Academic literature on the topic 'Cubic spline interpolation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cubic spline interpolation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cubic spline interpolation"
Xu, Weizhi. "Elements of Bi-cubic Polynomial Natural Spline Interpolation for Scattered Data: Boundary Conditions Meet Partition of Unity Technique." Statistics, Optimization & Information Computing 8, no. 4 (December 2, 2020): 994–1010. http://dx.doi.org/10.19139/soic-2310-5070-1083.
Full textXie, Jin, and Xiaoyan Liu. "The EH Interpolation Spline and Its Approximation." Abstract and Applied Analysis 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/745765.
Full textAbdul Karim, Samsul Ariffin, and Kong Voon Pang. "Shape Preserving Interpolation UsingC2Rational Cubic Spline." Journal of Applied Mathematics 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/4875358.
Full textKumar, Arun, and L. K. Govil. "Interpolation of natural cubic spline." International Journal of Mathematics and Mathematical Sciences 15, no. 2 (1992): 229–34. http://dx.doi.org/10.1155/s0161171292000292.
Full textRana, S. S., and M. Purohit. "Deficient cubic spline interpolation." Proceedings of the Japan Academy, Series A, Mathematical Sciences 64, no. 4 (1988): 111–14. http://dx.doi.org/10.3792/pjaa.64.111.
Full textDyer, S. A., and J. S. Dyer. "Cubic-spline interpolation. 1." IEEE Instrumentation & Measurement Magazine 4, no. 1 (March 2001): 44–46. http://dx.doi.org/10.1109/5289.911175.
Full textKim, Jung-Min, Eun-Kook Jung, and Sun-Shin Kim. "Simplification of Face Image using Cubic Spline Interpolation." Journal of Korean Institute of Intelligent Systems 20, no. 5 (October 25, 2010): 722–27. http://dx.doi.org/10.5391/jkiis.2010.20.5.722.
Full textAzizan, Irham, Samsul Ariffin Bin Abdul Karim, and S. Suresh Kumar Raju. "Fitting Rainfall Data by Using Cubic Spline Interpolation." MATEC Web of Conferences 225 (2018): 05001. http://dx.doi.org/10.1051/matecconf/201822505001.
Full textLi, Jie, Yaoyao Tu, and Shilong Fei. "C˜2 Continuous Cubic Hermite Interpolation Splines with Second-Order Elliptic Variation." Tobacco Regulatory Science 7, no. 6 (November 3, 2021): 6317–31. http://dx.doi.org/10.18001/trs.7.6.106.
Full textKarim, Samsul Ariffin Bin Abdul, and S. Suresh Kumar Raju. "Wind Velocity Data Interpolation Using Rational Cubic Spline." MATEC Web of Conferences 225 (2018): 04006. http://dx.doi.org/10.1051/matecconf/201822504006.
Full textDissertations / Theses on the topic "Cubic spline interpolation"
Kaya, Hikmet Emre. "A comparative study between the cubic spline and b-spline interpolation methods in free energy calculations." Master's thesis, Faculty of Science, 2020. http://hdl.handle.net/11427/32228.
Full textFantoni, Anna. "Long-period oscillations in GPS Up time series. Study over the European/Mediterranean area." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25586/.
Full textSubramanian, Harshavardhan. "Combining scientific computing and machine learning techniques to model longitudinal outcomes in clinical trials." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176427.
Full textAl-alam, Wagner Guimarães. "SisA3 : Sistema Automatizado de Auditoria de Armaz´ens de Gran´eis." Universidade Catolica de Pelotas, 2010. http://tede.ucpel.edu.br:8080/jspui/handle/tede/113.
Full textCompanies working with bulk materials have appropriate locations for storage during the development of the production and storage of the final product, known as warehouses or storehouses. The values of stocks need to be periodically validated by comparing the control of receipts the and the physical situation (removal of the volume stored in the company). In this context, the calculation of physical inventory as the volume of bulk present in the warehouses is usually done manually with low credibility and prone to errors. The current audit procedures on the contents of warehouses involve inaccurate estimates, and often require emptying the warehouse. Considering the use of technologies which enable the electronic measurement of distances, angles, and automatic controls on actuators enabling mechanical movements on the supporting structures, we sought to develop a system capable of providing both computing solutions, and technology for the problem of calculation of irregular relief (products stocked in warehouses). The Automated Auditing Warehouse SisA3 intends to make this process automatic, fast and precise, without the need for emptying warehouses or having contact the products. To achieve this goal, we developed an integrated system composed of: (i) a scanner equipment, consoling the hybrid prototype of hardware and software called DigSisA3, in order to the measurement of points of relief non-uniform, formed by the products in stock, and (ii) a method for calculating the volume iCone, which combines techniques of scientific visualization, numerical interpolation points and iterative calculation of volume. The parallelization of the prototype iCone was also developed in order to satisfy the test of agility and performance of the method iCone in the audit process. The development for multiprocessor, multi-core, and distributed architectures was done over the DGM (Geometric Distributed Machine), which provides the formalities to ensure creation, management and application processing parallel and / or distributed scientific computing, with emphasis on the exploitation of data parallelism and synchronization steps. The prototype of software iCone was functionally validated, including analysis of error in the method. The analysis of performance in the prototype p-iCone showed satisfactory results. The development of this work strengthens the system SisA3, enabling automatic and reliable measurement of inventories, including broad market application
Empresas que trabalham com produtos a granel possuem locais para estocagem, durante o desenvolvimento do processo produtivo e no armazenamento do produto final, denominados armaz´ens ou silos. Os valores dos estoques devem ser validados periodicamente atrav´es da comparac¸ ao dos estoques fiscal (controle das notas fiscais) e f´ısico (levantamento do volume estocado na empresa). Neste contexto, o c´alculo do estoque f´ısico, ou seja, o volume de gran´eis presentes nos armaz´ens, ´e geralmente efetuado de forma manual e com baixa credibilidade, desta forma com propens ao a erros. Os atuais processos de auditoria no conte´udo de silos, al´em de envolverem estimativas inexatas, est ao frequentemente baseados no esvaziamento do silo. Considerando o uso de tecnologias que viabilizam a medic¸ ao eletr onica de dist ancias, angulos, e controles autom´aticos sobre atuadores que possibilitam movimentos mec anicos sobre estruturas de suporte, buscou-se o desenvolvimento de um sistema capaz de prover tanto soluc¸ oes computacionais, quanto tecnol´ogicas para o problema de c´alculo do volume de relevos irregulares, no caso dos produtos estocados nos armaz´ens. O Sistema Automatizado de Auditoria em Armaz´ens (SisA3) pretende tornar este processo autom´atico, r´apido e preciso, sem a necessidade de esvaziamento ou contato com os produtos. Para alcanc¸ar este objetivo, tem-se um sistema integrado composto de: (i) um equipamento digitalizador, consolidando o prot´otipo h´ıbrido de hardware e software denominado Dig-SisA3 , para a medic¸ ao de pontos do relevo n ao-uniforme, formado pelos produtos estocados; e (ii) m´etodo para o c´alculo do volume (iCone), que combina t´ecnicas de visualizac¸ ao cient´ıfica, interpolac¸ ao num´erica de pontos e c´alculo iterativo de volume. Al´em disto, introduz-se a paralelizac¸ ao do prot´otipo iCone, para diminuir o tempo da obtenc¸ ao dos resultados do m´etodo iCone no processo de auditoria. A an´alise sobre as perspectivas em arquiteturas multiprocessadas, multi-core e paralela distribu´ıda, utiliza o ambiente D-GM (Distributed Geometric Machine), a qual prov e os formalismos para garantir criac¸ ao, gerenciamento e processamento de aplicac¸ oes paralelas e/ou distribu´ıdas da computac¸ ao cient´ıfica, com enfase na explorac¸ ao do paralelismo de dados e nas etapas de sincronizac¸ oes. O prot´otipo de software iCone apresenta-se funcionalmente validado, incluindo an´alise de erro na execuc¸ ao do m´etodo. As an´alises de desempenho no prot´otipo p-iCone apresentaram resultados satisfat´orios. O desenvolvimento deste trabalho consolida o sistema SisA3, viabilizando aferic¸ ao autom´atica e confi´avel de estoques, incluindo ampla aplicac¸ ao no mercado
Soares, M. J. "A posteriori corrections for cubic and quintic interpolating splines with applications to the solution of two-point boundary value problems." Thesis, Brunel University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373087.
Full textMalina, Jakub. "Vytvoření interaktivních pomůcek z oblasti 2D počítačové grafiky." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219924.
Full textWang, Lung-Jen, and 王隆仁. "A Fast Cubic-Spline Interpolation and Its Applications." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/23129972138898368567.
