil'ev, E. V. Antipov, and Yu A. Velikodny. "Magnetic properties of Cu2V2O7." Physica B: Condensed Matter 284-288 (July 2000): 1459–60. http://dx.doi.org/10.1016/s0921-4526(99)02702-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

EGUCHI, M., I. FURUSAWA, T. MIURA, and T. KISHI. "Lithium insertion characteristics of ß-Cu2V2O7." Solid State Ionics 68, no. 1-2 (1994): 159–64. http://dx.doi.org/10.1016/0167-2738(94)90253-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Hui, Mengjie Yang, Mingju Chao та ін. "Negative thermal expansion property of β-Cu2V2O7". Solid State Ionics 343 (грудень 2019): 115086. http://dx.doi.org/10.1016/j.ssi.2019.115086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Денисова, Л. Т., Н. В. Белоусова, В. М. Денисов та Н. А. Галиахметова. "Высокотемпературная теплоемкость оксидов системы CuO-V-=SUB=-2-=/SUB=-O-=SUB=-5-=/SUB=-". Физика твердого тела 59, № 6 (2017): 1243. http://dx.doi.org/10.21883/ftt.2017.06.44500.407.

Full text
Abstract:
С помощью твердофазного синтеза из исходных компонентов CuO и V2O5 при ступенчатом обжиге получены CuV2O6 и Cu2V2O7. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость оксидных соединений. По экспериментальным зависимостям CP=f(T) рассчитаны термодинамические свойства (изменение энтальпии, энтропии и приведенная энергия Гиббса). Установлено, что между удельной теплоемкостью и составом оксидов системы CuO-V2O5 имеется корреляция. DOI: 10.21883/FTT.2017.06.44500.407
APA, Harvard, Vancouver, ISO, and other styles
11

Feng, Jian, Xia Ran, Li Wang, et al. "The Synergistic Effect of Adsorption-Photocatalysis for Removal of Organic Pollutants on Mesoporous Cu2V2O7/Cu3V2O8/g-C3N4 Heterojunction." International Journal of Molecular Sciences 23, no. 22 (2022): 14264. http://dx.doi.org/10.3390/ijms232214264.

Full text
Abstract:
Cu2V2O7/Cu3V2O8/g-C3N4 heterojunctions (CVCs) were prepared successfully by the reheating synthesis method. The thermal etching process increased the specific surface area. The formation of heterojunctions enhanced the visible light absorption and improved the separation efficiency of photoinduced charge carriers. Therefore, CVCs exhibited superior adsorption capacity and photocatalytic performance in comparison with pristine g-C3N4 (CN). CVC-2 (containing 2 wt% of Cu2V2O7/Cu3V2O8) possessed the best synergistic removal efficiency for removal of dyes and antibiotics, in which 96.2% of methylen
APA, Harvard, Vancouver, ISO, and other styles
12

Piyawongwatthana, Pharit, Daisuke Okuyama, Kazuhiro Nawa, Kittiwit Matan та Taku J. Sato. "Formation of Single Polar Domain in α-Cu2V2O7". Journal of the Physical Society of Japan 90, № 2 (2021): 025003. http://dx.doi.org/10.7566/jpsj.90.025003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rao, Martha Purnachander, A. K. Akhila, Jerry J. Wu, Abdullah M. Asiri, and Sambandam Anandan. "Synthesis, characterization and adsorption properties of Cu2V2O7 nanoparticles." Solid State Sciences 92 (June 2019): 13–23. http://dx.doi.org/10.1016/j.solidstatesciences.2019.03.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Petrova, S. A., M. V. Rotermel, R. G. Zakharov, and T. I. Krasnenko. "High-temperature X-ray study of Zn-substituted Cu2V2O7." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (2005): c469. http://dx.doi.org/10.1107/s0108767305080463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Denisova, L. T., N. V. Belousova, N. A. Galiakhmetova, V. M. Denisov, and E. O. Golubeva. "High-Temperature Heat Capacity of Zn2V2O7–Cu2V2O7 Solid Solutions." Physics of the Solid State 60, no. 7 (2018): 1303–7. http://dx.doi.org/10.1134/s1063783418070090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sakurai, Yoji, Shin-ichi Tobishima, and Jun-ichi Yamaki. "Dependence of Li/Cu2V2O7 cell characteristics on electrolytic properties." Electrochimica Acta 34, no. 7 (1989): 981–86. http://dx.doi.org/10.1016/0013-4686(89)80024-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Niu, Li Li, Mingyi Wu та ін. "Negative thermal expansion and electrical properties of α-Cu2V2O7". Journal of the European Ceramic Society 36, № 11 (2016): 2761–66. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.04.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kim, Eung Soo, Je Hun Kim, Ki Gang Lee, Seung Gu Kang, and Pyung Kyu Kim. "Microwave dielectric properties of Bi(Nb1-xTax)O4ceramics with Cu2V2O7." Ferroelectrics 262, no. 1 (2001): 263–68. http://dx.doi.org/10.1080/00150190108225160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Strukan, Neven, Gwilherm Nénert, Alexei Belik та Boris V. Slobodin. "Irreversible pressure-induced phase transformation in blossite, α-Cu2V2O7, mineral". Acta Crystallographica Section A Foundations and Advances 71, a1 (2015): s372. http://dx.doi.org/10.1107/s2053273315094450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Slobodin, B. V., and R. F. Samigullina. "Thermoanalytical study of the polymorphism and melting behavior of Cu2V2O7." Inorganic Materials 46, no. 2 (2010): 196–200. http://dx.doi.org/10.1134/s0020168510020196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Niu, Yanchao Mao, Xiansheng Liu та ін. "Tailored thermal expansion and electrical properties of α-Cu2V2O7/Al". Ceramics International 42, № 15 (2016): 17004–8. http://dx.doi.org/10.1016/j.ceramint.2016.07.207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sakurai, Yoji, та Jun-Ichi Yamaki. "Electrochemical reaction of α-Cu2V2O7 with lithium in organic electrolyte". Electrochimica Acta 34, № 3 (1989): 355–61. http://dx.doi.org/10.1016/0013-4686(89)87011-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wiktor, Julia, Igor Reshetnyak, Michal Strach, Mariateresa Scarongella, Raffaella Buonsanti та Alfredo Pasquarello. "Sizable Excitonic Effects Undermining the Photocatalytic Efficiency of β-Cu2V2O7". Journal of Physical Chemistry Letters 9, № 19 (2018): 5698–703. http://dx.doi.org/10.1021/acs.jpclett.8b02323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Schindler, Michael, та Frank C. Hawthorne. "Structural Characterization of the β-Cu2V2O7–α-Zn2V2O7 Solid Solution". Journal of Solid State Chemistry 146, № 1 (1999): 271–76. http://dx.doi.org/10.1006/jssc.1999.8371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kar, Abja Keshar, Bidisa Chattopadhyay, Ratnadwip Singha та ін. "Effect of Co and Mg doping at Cu site on structural, magnetic and dielectric properties of α–Cu2V2O7". Journal of Physics: Condensed Matter 34, № 7 (2021): 075702. http://dx.doi.org/10.1088/1361-648x/ac38df.

Full text
Abstract:
Abstract We have studied the effect of doping of both magnetic (Co) and nonmagnetic (Mg) ions at the Cu site on phase transition in polycrystalline α–Cu2V2O7 through structural, magnetic, and electrical measurements. X-ray diffraction reveals that Mg doping triggers an onset of α- to β-phase structural transition in Cu2−x Mg x V2O7 above a critical Mg concentration x c = 0.15, and both the phases coexist up to x = 0.25. Cu2V2O7 possesses a non-centrosymmetric crystal structure and antiferromagnetic ordering along with a non-collinear spin structure in the α phase, originated from the microscop
APA, Harvard, Vancouver, ISO, and other styles
26

