Academic literature on the topic 'Curcuma comosa'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Curcuma comosa.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Curcuma comosa"

1

Kaewamatawong, Rawiwun, Preecha Boonchoong, and Nongnit Teerawatanasuk. "Diarylheptanoids from Curcuma comosa." Phytochemistry Letters 2, no. 1 (February 2009): 19–21. http://dx.doi.org/10.1016/j.phytol.2008.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qu, Yang, Fengming Xu, Seikou Nakamura, Hisashi Matsuda, Yutana Pongpiriyadacha, Lijun Wu, and Masayuki Yoshikawa. "Sesquiterpenes from Curcuma comosa." Journal of Natural Medicines 63, no. 1 (July 29, 2008): 102–4. http://dx.doi.org/10.1007/s11418-008-0282-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pintatum, Aknarin, Wisanu Maneerat, Emilie Logie, Emmy Tuenter, Maria E. Sakavitsi, Luc Pieters, Wim Vanden Berghe, Tawanun Sripisut, Suwanna Deachathai, and Surat Laphookhieo. "In Vitro Anti-Inflammatory, Anti-Oxidant, and Cytotoxic Activities of Four Curcuma Species and the Isolation of Compounds from Curcuma aromatica Rhizome." Biomolecules 10, no. 5 (May 21, 2020): 799. http://dx.doi.org/10.3390/biom10050799.

Full text
Abstract:
The genus Curcuma is part of the Zingiberaceae family, and many Curcuma species have been used as traditional medicine and cosmetics in Thailand. To find new cosmeceutical ingredients, the in vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four Curcuma species as well as the isolation of compounds from the most active crude extract (C. aromatica) were investigated. The crude extract of C. aromatica showed 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with an IC50 value of 102.3 μg/mL. The cytotoxicity effect of C. aeruginosa, C. comosa, C. aromatica, and C. longa extracts assessed with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay at 200 μg/mL were 12.1 ± 2.9, 14.4 ± 4.1, 28.6 ± 4.1, and 46.9 ± 8.6, respectively. C. aeruginosa and C. comosa presented apoptosis cells (57.7 ± 3.1% and 32.6 ± 2.2%, respectively) using the CytoTox-ONE™ assay. Different crude extracts or phytochemicals purified from C. aromatica were evaluated for their anti-inflammatory properties. The crude extract of C. aromatica showed the highest potential to inhibit NF-κB activity, followed by C. aeruginosa, C. comosa, and C. longa, respectively. Among the various purified phytochemicals curcumin, germacrone, curdione, zederone, and curcumenol significantly inhibited NF-κB activation in tumor necrosis factor (TNF) stimulated HaCaT keratinocytes. Of all compounds, curcumin was the most potent anti-inflammatory.
APA, Harvard, Vancouver, ISO, and other styles
4

Jurgens, Tannis M., Easter G. Frazier, James M. Schaeffer, Tracey E. Jones, Deborah L. Zink, Robert P. Borris, Weerachai Nanakorn, Hans T. Beck, and Michael J. Balick. "Novel Nematocidal Agents from Curcuma comosa." Journal of Natural Products 57, no. 2 (February 1994): 230–35. http://dx.doi.org/10.1021/np50104a006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Piyachaturawat, P., S. Ercharuporn, and A. Suksamrarn. "Uterotrophic Effect of Curcuma comosa in Rats." International Journal of Pharmacognosy 33, no. 4 (January 1995): 334–38. http://dx.doi.org/10.3109/13880209509065388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Fengming, Seikou Nakamura, Yang Qu, Hisashi Matsuda, Yutana Pongpiriyadacha, Lijun Wu, and Masayuki Yoshikawa. "Structures of New Sesquiterpenes from Curcuma comosa." CHEMICAL & PHARMACEUTICAL BULLETIN 56, no. 12 (2008): 1710–16. http://dx.doi.org/10.1248/cpb.56.1710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burapan, Supawadee, Mihyang Kim, Yingyong Paisooksantivatana, Bekir Engin Eser, and Jaehong Han. "Thai Curcuma Species: Antioxidant and Bioactive Compounds." Foods 9, no. 9 (September 2, 2020): 1219. http://dx.doi.org/10.3390/foods9091219.