Full text國立中山大學
資訊工程學系研究所
89
In this dissertation, a new cubic-spline interpolation (CSI) for both one-dimensional and two-dimensional signals is developed to sub-sample signal, image and video compression data. This new interpolation scheme that is based on the least-squares method with a cubic-spline function can be implemented by the fast Fourier transform (FFT). The result is a simpler and faster interpolation scheme than can be obtained by other conventional means. It is shown by computer simulation that such a new CSI yields a very accurate algorithm for smoothing. Linear interpolation, linear-spline interpolation, cubic-convolution interpolation and cubic B-spline interpolation tend to be inferior in performance. In addition it is shown in this dissertation that the CSI scheme can be performed by a fast and efficient computation. The proposed method uses a simpler technique in the decimation process. It requires substantially fewer additions and multiplications than the original CSI algorithm. Moreover, a new type of overlap-save scheme is utilized to solve the boundary-condition problems that occur between two neighboring subimages in the actual image. It is also shown in this dissertation that a very efficient 9-point Winograd discrete Fourier transform (Winograd DFT) can be used to replace the FFT needed to implement the CSI scheme. Furthermore, the proposed fast new CSI scheme is used along with the Joint Photographic Experts Group (JPEG) standard to design a modified JPEG encoder- decoder for image data compression. As a consequence, for higher compression ratios the proposed modified JPEG encoder-decoder obtains a better quality of reconstructed image and also requires less computational time than both the conventional JPEG method and the America on Line (AOL) algorithm. Finally, the new fast CSI scheme is applied to the JPEG 2000, MPEG-1 and MPEG-2 algorithms, respectively. A computer simulation shows that in the encoding and decoding, the proposed modified JPEG 2000 encoder-decoder speeds up the JPEG 2000 standard, respectively, and still obtains a good quality of reconstructed image that is similar to JPEG 2000 standard for high compression ratios. Additionally, the reconstructed video using the modified MPEG encoder-decoder indicates a better quality than the conventional MPEG-1 and MPEG-2 algorithms for high compression ratios or low-bit rates.
Tang, Ying-Lun, and 唐英倫. "A Study on Image Enhancement by Cubic-Spline Interpolation." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/53963800635618396623.
Full text國立屏東商業技術學院
資訊管理系
95
With the digital image processing technology growing up, the applications in this domain such as high definition television (HDTV) and video-phone, have already gone deep in our life. When the digital image enlargement, it causes a blur problem. To improve the quality of the blurred image, many digital image processing approaches have been developed. Image enhancement is an indispensable post-processing method. Among many image enhancement approaches, Nonlinear Image Enhancement method is not only a simple structure but also has better effect, this method uses a Low-Pass Filter with an image enhancement scheme to improve the blurred image. Cubic-Spline Interpolation (CSI) has been proposed based on the Least-Squares method with a Cubic-Spline function for the smoothing of image data. In this paper, it is shown that this CSI can be used to improve the nonlinear image enhancement method. In addition, the two important parameters c (Clipping) and s (Scaling) are discussed in the Nonlinear Image Enhancement scheme to improve the blurred image problem. Finally, experimental results show that the proposed method yields a better quality of the reconstructed image than other nonlinear enhancement methods.
Chang, Tsai-Yen, and 張綵晏. "Information Hiding in Audio Using Cubic Spline Interpolation Technique." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/59058900260553750724.
Full text玄奘大學
資訊管理學系碩士班
98
Audio information hiding methods are widely discussed during this few years. WAVE or WAV is one of the most popular sound storage standard formats. In this thesis we use the spline interpolation technique to embed the secret data in the wave form of the original audio data. We set the control points, such as the odd number points to rebuild the spline curve to fit the original curve. We use the different between original and spline curve to embed the secret data to be a stego-audio. The extracting steps are simply to use the unchanged control points to compute the spline curve then find the different between spline curve and the stego-audio, to obtain the embedded secret data. The experiments show the sound is inaudible to be distinguished between stego-audio and original audio.
Liu, Pin-hsiu, and 劉品秀. "Curve Design by C2 Cubic B-spline Curve''s Interpolation." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/62783732709493433975.
Full text國立中正大學
應用數學研究所
97
In there, we persent B-spline curves and C2 cubic B-spline interpolating curves. Next, we do curve design by C2 cubic B-spline interpolating curves to cover irregular shapes.
Books on the topic "Cubic spline interpolation"
Knott, Gary D. Interpolating Cubic Splines. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1320-8.
Full textPapamichael, Nicholas. An O(h6) cubic spline interpolating procedure for harmonic functions. Uxbridge, Middx: Department of Mathematics and Statistics, Brunel University, 1989.
Find full textSoares, Maria Joana. A posteriori corrections for cubic and quintic interpolating splines with applications to the solution of two-point boundary value problems. Uxbridge: Brunel University, 1986.
Find full textInterpolating Cubic Splines (Progress in Computer Science and Applied Logic (PCS)). Birkhäuser Boston, 1999.
Find full textBoudreau, Joseph F., and Eric S. Swanson. Interpolation and extrapolation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0004.
Full textFord, Natalie. An example of the use of cubic B-splines for interpolation and structural analysis. 1996.
Find full textBook chapters on the topic "Cubic spline interpolation"
Sablonnière, P., D. Sbibih, and M. Tahrichi. "Chordal Cubic Spline Quasi Interpolation." In Curves and Surfaces, 603–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27413-8_40.
Full textWang, Zhijiang, Kaili Wang, and Shujiang An. "Cubic B-Spline Interpolation and Realization." In Communications in Computer and Information Science, 82–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-27503-6_12.
Full textSchmidt, Jochen W. "On the Convex Cubic C2-Spline Interpolation." In Numerical Methods of Approximation Theory/Numerische Methoden der Approximationstheorie, 213–28. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-6656-9_19.
Full textScardapane, Simone, Michele Scarpiniti, Danilo Comminiello, and Aurelio Uncini. "Learning Activation Functions from Data Using Cubic Spline Interpolation." In Neural Advances in Processing Nonlinear Dynamic Signals, 73–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95098-3_7.
Full textTruong, T. K., and Lung-Jen Wang. "Medical Image Data Compression Using Cubic Convolution Spline Interpolation." In Central Auditory Processing and Neural Modeling, 175–88. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5351-9_16.
Full textYan, Tianfeng, and Yu Zhang. "TDOA Time Delay Estimation Algorithm Based on Cubic Spline Interpolation." In Advances in Intelligent Systems and Computing, 154–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14680-1_18.
Full textBellavia, Fabio, and Carlo Colombo. "Color Correction for Image Stitching by Monotone Cubic Spline Interpolation." In Pattern Recognition and Image Analysis, 165–72. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19390-8_19.
Full textde Boor, Carl. "Best Approximation Properties of Complete Cubic Spline Interpolation and Its Error." In Applied Mathematical Sciences, 51–58. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4612-6333-3_5.
Full textMa, Lan, Shan Tian, Yang Song, Zhijun Wu, and Meng Yue. "An Approach of ACARS Trajectory Reconstruction Based on Adaptive Cubic Spline Interpolation." In Security, Privacy, and Anonymity in Computation, Communication, and Storage, 245–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24900-7_20.
Full textSablonnière, P. "Gradient Approximation on Uniform Meshes by Finite Differences and Cubic Spline Interpolation." In Mathematics of Surfaces XIII, 322–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03596-8_19.
Full textConference papers on the topic "Cubic spline interpolation"
Wolber and Alfy. "Monotonic cubic spline interpolation." In Proceedings Computer Graphics International CGI-99. IEEE, 1999. http://dx.doi.org/10.1109/cgi.1999.777953.
Full textChand, A. K. B., and P. Viswanathan. "Cubic hermite and cubic spline fractal interpolation functions." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756439.
Full textLi, Zhiwei, Min Zhang, and Jiechao Wang. "Improved cubic spline interpolation based on LAZ." In 2010 10th International Conference on Signal Processing (ICSP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icosp.2010.5655895.
Full textBharati, Nilashma, Arun Khosla, and Neetu Sood. "Image reconstruction using cubic B-Spline interpolation." In 2011 Annual IEEE India Conference (INDICON). IEEE, 2011. http://dx.doi.org/10.1109/indcon.2011.6139378.
Full textMeng Tian. "A shape preserving rational cubic interpolation spline." In 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5689166.
Full textLi, J. S. Jimmy, and Sharmil Randhawa. "Colour Filter Array Demosaicking using Cubic Spline Interpolation." In 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/icassp.2007.366045.
Full textSun, Ningping, Toru Ayabe, and Kentarou Okumura. "An Animation Engine with the Cubic Spline Interpolation." In 2008 Fourth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). IEEE, 2008. http://dx.doi.org/10.1109/iih-msp.2008.321.
Full textJiang, JianXing, Shao-Hua Hong, Tsung-Ching Lin, Lin Wang, and Trieu-Kien Truong. "Adaptive image coding based on cubic-spline interpolation." In SPIE Optical Engineering + Applications, edited by Andrew G. Tescher. SPIE, 2014. http://dx.doi.org/10.1117/12.2062984.
Full textTian, Meng, and Qiuju Bian. "A Rational Cubic Spline Interpolation and Its Application." In 2010 International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2010. http://dx.doi.org/10.1109/icdma.2010.90.
Full textHong, Shao-Hua, Lin Wang, and Trieu-Kien Truong. "An Improved Approach to the Cubic-Spline Interpolation." In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018. http://dx.doi.org/10.1109/icip.2018.8451362.
Full text