Muthamizh, S., J. Yesuraj, R. Jayavel, D. Contreras, K. Arul Varman та R. V. Mangalaraja. "Microwave synthesis of β-Cu2V2O7 nanorods: structural, electrochemical supercapacitance, and photocatalytic properties". Journal of Materials Science: Materials in Electronics 32, № 3 (2021): 2744–56. http://dx.doi.org/10.1007/s10854-020-05007-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Keerthana, S. P., R. Yuvakkumar, P. Senthil Kumar, G. Ravi та Dhayalan Velauthapillai. "Surfactant induced copper vanadate (β-Cu2V2O7, Cu3V2O8) for different textile dyes degradation". Environmental Research 211 (серпень 2022): 112964. http://dx.doi.org/10.1016/j.envres.2022.112964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kulbakin, I. V., S. V. Fedorov, and V. V. Belousov. "Features of Oxygen Transfer in Cu2V2O7 – 20 wt% CuV2O6 Molten Oxide Membrane." Journal of The Electrochemical Society 165, no. 13 (2018): H861—H865. http://dx.doi.org/10.1149/2.0831813jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ruan, M. Y., Z. W. Ouyang, Y. C. Sun, Z. C. Xia, G. H. Rao та H. S. Chen. "Examining Magnetic Models and Anisotropies in β-Cu2V2O7 by High-Frequency ESR". Applied Magnetic Resonance 48, № 5 (2017): 423–33. http://dx.doi.org/10.1007/s00723-017-0871-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Krasnenko, T. I., M. V. Rotermel’, S. A. Petrova, R. G. Zakharov, O. V. Sivtsova, and A. N. Chvanova. "Phase relations in the Zn2V2O7-Cu2V2O7 system from room temperature to melting." Russian Journal of Inorganic Chemistry 53, no. 10 (2008): 1641–47. http://dx.doi.org/10.1134/s0036023608100203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, L., J. Werner, A. Ottmann та ін. "Magnetoelastic coupling and ferromagnetic-type in-gap spin excitations in multiferroic α-Cu2V2O7". New Journal of Physics 20, № 6 (2018): 063045. http://dx.doi.org/10.1088/1367-2630/aac9dc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chattopadhyay, Bidisa, Md A. Ahmed, S. Bandyopadhyay, R. Singha та P. Mandal. "Magnetic ordering induced ferroelectricity in α-Cu2V2O7 studied through non-magnetic Zn doping". Journal of Applied Physics 121, № 9 (2017): 094103. http://dx.doi.org/10.1063/1.4977859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Guo, Wenlong, Xin Lian, Yao Nie та ін. "Facile growth of β-Cu2V2O7 thin films and characterization for photoelectrochemical water oxidation". Materials Letters 258 (січень 2020): 126842. http://dx.doi.org/10.1016/j.matlet.2019.126842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sato, M., V. Warne-Lang, Y. Kadowaki, N. Katayama, Y. Okamoto, and K. Takenaka. "Sol–gel synthesis of doped Cu2V2O7 fine particles showing giant negative thermal expansion." AIP Advances 10, no. 7 (2020): 075207. http://dx.doi.org/10.1063/5.0010631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Vali, Abbas, та Krishnan Rajeshwar. "Β-Cu2V2O7 Thin Films By a Hybrid Electrochemical/Thermal Route: Preparation and Characterization". ECS Meeting Abstracts MA2020-02, № 15 (2020): 1423. http://dx.doi.org/10.1149/ma2020-02151423mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kim, Min-woo, Bhavana Joshi, Hyun Yoon, et al. "Electrosprayed copper hexaoxodivanadate (CuV2O6) and pyrovanadate (Cu2V2O7) photoanodes for efficient solar water splitting." Journal of Alloys and Compounds 708 (June 2017): 444–50. http://dx.doi.org/10.1016/j.jallcom.2017.02.302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Yong, Liyun Cao, Jianfeng Huang, et al. "Improved Li-Storage Properties of Cu2V2O7 Microflower by Constructing an in Situ CuO Coating." ACS Sustainable Chemistry & Engineering 7, no. 6 (2019): 6267–74. http://dx.doi.org/10.1021/acssuschemeng.8b06696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Song, Angang, Abdelkrim Chemseddine, Ibbi Yilmaz Ahmet та ін. "Evaluation of Copper Vanadate (β-Cu2V2O7) as a Photoanode Material for Photoelectrochemical Water Oxidation". Chemistry of Materials 32, № 6 (2020): 2408–19. http://dx.doi.org/10.1021/acs.chemmater.9b04909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Guo, Wenlong, William D. Chemelewski, Oluwaniyi Mabayoje, Peng Xiao, Yunhuai Zhang, and C. Buddie Mullins. "Synthesis and Characterization of CuV2O6 and Cu2V2O7: Two Photoanode Candidates for Photoelectrochemical Water Oxidation." Journal of Physical Chemistry C 119, no. 49 (2015): 27220–27. http://dx.doi.org/10.1021/acs.jpcc.5b07219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ilic, D., and D. Neumann. "Characterization of Cu2V2O7 as cathode material for lithium cells by X-ray and photoelectron spectroscopy." Journal of Power Sources 44, no. 1-3 (1993): 589–93. http://dx.doi.org/10.1016/0378-7753(93)80207-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ninova, Silviya, Michal Strach, Raffaella Buonsanti та Ulrich Aschauer. "Suitability of Cu-substituted β-Mn2V2O7 and Mn-substituted β-Cu2V2O7 for photocatalytic water-splitting". Journal of Chemical Physics 153, № 8 (2020): 084704. http://dx.doi.org/10.1063/5.0019306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gadiyar, Chethana, Michal Strach, Pascal Schouwink, Anna Loiudice та Raffaella Buonsanti. "Chemical transformations at the nanoscale: nanocrystal-seeded synthesis of β-Cu2V2O7 with enhanced photoconversion efficiencies". Chemical Science 9, № 25 (2018): 5658–65. http://dx.doi.org/10.1039/c8sc01314d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Machida, Masato, Takahiro Kawada, Hiroaki Yamashita, and Tonami Tajiri. "Role of Oxygen Vacancies in Catalytic SO3 Decomposition over Cu2V2O7 in Solar Thermochemical Water Splitting Cycles." Journal of Physical Chemistry C 117, no. 50 (2013): 26710–15. http://dx.doi.org/10.1021/jp410431a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Thanh Truc, Nguyen Thi, Nguyen Thi Hanh, Minh Viet Nguyen, et al. "Novel direct Z-scheme Cu2V2O7/g-C3N4 for visible light photocatalytic conversion of CO2 into valuable fuels." Applied Surface Science 457 (November 2018): 968–74. http://dx.doi.org/10.1016/j.apsusc.2018.07.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kalal, Sangeeta, Arpita Pandey, Rakshit Ameta, Pinki B. Punjabi, and Alexandra Martha Zoya Slawin. "Heterogeneous photo-Fenton-like catalysts Cu2V2O7 and Cr2V4O13 for an efficient removal of azo dye in water." Cogent Chemistry 2, no. 1 (2016): 1143344. http://dx.doi.org/10.1080/23312009.2016.1143344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Guo, Wenlong, та Xin Lian. "Kinetics mechanism insights into the oxygen evolution reaction on the (110) and (022) crystal facets of β-Cu2V2O7". Catalysis Science & Technology 10, № 15 (2020): 5129–35. http://dx.doi.org/10.1039/d0cy00959h.

Full text
Abstract:
We study the kinetics mechanism for the oxygen evolution reaction (OER) on the (110) and (022) facets of β-Cu<sub>2</sub>V<sub>2</sub>O<sub>7</sub> using the density functional theory and find that the (110) orientation is more OER active than (022).
APA, Harvard, Vancouver, ISO, and other styles
47

Scarongella, Mariateresa, Chethana Gadiyar, Michal Strach, Luca Rimoldi, Anna Loiudice та Raffaella Buonsanti. "Assembly of β-Cu2V2O7/WO3 heterostructured nanocomposites and the impact of their composition on structure and photoelectrochemical properties". Journal of Materials Chemistry C 6, № 44 (2018): 12062–69. http://dx.doi.org/10.1039/c8tc02888e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Yong, Liyun Cao, Jianfeng Huang, et al. "Enhanced cyclic performance of Cu2V2O7/ reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery." Journal of Alloys and Compounds 724 (November 2017): 421–26. http://dx.doi.org/10.1016/j.jallcom.2017.07.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Paul, Arijita, and Siddhartha Sankar Dhar. "Designing Cu2V2O7/CoFe2O4/g-C3N4 ternary nanocomposite: A high performance magnetically recyclable photocatalyst in the reduction of 4-nitrophenol to 4-aminophenol." Journal of Solid State Chemistry 290 (October 2020): 121563. http://dx.doi.org/10.1016/j.jssc.2020.121563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kumar, Amit, Sunil Kumar Sharma, Gaurav Sharma, et al. "Silicate glass matrix@Cu2O/Cu2V2O7 p-n heterojunction for enhanced visible light photo-degradation of sulfamethoxazole: High charge separation and interfacial transfer." Journal of Hazardous Materials 402 (January 2021): 123790. http://dx.doi.org/10.1016/j.jhazmat.2020.123790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!