Full text
Abstract:
For the functional food applications, antioxidant properties and the bioactive compounds of the 23 Curcuma species commercially cultivated in Thailand were studied. Total phenolic content and DPPH radical scavenging activity were determined. The concentrations of eight bioactive compounds, including curcumin (1), demethoxycurcumin (2), bisdemethoxycurcumin (3), 1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (4), germacrone (5), furanodienone (6), zederone (7), and ar-turmerone (8), were determined from the Curcuma by HPLC. While the total phenolic content of C. longa was highest (22.3 ± 2.4 mg GAE/g, mg of gallic acid equivalents), C. Wan Na-Natong exhibited the highest DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) radical scavenging activity. Twenty-three Curcuma species showed characteristic distributions of the bioactive compounds, which can be utilized for the identification and authentication of the cultivated Curcuma species. C. longa contained the highest content of curcumin (1) (304.9 ± 0.1 mg/g) and C. angustifolia contained the highest content of germacrone (5) (373.9 ± 1.1 mg/g). It was noteworthy that 1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (4) was found only from C. comosa at a very high concentration (300.7 ± 1.4 mg/g). It was concluded that Thai Curcuma species have a great potential for the application of functional foods and ingredients.
APA, Harvard, Vancouver, ISO, and other styles
8

Boonmee, Apaporn, Chantragan Srisomsap, Daranee Chokchaichamnankit, Aphichart Karnchanatat, and Polkit Sangvanich. "A proteomic analysis of Curcuma comosa Roxb. rhizomes." Proteome Science 9, no. 1 (2011): 43. http://dx.doi.org/10.1186/1477-5956-9-43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boonmee, Apaporn, Chantragan Srisomsap, Aphichart Karnchanatat, and Polkit Sangvanich. "An antioxidant protein in Curcuma comosa Roxb. Rhizomes." Food Chemistry 124, no. 2 (January 2011): 476–80. http://dx.doi.org/10.1016/j.foodchem.2010.06.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chokchaisiri, Ratchanaporn, Phongsak Innok, and Apichart Suksamrarn. "Flavonoid glycosides from the aerial parts of Curcuma comosa." Phytochemistry Letters 5, no. 2 (June 2012): 361–66. http://dx.doi.org/10.1016/j.phytol.2012.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Curcuma comosa"

1

Fouquet, Guillemette. "Régulation de l’érythropoïèse : rôle des récepteurs à la transferrine et d’un phytoestrogène." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS293.

Full text
Abstract:
L’érythropoïèse est un processus extrêmement prolifératif, et qui doit donc être très étroitement régulé. L’érythropoïétine (EPO) est l’un des facteurs absolument nécessaires à l’érythropoïèse. Cependant, dans la moelle osseuse, la quantité d'EPO circulante est sous-optimale et la capacité des érythroblastes à survivre dépend donc de leur sensibilité à l'EPO. Les facteurs modulant la réponse à l'EPO au cours de l'érythropoïèse sont encore largement inconnus.Nous avons donc voulu explorer plusieurs facteurs pouvant potentiellement être impliqués dans la régulation de l’érythropoïèse et plus précisément dans la réponse à l’EPO : tout d’abord, la transferrine ainsi que ses récepteurs (TfR), la transferrine et le TfR1 étant également essentiels à l’érythropoïèse, ainsi qu’un phytoestrogène provenant d’une plante nommée Curcuma comosa, les oestrogènes étant eux aussi connus pour favoriser l’érythropoïèse.Concernant la transferrine, nous avons voulu principalement explorer son rôle sur la signalisation, ayant récemment montré au laboratoire que le TfR1, essentiellement connu pour son rôle dans l’endocytose du fer, est également capable d’entraîner une signalisation.Nous avons montré que la transferrine potentialise la stimulation induite par l’EPO des voies ERK, AKT et STAT5. Cet effet est conservé même en l’absence d’endocytose du TfR1. Aucune coopération n’a été trouvée entre la transferrine et le stem cell factor (SCF).Nous avons également observé qu’en l’absence du TfR2, il existe une augmentation de l’expression de l’EPO-R et de la signalisation induite par l’EPO, sans impact de la transferrine dans ce contexte. Par ailleurs, nous avons montré que le Curcuma comosa améliore la prolifération et la différenciation des progéniteurs érythroïdes précoces, par un mécanisme de potentialisation de la signalisation induite par l’EPO impliquant le récepteur aux oestrogènes ER-α.En conclusion, la transferrine et ses récepteurs, ainsi qu’un phytoestrogène et l’ER-α, sont impliqués dans la régulation de l’érythropoïèse via leur action sur la signalisation induite par l’EPO. L’approfondissement de ces données pourrait ouvrir de nouvelles pistes thérapeutiques dans le traitement de l’anémie
Erythropoiesis is an extremely proliferative process and must be very closely regulated. Erythropoietin (EPO) is one of the major factors necessary for erythropoiesis. However, in the bone marrow, the amount of circulating EPO is suboptimal and the ability of erythroblasts to survive therefore depends on their sensitivity to EPO. The factors modulating the response to EPO during erythropoiesis are still largely unknown. We therefore wanted to explore several factors that could potentially be involved in the regulation of erythropoiesis and more specifically in the response to EPO: first, transferrin and its receptors (TfR), transferrin and TfR1 being also essential for erythropoiesis, as well as a phytoestrogen from a plant called Curcuma comosa, as estrogens are also known to promote erythropoiesis. Regarding transferrin, we mainly wanted to explore its role on signaling, having recently shown in the laboratory that TfR1, essentially known for its role in iron endocytosis, is a signaling-competent receptor. We have shown that transferrin potentiates EPO-induced stimulation of the ERK, AKT and STAT5 pathways. This effect is maintained even in the absence of TfR1 endocytosis. No cooperation was found between transferrin and stem cell factor (SCF). We also observed that in the absence of TfR2, there is an increase in EPO-R expression and EPO-induced signaling, without any impact of transferrin in this context.In addition, we have shown that Curcuma comosa improves the proliferation and differentiation of early erythroid progenitors through a mechanism involving the ER-α estrogen receptor, able to potentiate EPO-induced signaling. In conclusion, transferrin and its receptors, as well as a phytoestrogen and ER-α, are involved in the regulation of erythropoiesis through their action on EPO-induced signaling. Further investigation of these data could provide new therapeutic strategies in the treatment of anemia
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Curcuma comosa"

