Academic literature on the topic 'CURCUMIN DERIVATIVES'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CURCUMIN DERIVATIVES.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CURCUMIN DERIVATIVES"

1

Taguchi, Hiroyasu, Daijiro Yanagisawa, Shigehiro Morikawa, Koichi Hirao, Nobuaki Shirai, and Ikuo Tooyama. "Synthesis and Tautomerism of Curcumin Derivatives and Related Compounds." Australian Journal of Chemistry 68, no. 2 (2015): 224. http://dx.doi.org/10.1071/ch14464.

Full text
Abstract:
1,7-Bis(4′-hydroxy-3′-trifluoromethoxyphenyl)-1,6-heptadiene-3,5-dione (2a), related to curcumin, and thirteen 4-substituted derivatives were prepared and their keto/enol ratio in DMSO[D6] was determined by 19F NMR because the enolic form of these related curcumins had been shown to bind to amyloid plaques in the Alzheimer brain. The parent compound and the 4-ethoxycarbonyl derivative were almost 100 % in the enolic form that contains a conjugated hepta-1,4,6-trien-3-on-5-ol backbone. Enolisation decreased to varying amounts in the derivatives that had 4-substituted alkyl groups. Attempts to prepare the 4-hydroxypropyl derivative by hydrolysis of O-methoxymethyl 2m or O-tetrahydropyranyloxy 2n protected derivatives led to cyclised products. A related pyrimidine compound 6b that mimicked a fixed enol form was also prepared.
APA, Harvard, Vancouver, ISO, and other styles
2

Akishina, E. A., E. A. Dikusar, S. K. Petkevich, and V. I. Potkin. "Synthesis of isoxazole and isothiazole derivatives of curcumin." Proceedings of the National Academy of Sciences of Belarus, Chemical Series 56, no. 2 (2020): 187–91. http://dx.doi.org/10.29235/1561-8331-2020-56-2-187-191.

Full text
Abstract:
Curcumin is a chemical compound with antioxidant properties as well as strong anti-inflammatory, antiviral, analgesic, antimicrobial and antitumor effect, contained in the tuberous rhizomes of the turmeric plant (Curcuma longa). Curcumin derivatives are being intensively studied as potential drugs – antitumor drugs for the treatment of certain forms of cancer. The presence of reactive functional groups makes curcumin a convenient starting compound for the further chemical modification. The esters of curcumin and 5-phenylisoxazole-3-carboxylic acid, 5-(p-tolyl)isoxazole-3-carboxylic acid, 4,5- dichloroisothiazole-3-carboxylic acid and adduct of 5-(p-tolyl)isoxazol-3-carbaldehyde with curcumin were synthesized. Esters were obtained by acylation of curcumin with heterocycle-containing carboxylic acid chloride in diethyl ether in the presence of triethylamine. The IR and NMR spectra of the obtained compounds are described.
APA, Harvard, Vancouver, ISO, and other styles
3

Malik, Neelam, Priyanka Dhiman, and Anurag Khatkar. "In SilicoDesign and Synthesis of Targeted Curcumin Derivatives as Xanthine Oxidase Inhibitors." Current Drug Targets 20, no. 5 (2019): 593–603. http://dx.doi.org/10.2174/1389450120666181122100511.

Full text
Abstract:
Background: Curcumin is a well-known pharmacophore and some of its derivatives are shown to target xanthine oxidase (XO) to alleviate disorders caused by the excess production of uric acid. </p><p> Objective: Curcumin based derivatives were designed, synthesized and evaluated for their antioxidant and xanthine oxidase inhibitory potential. </p><p> Method: In this report, we designed and synthesized two series of curcumin derivatives modified by inserting pyrazole and pyrimidine ring to central keto group. The synthesized compounds were evaluated for their antioxidant and xanthine oxidase inhibitory potential. </p><p> Results: Results showed that pyrazole analogues of curcumin produced excellent XO inhibitory potency with the IC50 values varying from 06.255 µM to 10.503 µM. Among pyrimidine derivatives compound CU3a1 having ortho nitro substitution exhibited more potent xanthine oxidase inhibitory activity than any other curcumin derivative of this series. </p><p> Conclusion: Curcumin derivatives CU5b1, CU5b2, CU5b3, and CU3a1 showed a potent inhibitory activity against xanthine oxidase along with good antioxidant potential.
APA, Harvard, Vancouver, ISO, and other styles
4

Mbese, Zintle, Vuyolwethu Khwaza, and Blessing Atim Aderibigbe. "Curcumin and Its Derivatives as Potential Therapeutic Agents in Prostate, Colon and Breast Cancers." Molecules 24, no. 23 (2019): 4386. http://dx.doi.org/10.3390/molecules24234386.

Full text
Abstract:
Cancer is a life-threatening disease and is the second leading cause of death around the world. The increasing threats of drug-resistant cancers indicate that there is an urgent need for the improvement or development of more effective anticancer agents. Curcumin, a phenolic compound originally derived from turmeric plant (Curcuma longa L. (Zingiberaceae family)) widely known as a spice and a coloring agent for food have been reported to possess notable anticancer activity by inhibiting the proliferation and metastasis, and enhancing cell cycle arrest or apoptosis in various cancer cells. In spite of all these benefits, the therapeutic application of curcumin in clinical medicine and its bioavailability are still limited due to its poor absorption and rapid metabolism. Structural modification of curcumin through the synthesis of curcumin-based derivatives is a potential approach to overcome the above limitations. Curcumin derivatives can overcome the disadvantages of curcumin while enhancing the overall efficacy and hindering drug resistance. This article reports a review of published curcumin derivatives and their enhanced anticancer activities.
APA, Harvard, Vancouver, ISO, and other styles
5

Barua, Nilakshi, and Alak Kumar Buragohain. "Therapeutic Potential of Curcumin as an Antimycobacterial Agent." Biomolecules 11, no. 9 (2021): 1278. http://dx.doi.org/10.3390/biom11091278.

Full text
Abstract:
Curcumin is the principal curcuminoid obtained from the plant Curcuma longa and has been extensively studied for its biological and chemical properties. Curcumin displays a vast range of pharmacological properties, including antimicrobial, anti-inflammatory, antioxidant, and antitumor activity. Specifically, curcumin has been linked to the improvement of the outcome of tuberculosis. There are many reviews on the pharmacological effects of curcumin; however, reviews of the antitubercular activity are comparatively scarcer. In this review, we attempt to discuss the different aspects of the research on the antitubercular activity of curcumin. These include antimycobacterial activity, modulation of the host immune response, and enhancement of BCG vaccine efficacy. Recent advances in the antimycobacterial activity of curcumin synthetic derivatives, the role of computer aided drug design in identifying curcumin targets, the hepatoprotective role of curcumin, and the dosage and toxicology of curcumin will be discussed. While growing evidence supports the use of curcumin and its derivatives for tuberculosis therapy, further preclinical and clinical investigations are of pivotal importance before recommending the use of curcumin formulations in public health.
APA, Harvard, Vancouver, ISO, and other styles
6

Cheng, Yatian, Jian Zhang, Yan Shao, et al. "Enzyme-Catalyzed Glycosylation of Curcumin and Its Analogues by Glycosyltransferases from Bacillus subtilis ATCC 6633." Catalysts 9, no. 9 (2019): 734. http://dx.doi.org/10.3390/catal9090734.

Full text
Abstract:
Curcumin is a naturally occurring polyphenolic compound that is commonly used in both medicine and food additives, but its low aqueous solubility and poor bioavailability hinder further clinical applications. For assessing the effect of the glycosylation of curcumin on its aqueous solubility, two glycosyltransferase genes (BsGT1 and BsGT2) were cloned from the genome of the strain Bacillus subtilis ATCC 6633 and over-expressed in Escherichia coli. Then, the two glycosyltransferases were purified, and their glycosylation capacity toward curcumin and its two analogues was verified. The results showed that both BsGT1 and BsGT2 could convert curcumin and its two analogues into their glucosidic derivatives. Then, the structures of the derivatives were characterized as curcumin 4′-O-β-D-glucoside and two new curcumin analogue monoglucosides namely, curcumoid-O-α-D-glucoside (2a) and 3-pentadienone-O-α-D-glucoside (3a) by nuclear magnetic resonance (NMR) spectroscopy. Subsequently, the dissolvability of curcumin 4′-O-β-D-glucoside was measured to be 18.78 mg/L, while its aglycone could not be determined. Furthermore, the optimal catalyzing conditions and kinetic parameters of BsGT1 and BsGT2 toward curcumin were determined, which showed that the Kcat value of BsGT1 was about 2.6-fold higher than that of BsGT2, indicating that curcumin is more favored for BsGT2. Our findings effectively apply the enzymatic approach to obtain glucoside derivatives with enhanced solubility.
APA, Harvard, Vancouver, ISO, and other styles
7

Effendi, Nurmaya. "Radiolabeled curcumin as β amyloid imaging and tumor targeting imaging agents". Jurnal Fitofarmaka Indonesia 8, № 3 (2021): 5–11. http://dx.doi.org/10.33096/jffi.v8i3.708.

Full text
Abstract:
Curcumin, a polyphenolic compound, derived from the rhizomes of Curcuma longa L. Curcumin shows potential pharmacological action against numerous disorders, including cancer, neurodegenerative, and infection diseases. Curcumin-based molecular imaging agents could be useful for early detection of Alzheimer Disease and tumor and monitor the progress of therapy. Radiolabeled curcumin and its derivatives become promising compounds as imaging agents. In this review, radiolabeled curcumin bearing radionuclides including fluorine-18, Technetium-99m, Iodine-125, and Gallium-68 are reviewed as an effort to develop curcumin-based probes not only for β amyloid imaging but also for tumor imaging.
APA, Harvard, Vancouver, ISO, and other styles
8

Mague, Joel T., William L. Alworth, and Florastina L. Payton. "Curcumin and derivatives." Acta Crystallographica Section C Crystal Structure Communications 60, no. 8 (2004): o608—o610. http://dx.doi.org/10.1107/s0108270104015434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Obregón-Mendoza, Marco A., Imilla I. Arias-Olguín, M. Mirian Estévez-Carmona, et al. "Non-Cytotoxic Dibenzyl and Difluoroborate Curcuminoid Fluorophores Allow Visualization of Nucleus or Cytoplasm in Bioimaging." Molecules 25, no. 14 (2020): 3205. http://dx.doi.org/10.3390/molecules25143205.

Full text
Abstract:
Curcumin, the most important secondary metabolite isolated from Curcuma longa, is known for its numerous purported therapeutic properties and as a natural dye. Herein, based on curcumin’s intrinsic fluorescence, a search for improved curcumin-based fluorophores was conducted. Within the set of semi-synthetic curcumin derivatives i.e. mono (1), di (2), tri (3), tetra (4) benzylated and dibenzyl-fluoroborate (5), the fluorescence properties of 2 and 5 in solution outstood with a two-fold quantum yield compared to curcumin. Furthermore, all benzylated derivatives showed a favorable minimal cytotoxic activity upon screening at 25 μM against human cancer and non-tumoral COS-7 cell lines, with a reduction of its cytotoxic effect related to the degree of substitution. Fluorophores 2 and 5 are versatile bioimaging tools, as revealed by Confocal Fluorescence Microscopy (CFM), and showed permeation of living cell membranes of astrocytes and astrocytomas. When 2 is excited with a 405- (blue) or 543-nm (green) laser, it is possible to exclusively and intensively visualize the nucleus. However, the fluorescence emission fades as the laser wavelength moves towards the red region. In comparison, 5 allows selective visualization of cytoplasm when a 560-nm laser is used, showing emission in the NIR region, while it is possible to exclusively observe the nucleus at the blue region with a 405-nm laser.
APA, Harvard, Vancouver, ISO, and other styles
10

Jacob, James N., Dinesh K. Badyal, Suman Bala, and Masoud Toloue. "Evaluation of the in vivo Anti-inflammatory and Analgesic and in vitro Anti-cancer Activities of Curcumin and its Derivatives." Natural Product Communications 8, no. 3 (2013): 1934578X1300800. http://dx.doi.org/10.1177/1934578x1300800321.

Full text
Abstract:
Curcumin, obtained from turmeric, has several biological properties to make it a desirable template for drug development. A lipophilic derivative of curcumin, diacetyl curcumin (DAC) and a hydrophilic derivative, diglutaryl curcumin (DGC) were synthesized and their in vivo analgesic and anti-inflammatory activities were compared with those of curcumin and aspirin. The in vitro anti-cancer activities of curcumin and the two derivatives against three cell cancer lines were compared with those against a non-cancerous cell line. The inhibitory effects were comparable to each other and nearing that of curcumin while they showed low inhibitory effect towards the non-cancerous cell line. The mouse tail flick assay showed that curcumin, DAC and DGC increased latency time. DGC was most effective as an analgesic, even more so than aspirin. The maximum percentage effect (MPE) was highest with DGC at 3 hours. The carrageenan induced paw edema model indicated anti-inflammatory activity of all three curcumin formulations. The percentage inhibition of paw edema was maximum for DAC, followed by aspirin and curcumin.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography