Academic literature on the topic 'Cubesat development'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cubesat development.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cubesat development"
Menchinelli, Alessandro, Francesca Ingiosi, Ludovico Pamphili, Paolo Marzioli, Riccardo Patriarca, Francesco Costantino, and Fabrizio Piergentili. "A Reliability Engineering Approach for Managing Risks in CubeSats." Aerospace 5, no. 4 (November 15, 2018): 121. http://dx.doi.org/10.3390/aerospace5040121.
Full textSibanda, Matthew, and Robert Ryk van Zyl. "Practical electromagnetic compatibility studies of a CubeSat." Journal of Engineering, Design and Technology 14, no. 4 (October 3, 2016): 770–80. http://dx.doi.org/10.1108/jedt-04-2014-0025.
Full textSHIMAZU, Ryuya, Yusuke CHIBA, Hiroka KANEI, Hiroki WATARI, Ikuma NISHIKAWA, and Toshihiro KAMEDA. "D03 Development of CubeSat "YUI"." Proceedings of the Space Engineering Conference 2013.22 (2013): _D03–1_—_D03–5_. http://dx.doi.org/10.1299/jsmesec.2013.22._d03-1_.
Full textCarrara, Valdemir, Rafael Barbosa Januzi, Daniel Hideaki Makita, Luis Felipe de Paula Santos, and Lidia Shibuya Sato. "The ITASAT CubeSat Development and Design." Journal of Aerospace Technology and Management 9, no. 2 (April 24, 2017): 147–56. http://dx.doi.org/10.5028/jatm.v9i2.614.
Full textLai, Peter C., David C. Sternberg, Robert J. Haw, Eric D. Gustafson, Phillipe C. Adell, and John D. Baker. "Lunar Flashlight CubeSat GNC system development." Acta Astronautica 173 (August 2020): 425–41. http://dx.doi.org/10.1016/j.actaastro.2020.01.022.
Full textMusiał, Alicja, Dominik Markowski, Jan Życzkowski, and Krzysztof A. Cyran. "Analysis of Methods for CubeSat Mission Design Based on in-orbit Results of KRAKsat Mission." International Journal of Education and Information Technologies 15 (September 21, 2021): 295–302. http://dx.doi.org/10.46300/9109.2021.15.31.
Full textChau, Vu Minh, and Hien Bich Vo. "Structural Dynamics Analysis of 3-U CubeSat." Applied Mechanics and Materials 894 (September 2019): 164–70. http://dx.doi.org/10.4028/www.scientific.net/amm.894.164.
Full textFilho, Edemar Morsch, Laio Oriel Seman, Cezar Antônio Rigo, Vicente de Paulo Nicolau, Raúl García Ovejero, and Valderi Reis Quietinho Leithardt. "Irradiation Flux Modelling for Thermal–Electrical Simulation of CubeSats: Orbit, Attitude and Radiation Integration." Energies 13, no. 24 (December 18, 2020): 6691. http://dx.doi.org/10.3390/en13246691.
Full textCho, Dong-Hyun, Won-Sub Choi, Min-Ki Kim, Jin-Hyung Kim, Eunsup Sim, and Hae-Dong Kim. "High-Resolution Image and Video CubeSat (HiREV): Development of Space Technology Test Platform Using a Low-Cost CubeSat Platform." International Journal of Aerospace Engineering 2019 (May 23, 2019): 1–17. http://dx.doi.org/10.1155/2019/8916416.
Full textPagano, Thomas S., Carlo Abesamis, Andres Andrade, Hartmut Aumann, Sarath Gunapala, Cate Heneghan, Robert Jarnot, et al. "CubeSat Infrared Atmospheric Sounder technology development status." Journal of Applied Remote Sensing 13, no. 03 (September 24, 2019): 1. http://dx.doi.org/10.1117/1.jrs.13.032512.
Full textDissertations / Theses on the topic "Cubesat development"
Erlank, Alexander Olaf. "Development of CubeStar : a CubeSat-compatible star tracker." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85746.
Full textENGLISH ABSTRACT: The next generation of CubeSats will require accurate attitude knowledge throughout orbit for advanced science payloads and high gain antennas. A star tracker can provide the required performance, but star trackers have traditionally been too large, expensive and power hungry to be included on a CubeSat. The aim of this project is to develop and demonstrate a CubeSat compatible star tracker. Subsystems from two other CubeSat components, CubeSense and CubeComputer, were combined with a sensitive, commercial image sensor and low-light lens to produce one of the smallest star trackers in existence. Algorithms for star detection, matching and attitude determination were investigated and implemented on the embedded system. The resultant star tracker, named CubeStar, can operate fully autonomously, outputting attitude estimates at a rate of 1 Hz. An engineering model was completed and demonstrated an accuracy of better than 0.01 degrees during night sky tests.
AFRIKAANSE OPSOMMING: Die volgende generasie van CubeSats sal akkurate orientasie kennis vereis gedurende 'n volle omwentelling van die aarde. 'n Sterkamera kan die vereiste prestasie verskaf, maar sterkameras is tradisioneel te groot, duur en krag intensief om ingesluit te word aanboord 'n CubeSat. Die doel van hierdie projek is om 'n CubeSat sterkamera te ontwikkel en te demonstreer. Substelsels van twee ander CubeSat komponente, CubeSense en CubeComputer, was gekombineer met 'n sensitiewe kommersiële beeldsensor en 'n lae-lig lens om een van die kleinste sterkameras op die mark te produseer. Algoritmes vir die ster opsporing, identi kasie en orientasie bepaling is ondersoek en geïmplementeer op die ingebedde stelsel. Die gevolglike sterkamera, genaamd CubeStar, kan ten volle outonoom orientasie afskattings lewer teen 'n tempo van 1 Hz. 'n Ingenieursmodel is voltooi en 'n akkuraatheid van beter as 0.01 grade is gedemonstreer.
Cheney, Liam Jon. "Development of Safety Standards for CubeSat Propulsion Systems." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1180.
Full textLumbwe, Lwabanji Tony. "Development of an onboard computer (OBC) for a CubeSat." Thesis, Cape Peninsula University of Technology, 2013. http://hdl.handle.net/20.500.11838/1172.
Full textZohar, Guy G. "AD-HOC REGIONAL COVERAGE CONSTELLATIONS OF CUBESATS USING SECONDARY LAUNCHES." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/927.
Full textRoyo, Serrano Daniel. "Development of a calibration procedure for gyroscopes in CubeSat missions." Thesis, Luleå tekniska universitet, Rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83278.
Full textPersson, Marcus. "Software Development and Qualification Testing of a CubeSat X-ray Monitor." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76843.
Full textCUBES
MIST
Botma, Pieter Johannes. "The design and development of an ADCS OBC for a CubeSat." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18040.
Full textENGLISH ABSTRACT: The Electronic Systems Laboratory at Stellenbosch University is currently developing a fully 3-axis controlled Attitude Determination and Control Subsystem (ADCS) for CubeSats. This thesis describes the design and development of an Onboard Computer (OBC) suitable for ADCS application. A separate dedicated OBC for ADCS purposes allows the main CubeSat OBC to focus only on command and data handling, communication and payload management. This thesis describes, in detail the development process of the OBC. Multiple Microcontroller Unit (MCU) architectures were considered before selecting an ARM Cortex-M3 processor due to its performance, power efficiency and functionality. The hardware was designed to be as robust as possible, because radiation tolerant and redundant components could not be included, due to their high cost and the technical constraints of a CubeSat. The software was developed to improve recovery from lockouts or component failures and to enable the operational modes to be configured in real-time or uploaded from the ground station. Ground tests indicated that the OBC can handle radiation-related problems such as latchups and bit-flips. The peak power consumption is around 500 mW and the orbital average is substantially lower. The proposed OBC is therefore not only sufficient in its intended application as an ADCS OBC, but could also stand in as a backup for the main OBC in case of an emergency.
AFRIKAANSE OPSOMMING: Die Elektroniese Stelsels Laboratorium by die Universiteit van Stellenbosch is tans besig om ’n volkome 3-as gestabiliseerde oriëntasiebepaling en -beheerstelsel (Engels: ADCS) vir ’n CubeSat te ontwikkel. Hierdie tesis beskryf die ontwerp en ontwikkeling van ’n aanboordrekenaar (Engels: OBC) wat gebruik kan word in ’n ADCS. ’n Afsonderlike OBC wat aan die ADCS toegewy is, stel die hoof-OBC in staat om te fokus op beheer- en datahantering, kommunikasie en loonvragbestuur. Hierdie tesis beskryf breedvoerig die werkswyse waarvolgens die OBC ontwikkel is. Verskeie mikroverwerkers is as moontlike kandidate ondersoek voor daar op ’n ARM Cortex-M3-gebaseerde mikroverwerker besluit is. Hierdie mikroverwerker is gekies vanweë sy spoed, effektiewe kragverbruik en funksionaliteit. Die hardeware is ontwikkel om so robuust moontlik te wees, omdat stralingbestande en oortollige komponente weens kostebeperkings, asook tegniese beperkings van ’n CubeSat, nie ingesluit kon word nie. Die programmatuur is ontwikkel om van ’n uitsluiting en ’n komponentfout te kan herstel. Verder kan programme wat tydens vlug in werking is, verstel word en vanaf ’n grondstasie gelaai word. Grondtoetse het aangedui dat die OBC stralingverwante probleme, soos ’n vergrendeling (latchup) of bis-omkering (bit-flip), kan hanteer. Die maksimum kragverbruik is ongeveer 500 mW en die gemiddelde wentelbaankragverbruik is beduidend kleiner. Die voorgestelde OBC is dus voldoende as ADCS OBC asook hoof-OBC in geval van nood.
Mey, Philip Hendrik. "Development of attitude controllers and actuators for a solar sail cubesat." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6862.
Full textENGLISH ABSTRACT: CubeSats are small, lightweight satellites which are often used by academic institutions due to their application potential and low cost. Because of their size and weight, less powerful attitude controllers, such as solar sails, can be used. In 2010, the Japanese satellite, Ikaros, was launched to illustrate the usage of solar sails as a propulsion system. Similarly, by exploiting the solar radiation pressure, it is possible to use a solar sail, together with three magnetorquers, to achieve 3-axis attitude control of a 3-unit CubeSat. Simulations are required to demonstrate the attitude control of a sun-synchronous, low Earth orbit CubeSat using a solar sail. To allow the adjustment of the solar sail, and its resulting torque, a mechanical structure is required which can be used to position the sail within two orthogonal axes. Although the magnetorquers and solar sail are sufficient to achieve 3-axis attitude control, the addition of a reaction wheel can be implemented in an attempt to improve this control.
AFRIKAANSE OPSOMMING: CubeSats is klein, ligte satelliete wat dikwels deur universiteite gebruik word weens hul lae koste en groot toepassings potensiaal. As gevolg van hulle gewig en grootte, kan minder kragtige posisie beheerders, soos byvoorbeeld sonseile, gebruik word. Die Japannese satelliet, Ikaros, was in 2010 gelanseer om die gebruik van ’n sonseil as aandrywingstelsel te illustreer. Net so is dit moontlik om die bestraling van die son te gebruik, met behulp van ’n sonseil, en drie magneetstange om 3-as posisiebeheer op ’n 3-eenheid CubeSat te bekom. Simulasies word benodig om die posisie beheer van ’n sonsinkrone, lae-aard wentelbaan CubeSat met ’n sonseil te demonstreer. ’n Meganiese struktuur word benodig vir die posisionering van die sonseil in twee ortogonale asse sodat die sonseil, en dus die geassosieerde draaimoment, verskuif kan word. Alhoewel die magneetstange en sonseil voldoende is om 3-as posisiebeheer te bekom, kan ’n reaksiewiel bygevoeg word om hierdie beheer te probeer verbeter.
Abel, John Trevor. "Development of a CubeSat Instrument for Microgravity Particle Damper Performance Analysis." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/537.
Full textLoubser, Hanco Evert. "The development of Sun and Nadir sensors for a solar sail CubeSat." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6748.
Full textENGLISH ABSTRACT: This thesis describes the development of attitude sensors required for the Attitude Determination and Control System (ADCS) for a Cubesat. The aim is to find the most suitable sensors for use on a small picosatellite by implementing miniaturised sensors with available commercial-off-the-shelf (COTS) technology. Specifically, the algorithms, hardware prototypes, software and filters required to create accurate sensors to determine the 3-axis orientation of a CubeSat are discussed.
AFRIKAANSE OPSOMMING: Hierdie tesis beskryf die ontwikkeling van oriëntasiesensors wat benodig word vir die oriëntasiebepaling en -beheerstelsel (Engels: ADCS) van ’n CubeSat. Die doelwit is om sensors te vind wat die geskikste is om in ’n klein picosatelliet te gebruik, deur miniatuursensors met kommersiële maklik verkrygbare tegnologie (Engels: COTS technology) te implementeer. Daar word in die bespreking veral aandag geskenk aan die algoritmes, hardewareprototipes, programmatuur en filters wat benodig word om akkurate sensors te skep wat op hul beurt 3-as oriëntasie van die CubeSat kan bepaal.
Books on the topic "Cubesat development"
Alberto, Ferrari, Russo Marco, and ebrary Inc, eds. Expert cube development with Microsoft SQL Server 2008 Analysis Services: Design and implement fast, scalable, and maintainable cubes. Birmingham, UK: Packt Publishing, 2009.
Find full textBook chapters on the topic "Cubesat development"
Schoolcraft, Josh, Andrew Klesh, and Thomas Werne. "MarCO: Interplanetary Mission Development on a CubeSat Scale." In Space Operations: Contributions from the Global Community, 221–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51941-8_10.
Full textPark, Jae-Pil, Sang-Young Park, Young Bum Song, Guk Nam Kim, Kwangwon Lee, Hyungjik Jay Oh, Jin-Chul Yim, et al. "CANYVAL-X Mission Development Using CubeSats." In Space Operations: Contributions from the Global Community, 681–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51941-8_30.
Full textPatil, R. T., and S. Sokhansanj. "Stress Relaxation Characteristics of Alfalfa Cubes." In Developments in Food Engineering, 84–86. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2674-2_20.
Full textManea, Florin, Mike Müller, and Dirk Nowotka. "The Avoidability of Cubes under Permutations." In Developments in Language Theory, 416–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31653-1_37.
Full textMercaş, Robert, and Aleksi Saarela. "3-Abelian Cubes Are Avoidable on Binary Alphabets." In Developments in Language Theory, 374–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38771-5_33.
Full textLietard, Florian, and Matthieu Rosenfeld. "Avoidability of Additive Cubes over Alphabets of Four Numbers." In Developments in Language Theory, 192–206. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48516-0_15.
Full textRahmat-Samii, Yahya, Vignesh Manohar, and Joshua M. Kovitz. "Novel antenna concepts and developments for CubeSats." In Developments in Antenna Analysis and Design: Volume 2, 361–401. Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/sbew543g_ch11.
Full textHepp, Aloysius F., Prashant N. Kumta, Oleg I. Velikokhatnyi, and Ryne P. Raffaelle. "Batteries for integrated power and CubeSats: Recent developments and future prospects." In Silicon Anode Systems for Lithium-Ion Batteries, 457–508. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-819660-1.00011-6.
Full textZheng, Meiyun, and H. T. Nguyen. "An Efficient Parallel Implementation of the Marching-cubes Algorithm." In Massively Parallel Processing Applications and Development, 903–10. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-444-81784-6.50108-1.
Full textBerger, Stefan, and Michael Schrefl. "Federated Data Warehouses." In Complex Data Warehousing and Knowledge Discovery for Advanced Retrieval Development, 82–107. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-748-5.ch005.
Full textConference papers on the topic "Cubesat development"
Kinoshita, Nobuaki, Satoshi Okino, Kazumasa Sase, Shigeki Uchiyama, Sotaro Hashiguchi, Hisayuki Nakatsuji, Masahiro Yanagisawa, et al. "Development of CubeSat." In 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-b5.6.a.05.
Full textAslan, A. R., H. B. Yagci, M. E. Umit, A. Sofyali, M. E. Bas, M. S. Uludag, O. E. Ozen, et al. "Development of a LEO communication CubeSat." In 2013 6th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2013. http://dx.doi.org/10.1109/rast.2013.6581288.
Full textBall, Christopher, Chi-Chih Chen, Andrew O'Brien, Graeme Smith, Christa McKelvey, Mark Andrews, J. Landon Garry, et al. "Development of the cubesat radiometer radio frequency interference technology validation (cuberrt) system." In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8128362.
Full textPottinger, Sabrina, David Krejci, and Carsten Scharlemann. "Development of a µPPT for CubeSat Applications." In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4532.
Full textLan, Wenschel, Jonathan Brown, Armen Toorian, Roland Coelbo, Lori Brooks, Jordi Puig-Suari, and Robert Twiggs. "CubeSat Development in Education and into Industry." In Space 2006. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7296.
Full textSamson, J. R. "Update on Dependable Multiprocessor CubeSat technology development." In 2012 IEEE Aerospace Conference. IEEE, 2012. http://dx.doi.org/10.1109/aero.2012.6187238.
Full textPolly, Colston, Peter Rockhold, Tae W. Lim, Tyler Dickenson, and Rachel Griffin. "Trade Studies for Cubesat Optical Communication Payload Development." In AIAA SPACE 2016. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-5562.
Full textLim, Boon, Michael Shearn, Douglas Dawson, Chaitali Parashare, Andrew Romero-Wolf, Damon Russell, and Joel Steinkraus. "Development of the Radiometer Atmospheric CubeSat Experiment payload." In IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6721292.
Full textSchoolcraft, Joshua, Andrew T. Klesh, and Thomas Werne. "MarCO: Interplanetary Mission Development On a CubeSat Scale." In SpaceOps 2016 Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-2491.
Full textKurochkin, V., A. Abrikosov, M. Balanov, S. Vorobey, A. Khmelev, and Y. Kurochkin. "Development of Cubesat For Quantum and Classical Communication." In Advanced Solid State Lasers. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/assl.2019.jtu3a.54.
Full text