1

Nay Win Tun, Khun, Nanik Siti Aminah, Alfinda Novi Kristanti, Hnin Thanda Aung, and Yoshiaki Takaya. "Sesquiterpene from Myanmar Medicinal Plant (Curcuma comosa)." In Terpenes and Terpenoids [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93794.

Full text
Abstract:
Curcuma comosa (Zingiberaceae) is widely grown in tropical and subtropical areas of Asia, like Thailand, Indonesia, Malaysia, and Myanmar. In Myanmar, the rhizome of Curcuma comosa is called Sa-nwin-ga, and local people had used it as a traditional medicine for stomach ache, diabetes mellitus, and hypertension. This species produces secondary metabolites of phenolic and nonphenolic groups. Phenolic groups like diarylheptanoids and flavonoids. While nonphenolics are terpenoids, especially sesqui- and monoterpenes. In this chapter, the group of sesquiterpene compounds from Curcuma comosa starts from the isolation technique, followed by the elucidation of the molecular structure, and their activity tests have been discussed.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Curcuma comosa"

1

Khembubpa, Sineenat, Wadsamon Sakhulkong, Jaratpet Meekhut, and Siriwimol Kraikaew. "Effect of Curcuma comosa on the 2 Stages of Canine Open Cervix-Pyometra Treatment Without Any Antibiotic Administrations and Surgical Technique: A Case Report." In Annual International Conference on Advances in Veterinary Science Research (VETSCI 2016). Global Science & Technology Forum (GSTF), 2016. http://dx.doi.org/10.5176/2382-5685_vetsci16.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pires, Isadora Lopes, and Maria Rita De Cássia Campos. "MORFOGÊNESE IN VITRO DA CURCUMA LONGA." In II Congresso Brasileiro de Ciências Biológicas On-line. Revista Multidisciplinar Educação e Meio Ambiente, 2021. http://dx.doi.org/10.51189/rema/1661.

Full text
Abstract:
Introdução: Curcuma longa, popularmente conhecida como açafrão-da-terra, pertence à família Zingiberaceae, é uma planta herbácea de clima tropical quente e úmido, originária da Ásia, e foi introduzida no Brasil no período colonial. A cúrcuma possui flavor característico, aroma picante e sabor amargo que são rotulados como especiaria na maioria das classificações encontradas (AOAC, 1995). Além da sua ampla utilização como especiaria na culinária, a cúrcuma vem sendo utilizada amplamente na medicina asiática tradicional o que desencadeou estudos sobre as suas propriedades. Na literatura há relatos confirmado as atividades antioxidantes, anti-inflamatórias, antimicrobianas e anticancerígenas da cúrcuma (ASAI et al., 1999; GUL et al., 2004; FERRARI et al., 2019). Objetivos: Obtenção de plantas axênicas e criação de um banco de germoplasma. Materiais e Métodos:: O presente estudo é dividido em quatro partes de execução. A primeira, a obtenção do material vegetal, onde os Rizomas de C. longa foram coletados de uma cultura comercial cultivada na fazenda Macaúba em Catalão, Goiás, Brasil. A segunda, a obtenção dos explantes para o cultivo in vitro. A terceira, a desinfestação do explantes para a não propagação de contaminantes e a quarta, o cultivo in vitro da Cúrcuma, o qual foi utilizado a metodologia descrita por RODRIGUES et al. (2007). Resultados: Com o decorrer da execução do projeto, houveram incidências de contaminação, o que fez ser necessária a adequação do protocolo de desinfestação dos explantes, e posteriormente, a produção de plantas axênicas e a elaboração de um banco de germoplasma. Conclusão: Um banco de germoplasma é importante para posteriores estudos e cultivos de uma espécie. Ao final desse trabalho, por se tratar de um projeto em andamento, espera-se que haja um considerável número de plantas e um banco de germoplasma para posterior estudo da atividade biológica do óleo essencial da Curcuma longa.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography