To see the other types of publications on this topic, follow the link: Current converter.

Journal articles on the topic 'Current converter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Current converter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kobori, Yasunori, Jing Li, Yi Fei Sun, Minh Tri Tran, Anna Kuwana, and Haruo Kobayashi. "Automatic Current Balance for Multi-Phase Switching Converters with Ripple Control or Soft Switch." Advanced Engineering Forum 38 (November 2020): 143–56. http://dx.doi.org/10.4028/www.scientific.net/aef.38.143.

Full text
Abstract:
This paper proposes a new multi-phase switching converter with atuotomatic current barance technique. It is well-known that the multi-phase switching converter is suitable to handle large output current with small output voltage ripple for the buck converters which use the clock pulse. This paper investigates a multi-phase controlled method for the ripple-controlled converters and the soft switching converters, that use no clock pulse; for this reason, these converters are difficult to realize multi-phase converter configurations. There are some multi-phase hysteretic controlled converters; they utilize a main clock generator or an external sub-clock pulse, which has the master-slave synchronization method. But it is difficult to respond to a frequency change of the master converter. These multi-phase converters have not considered the imbalance among phase currents caused by variations of inductors and semiconductor switches in the power stage. For the commercialized multi-phase Voltage Regulating Modules (VRMs), the inductors and the semiconductor switches are selected to adjust the balance among the phase currents. However, there is no multi-phase soft switching converter.Then we have developed the multi-phase ripple-controlled converter and the multi-phase soft switching converter with the technique of detecting 180-degree from the variable operating frequency of the main converter. Moreover, in these converters, there appears the current imbalance because of the element variations among inductors and capacitors, if some cares are not taken there. Then we have developed the automatic correction for the current imbalance by modifying the width of the Constant On Time (COT) pulse or modifying the slope of the saw-tooth signal.
APA, Harvard, Vancouver, ISO, and other styles
2

Rashag, Hassan Farahan. "Optimization of efficiency for power system using three phase AC to AC matrix converter with the algorithm of fuzzy controller." International Journal of Applied Power Engineering (IJAPE) 8, no. 2 (August 1, 2019): 129. http://dx.doi.org/10.11591/ijape.v8.i2.pp129-133.

Full text
Abstract:
This paper suggested a new contribution of three phase AC to AC matrix converter MC via fuzzy logic controller FLC to enhance the whole system. However, the weakness of matrix converter is that the input- output voltage transfer is control to 87% for input and output waveform. Also, matrix converter is more sensitive to the trouble of input voltage which deteriorates the system performance. To overcome these problems, and to improve the efficiency of system, FLC with matrix converter is proposed to minimize the sensitivity to the load, and to increase voltage transfer. In this paper the currents a,b,c are converted to alpha and beta current via Clarke transformation . In this method two FLC are used. The error (between alpha current and reference current) (e) and the change of this error (de) will apply to first FLC. The output of FLC is actual alpha current. In the other hand, the error of beta current and the change of error are also passes through the second FLC to produce the actual beta current. The actual alpha and beta current is converted to direct and quadrature d-q current by park transformation. The d-q current is converted to (a, b, c) out currents by inverse park transformation, the results of this method express that the matrix converter with FLC is more capable, high accuracy with better efficiency as compared with conventional matrix converter system.
APA, Harvard, Vancouver, ISO, and other styles
3

Benjanarasut, Jirawut, and Bunlung Neammanee. "Control Techniques to Directly Parallel Line-Side Converters for Wind Energy System." Applied Mechanics and Materials 704 (December 2014): 161–69. http://dx.doi.org/10.4028/www.scientific.net/amm.704.161.

Full text
Abstract:
The direct paralleled converters can increase the power rating, reliability, efficiency, as well as decrease the cost and current/voltage ripples which are suitable for high power converters. However, when converters are in direct parallel, the circulating currents will be generated automatically. This will result in high current distortion which causes the line inductors saturation and damage the power switches; and therefore overall performance of the system will be degraded. This paper purposes a zero sequence current control technique to reduce the circulating current in directly parallel line-side converter of the wind energy conversion system. The case studies are carried out on a 2 MW wind turbine to investigate the effects of non-identical line inductors and PWM carrier phase shift of each converter to the circulating current. The simulation results confirm that zero sequence current controllers that can reduce the zero sequence current in any conditions. The dynamic responses of the direct parallel converters and a single converter are nearly the same but the direct parallel converters have better current ripple and THDi.
APA, Harvard, Vancouver, ISO, and other styles
4

Uma Maheswari, S., and K. V. Kandasamy. "Development of Zeta Converter for Permanent Magnet Brushless Direct Current Motor." Applied Mechanics and Materials 573 (June 2014): 102–7. http://dx.doi.org/10.4028/www.scientific.net/amm.573.102.

Full text
Abstract:
Converter plays a vital role in modern transferable electronic devices and systems. In the battery operated transferable devices, the battery supplies an input voltage to the converter which in turn converts into the desired voltage. Buck-boost, Cuk, SEPIC and Zeta converter are meeting the operational requirements of DC-DC converters. The DC-DC converters are used in both buck function as well as boost function. But the advantage of Zeta converter is that, it does not suffer the polarity reversal problem. The aim of the proposed work is to design a Zeta converter which can be used to drive the Permanent Magnet Brushless Direct Current Motor. The proposed Zeta converter is suggested to control the speed of the Permanent Magnet Brushless Direct Current Motor, according to the generated switching sequence. The proposed work is generally used for low power applications and occasionally used for medium power applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Sung-Hun, Bum-Jun Kim, Jung-Min Park, and Chung-Yuen Won. "Decentralized Control Method of ISOP Converter for Input Voltage Sharing and Output Current Sharing in Current Control Loop." Energies 13, no. 5 (March 2, 2020): 1114. http://dx.doi.org/10.3390/en13051114.

Full text
Abstract:
Input-Series-Output-Parallel (ISOP) converters, a kind of modular converter, are used in high-input voltage and high-output current applications. In ISOP converters, Input Voltage Sharing (IVS) and Output Current Sharing (OCS) should be implemented for stable operation. In order to solve this problem, this paper proposes a decentralized control method. In the proposed control, output current reference is changed according to the decentralized control characteristic in individual current control loops. In this way, the proposed control method is able to implement IVS and OCS without communication. Also, this method can be easily used in current control loops and has high reliability compared to conventional control methods that require communication. In this paper, the operation principle is described to elucidate the proposed control and a small signal model of an ISOP converter is also implemented. Based on the small signal model, IVS stability analysis is performed using pole-zero maps with varying coefficients and control gains. In addition, the current control loop is designed in a stable region. In order to demonstrate the proposed control method, a prototype ISOP converter is configured using full-bridge converters. The performance of IVS and OCS in an ISOP converter is verified by experimental result.
APA, Harvard, Vancouver, ISO, and other styles
6

Muñoz, Juan-Guillermo, Guillermo Gallo, Fabiola Angulo, and Gustavo Osorio. "Slope Compensation Design for a Peak Current-Mode Controlled Boost-Flyback Converter." Energies 11, no. 11 (November 1, 2018): 3000. http://dx.doi.org/10.3390/en11113000.

Full text
Abstract:
Peak current-mode control is widely used in power converters and involves the use of an external compensation ramp to suppress undesired behaviors and to enhance the stability range of the Period-1 orbit. A boost converter uses an analytical expression to find a compensation ramp; however, other more complex converters do not use such an expression, and the corresponding compensation ramp must be computed using complex mechanisms. A boost-flyback converter is a power converter with coupled inductors. In addition to its high efficiency and high voltage gains, this converter reduces voltage stress acting on semiconductor devices and thus offers many benefits as a converter. This paper presents an analytical expression for computing the value of a compensation ramp for a peak current-mode controlled boost-flyback converter using its simplified model. Formula results are compared to analytical results based on a monodromy matrix with numerical results using bifurcations diagrams and with experimental results using a lab prototype of 100 W.
APA, Harvard, Vancouver, ISO, and other styles
7

Wawryn, K., and R. Suszynski. "Low power 9-bit pipelined A/D and 8-bit self-calibrated D/A converters for a DSP system." Bulletin of the Polish Academy of Sciences: Technical Sciences 61, no. 4 (December 1, 2013): 979–88. http://dx.doi.org/10.2478/bpasts-2013-0105.

Full text
Abstract:
Abstract A low power, low voltage current mode 9 bit pipelined a/d converter and 8 bit self-calibrated d/a converter to interface a DSP system are presented in the paper. The a/d converter is built of 1.5 bit stages with digital error correction logic. The d/a converter is composed of 3 LSBs fine and 5 MSBs coarse current mode converters. The a/d and d/a converters were designed in 0.35 μm technology, then fabricated to verify the proposed concept. The performances of both converters are compared to the performances of known converter structures. The main advantages of the proposed converters are low power consumption and small chip area.
APA, Harvard, Vancouver, ISO, and other styles
8

Dheeraj, Alagu, and V. Rajini. "Center Clamped Forward Converter for High Current Applications." Journal of Computational and Theoretical Nanoscience 14, no. 1 (January 1, 2017): 395–402. http://dx.doi.org/10.1166/jctn.2017.6333.

Full text
Abstract:
High current applications like Microprocessors, Fuel cells, Electric Hybrid Vehicles, Solar Cells etc., use interleaved isolated buck derived converter. Interleaving of converters for such high current applications converters is done to achieve reduced input capacitor ripple voltages, output capacitor ripple current cancellation and reduced peak currents of output inductors. Generally, interleaving requires a higher number of transformers through which distributed magnetics can be achieved. i.e., one bulky transformer can be replaced with low power profile transformers. The performance of forward converter depends on core resetting of the main transformer. The core’s magnetizing energy is recycled by resetting it. In the absence of core reset, the current builds up at each switching cycle, saturates the core, causes reverse recovery problem in the diode and the active clamp will no longer in zero voltage state during turn on of the main switch. The transformer secondary output is used as a gating pulse for Synchronous Rectifiers. These have very low forward drop which are most suitable for high current applications. Among various used clamping methods, the transformer core is optimized effectively by Active center clamp reset approach. The proposed method results in less number of switches and clamping capacitor, and lower cost compared to conventional forward converter. Reduction in voltage stress without losing duty-cycle ratio is also achieved by means of a series-parallel connected switch structure with Self Driven Synchronous Rectifiers. The proposed center clamp converter overcomes the Maximum Duty cycle limitation of 50%. This paper mainly focuses on active center clamp forward converter and is also compared with Active Positive Negative clamping techniques.
APA, Harvard, Vancouver, ISO, and other styles
9

Xie, Yan, Bo Chao Chen, and Yao Jun Chen. "Development and Current Status of Multi-Level Converter." Applied Mechanics and Materials 201-202 (October 2012): 95–98. http://dx.doi.org/10.4028/www.scientific.net/amm.201-202.95.

Full text
Abstract:
The multi-level converter is one of the focuses in the current high-voltage high-power field of power conversion, and is found widely application in high power drive system. It generated so far for nearly three decades of history. During this period a large number of multi-level topology appeared, there are three most commonly used, which are diode clamped, capacitor and cascaded H-bridge. In this paper, the development of the multi-level converter is reviewed. The structure of three multi-level converter topologies are given, and then their advantages and disadvantages are given by analyzing and comparing their characteristics. Finally, a new modular multi-level converter (MMC) is introduced which is one of research focus of multi-level converter field at present. Its structure and working principle are described in detail. Multi-level converters will continue to be developed to meet the demand of high-voltage and high power applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Dybko, Maxim, Sergey Brovanov, and Hong Hee Lee. "Multilevel NPC Converters in Parallel Connection for Power Conditioning Systems." Applied Mechanics and Materials 792 (September 2015): 189–96. http://dx.doi.org/10.4028/www.scientific.net/amm.792.189.

Full text
Abstract:
This paper investigates a multilevel combined NPC converter for medium-and high-power energy storage systems and active power filters. The proposed multilevel NPC converter is composed of a parallel connection of multiple NPC converters using the current sharing reactors and involves the phase shifted PWM strategy for better energy quality performance. Using the switching function-based mathematical model, the proposed multilevel converter is evaluated to show the energy quality performance and fault tolerance of an energy storage system or active power filter. In addition, the switching frequency of circulating currents is analyzed to obtain its relationship with the converter parameters and maximum sharing reactor current ripple. The performance of the proposed multilevel converter is verified by simulation.
APA, Harvard, Vancouver, ISO, and other styles
11

Yadav, Nandakishor, Youngbae Kim, Mahmoud Alashi, and Kyuwon Ken Choi. "Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application." Electronics 9, no. 3 (March 16, 2020): 490. http://dx.doi.org/10.3390/electronics9030490.

Full text
Abstract:
Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design.
APA, Harvard, Vancouver, ISO, and other styles
12

Karimi, Houshang, Aboutaleb Haddadi, Masoud Karimi-Ghartemani, and Mahdieh Sadabadi. "A Robust Vector Current Controller with Negative-Sequence Current Capability for Grid-Connected Inverters." Energies 14, no. 15 (July 27, 2021): 4549. http://dx.doi.org/10.3390/en14154549.

Full text
Abstract:
This paper presents a vector current controller (in the synchronous reference, or the dq, frame) with negative-sequence current injection capability for three-phase grid-connected converters. This capability is desired for the operation of the converter during unbalanced conditions and also for a certain type of islanding detection. The proposed controller first determines the double-frequency current references and then uses a sixth-order two-input two-output proportional-integral-resonance (PIR) structure, which is optimally designed. Compared with the existing similar approaches, the proposed controller has a simpler structure and more robust performance, e.g., against system parameter uncertainties and weak grid conditions. The proposed controller is developed for converters with both the L-type and LCL-type filters. For the LCL-type converter, a suboptimal partial state feedback control is also proposed to achieve robust stability and active damping of resonance poles without requiring additional sensors. Detailed experimental results are presented to illustrate the properties and performances of the proposed controller.
APA, Harvard, Vancouver, ISO, and other styles
13

Ahmad, Javed, Mohammad Zaid, Adil Sarwar, Chang-Hua Lin, Mohammed Asim, Raj Kumar Yadav, Mohd Tariq, Kuntal Satpathi, and Basem Alamri. "A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications." Energies 14, no. 9 (May 4, 2021): 2629. http://dx.doi.org/10.3390/en14092629.

Full text
Abstract:
The growth of renewable energy in the last two decades has led to the development of new power electronic converters. The DC microgrid can operate in standalone mode, or it can be grid-connected. A DC microgrid consists of various distributed generation (DG) units like solar PV arrays, fuel cells, ultracapacitors, and microturbines. The DC-DC converter plays an important role in boosting the output voltage in DC microgrids. DC-DC converters are needed to boost the output voltage so that a common voltage from different sources is available at the DC link. A conventional boost converter (CBC) suffers from the problem of limited voltage gain, and the stress across the switch is usually equal to the output voltage. The output from DG sources is low and requires high-gain boost converters to enhance the output voltage. In this paper, a new high-gain DC-DC converter with quadratic voltage gain and reduced voltage stress across switching devices was proposed. The proposed converter was an improvement over the CBC and quadratic boost converter (QBC). The converter utilized only two switched inductors, two capacitors, and two switches to achieve the gain. The converter was compared with other recently developed topologies in terms of stress, the number of passive components, and voltage stress across switching devices. The loss analysis also was done using the Piecewise Linear Electrical Circuit Simulation (PLCES). The experimental and theoretical analyses closely agreed with each other.
APA, Harvard, Vancouver, ISO, and other styles
14

Andreičiks, Aleksandrs, Kristaps Vitols, Oskars Krievs, and Ingars Steiks. "Current Fed Step-up DC/DC Converter for Fuel Cell Inverter Applications." Scientific Journal of Riga Technical University. Power and Electrical Engineering 25, no. 25 (January 1, 2009): 117–22. http://dx.doi.org/10.2478/v10144-009-0025-z.

Full text
Abstract:
Current Fed Step-up DC/DC Converter for Fuel Cell Inverter ApplicationsIn order to use hydrogen fuel cells in domestic applications either as main power supply or backup source, their low DC output voltage has to be matched to the level and frequency of the utility grid AC voltage. Such power converter systems usually consist of a DC-DC converter and a DC-AC inverter. Comparison of different current fed step-up DC/DC converters is done in this paper and a double inductor step-up push-pull converter investigated, presenting simulation and experimental results. The converter is elaborated for 1200 W power to match the rated power of the proton exchange membrane (PEM) fuel cell located in hydrogen fuel cell research laboratory of Riga Technical University.
APA, Harvard, Vancouver, ISO, and other styles
15

Tellapati, Anuradha Devi, and Malligunta Kiran Kumar. "A simplified hysteresis current control for cascaded converter fed switched reluctance motor." International Journal of Electrical and Computer Engineering (IJECE) 9, no. 6 (December 1, 2019): 5095. http://dx.doi.org/10.11591/ijece.v9i6.pp5095-5106.

Full text
Abstract:
<p>Simple constructional features with no windings on rotor circuit and robustness make switched reluctance motor (SRM) a most used motors in industrial applications. Peak motor voltage rating depends on the rated voltage of the power switches. In conventional asymmetrical converter driving SRM, voltage rating of the motor depends on rating of power electronic switches in converter. Demand to rise the motor rating insists to put pressure on converter switching components which results in increased switching losses. A cascaded converter topology for SRM reduces the rating of switching components as compared to conventional converters for SRM. This paper presents a cascaded converter fed SRM drive with reduced switching losses. The paper presents a simplified hysteresis current control (HCC) for cascaded converter fed SRM. Simplified HCC control method reduces switching losses as HCC is applied to only one bridge of cascaded converter. Though the performance of the SRM remains same with cascaded converter fed SRM with HCC applied to only one bridge or to two bridges and with conventional asymmetrical converter, the switching losses are reduced to a great extent when HCC applied to one bridge of cascaded converter fed SRM. Performance of SRM is illustrated with conventional asymmetrical converter fed SRM and is compared to cascaded converter while HCC applied to only one bridge and applied to two bridges of cascaded converter. Proposed work is simulated using MATLAB/SIMULINK and results are presented.</p>
APA, Harvard, Vancouver, ISO, and other styles
16

Sarala, P., S. F. Kodad, and B. Sarvesh. "Power Factor Correction with Current Controlled Buck Converter for BLDC Motor Drive." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 2 (June 1, 2017): 730. http://dx.doi.org/10.11591/ijpeds.v8.i2.pp730-738.

Full text
Abstract:
Brushless DC motor is a synchronous machine that makes use of electronic commutation instead of mechanical commutator. Brushless DC motors makes use of inverter encompassing static switches for its operation. A simple bridge converter when used for BLDC drive as front end converter makes input source power factor to get reduced which is unacceptable in the power system. To avoid the distortions in the source voltage and source currents, Buck converter which was used as power factor correction (PFC) converter in this paper to improve the power factor. Presence of power electronic converters deteriorates system power factor effecting overall system performance. This paper presents buck converter for power factor correction in brushless DC motor drive system. Buck converter is operated with current control strategy rather to conventional voltage follower control. Simulation model was obtained using MATLAB/SIMULINK software and the brushless DC motor performance characteristics were shown for conditions with different DC link voltages and step variation in DC link voltage. Total harmonic distortion in source current was also presented.
APA, Harvard, Vancouver, ISO, and other styles
17

Mu, Ye, Tianli Hu, He Gong, Lijun Wang, and Shijun Li. "A dual-stage low-power converter driving for piezoelectric actuator applied in micro robot." International Journal of Advanced Robotic Systems 16, no. 1 (January 1, 2019): 172988141982684. http://dx.doi.org/10.1177/1729881419826849.

Full text
Abstract:
In this article, a dual-stage converter driving for a piezoelectric actuator based on flyback circuit was designed and implemented, which could be applied in a micro robot. A low-voltage direct current could be converted to a high-voltage alternating current through flyback circuit and direct current/alternating current circuit in low-power condition. In the direct current/direct current stage, the charging and discharging process was realized to generate a high voltage bias from a low voltage directly supplied by battery. Then, the high voltage was converted into alternating waveform by an energy recovery circuit in direct current/alternating current stage. Experiments were conducted to verify the ability of the proposed converter to drive a 100-V-input piezoelectric bimorph actuator using a prototype 108 mg (excluding printed circuit board mass), 169 (13 × 13) mm2, and 500-mW converter. According to the experimental results, this converter could be used for driving piezoelectric actuator applied in micro robot.
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Zhengxin, Jiuyu Du, and Boyang Yu. "Design Method of Double-Boost DC/DC Converter with High Voltage Gain for Electric Vehicles." World Electric Vehicle Journal 11, no. 4 (October 7, 2020): 64. http://dx.doi.org/10.3390/wevj11040064.

Full text
Abstract:
Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.
APA, Harvard, Vancouver, ISO, and other styles
19

Ramírez Muñoz, Diego, J. Sánchez Moreno, Silvia Casans Berga, Càndid Reig Escrivà, and Edith Navarro Antón. "Current-to-current converter from a dc polarized generalized impedance converter circuit with input reference current." Review of Scientific Instruments 77, no. 5 (May 2006): 056101. http://dx.doi.org/10.1063/1.2198729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lin, Bor-Ren, and Guan-Yi Wu. "Hybrid DC Converter with Current Sharing and Low Freewheeling Current Loss." Energies 13, no. 24 (December 15, 2020): 6631. http://dx.doi.org/10.3390/en13246631.

Full text
Abstract:
A new hybrid high-frequency link pulse-width modulation (PWM) converter using voltage balance capacitor and current balance magnetic coupling is proposed to realize low freewheeling current loss and wide load range of soft switching operation. Series-connected H-bridge converter is adopted for high voltage applications. In addition, a voltage balance capacitor and a current balance magnetic coupling core are employed for achieving voltage and current balance. To extend zero-voltage switching (ZVS) range of switches at lagging-leg of phase-shift PWM converter, soft switching LLC converter is linked to the lagging-leg of phase-shift PWM converter. Therefore, the wide ZVS load operation is realized in the presented hybrid converter. The other high freewheeling current disadvantage in conventional phase-shift PWM converter is improved by a snubber circuit used on low-voltage side. Thus, the primary current during the freewheeling state is decreased and close to zero. In addition, the conduction losses on primary-side components of studied converter are reduced. The secondary-sides of phase-shift PWM converter and LLC resonant converter are series-connected to achieve power transfer between input and output sides. Experimental results using a laboratory prototype are provided to demonstrate the effectiveness of the studied circuit and control algorithm.
APA, Harvard, Vancouver, ISO, and other styles
21

Solovev, Denis B., and Alena E. Merkusheva. "Novel Active Current Transducers for Diesel Power Stations." International Journal of Power Electronics and Drive Systems (IJPEDS) 7, no. 1 (March 1, 2016): 152. http://dx.doi.org/10.11591/ijpeds.v7.i1.pp152-158.

Full text
Abstract:
Autonomous diesel power plants found the active application at the organization of autonomous power supply of the mining enterprises. In article the problem of increase of efficiency of use of control units is considered by the active power of synchronous generators of diesel power plants. As a solution the new innovative offer in the form of the developed device of the measuring converter of active current which is one of the main components of game-trolno-measuring equipment of diesel power plants is offered. The developed scheme is simpler, in comparison with the similar converters of active current executed on the basis of current transformers. In the developed scheme of the measuring converter it is offered to use the differentiating induction converters of current as primary measuring converters. It allows to reduce many times number of the elements entering the standard scheme, and also mass-dimensional characteristics of the device
APA, Harvard, Vancouver, ISO, and other styles
22

Choi, Z. H., C. L. Toh, and M. H. Z. Hilmi. "Comparative study of two potential recuperating converters in DC railway electrification system for harmonic mitigation." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 3 (September 1, 2019): 1157. http://dx.doi.org/10.11591/ijpeds.v10.i3.pp1157-1166.

Full text
Abstract:
<span>The regenerative braking energy produced by Light-Rail-Transit (LRT) train is commonly transferred back to power grid via a conventional three-phase inverter (recuperating converter). Although this is a cost saving solution but the ac grid current and voltage waveforms were distorted. Hence passive filters are integrated to mitigate the harmonics. This paper proposed to replace the conventional inverter system with a multilevel converter. Cascaded H-Bridge (CHB) converter and Modular Multilevel Converter (MMC) are selected to be evaluated in this paper due to their modularity structures. The aim of this study is to determine the most potential multilevel converter to be implemented without additional passive filters. Nine-level CHB and nine-level MMC converters are modeled with MATLAB/Simulink simulation tool. Both converters are modulated with Level-Shifted Pulse Width Modulation technique. The output voltage and current waveforms generated by CHB and MMC are presented with full analysis. It is concluded that MMC converter is more suitable to be used as a recuperating converter. It produces a clean voltage and current waveforms. The voltage and current Total Harmonic Distortion (THD) indexes are found approximate to 8% and 3%.</span>
APA, Harvard, Vancouver, ISO, and other styles
23

Harimon, M. A., A. Ponniran, A. N. Kasiran, and H. H. Hamzah. "A Study on 3-phase Interleaved DC-DC Boost Converter Structure and Operation for Input Current Stress Reduction." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 4 (December 1, 2017): 1948. http://dx.doi.org/10.11591/ijpeds.v8.i4.pp1948-1953.

Full text
Abstract:
This paper analyses a 3-phase interleaved DC-DC boost converter for the conversion of low input voltage with high input current to higher DC output voltage. The operation of the 3-phase interleaved DC-DC boost converter with multi-parallel of boost converters is controlled by interleaved of switching signals with 120 degrees phase-shifted. Therefore, with this circuit configuraion, high input current is evenly shared among the parallel units and consequently the current stress is reduced on the circuit and semiconductor devices and contributes reduction of overall losses. The simulation and hardware results show that the current stress and the semiconductor conduction losses were reduced approximately 33% and 32%, respectively in the 3-phase interleaved DC-DC boost converter compared to the conventional DC-DC boost converters. Furthermore, the use of interleaving technique with continuous conduction mode on DC-DC boost converters is reducing input current and output voltage ripples to increase reliability and efficiency of boost converters.
APA, Harvard, Vancouver, ISO, and other styles
24

Kroics, Kaspars. "Digital Control of Variable Frequency Interleaved DC-DC Converter." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 2 (August 8, 2015): 124. http://dx.doi.org/10.17770/etr2013vol2.854.

Full text
Abstract:
This paper represents a design and implementation of a digital control of variable frequency interleaved DC-DC converter using a digital signal processor (DSP). The digital PWM generation, current and voltage sensing, user interface and the new period and pulse width value calculation with DSP STM32F407VGT6 are considered. Typically, the multiphase interleaved DC - DC converters require a current control loop in each phase to avoid imbalanced current between phases. This increases system costs and control complexity. In this paper the converter which operates in discontinuous conduction mode is designed in order to reduce costs and remove the current control loop in each phase. High current ripples associated with this mode operation are then alleviated by interleaving. Pulse width modulation (PWM) is one of the most conventional modulation techniques for switching DC - DC converters. It compares the error signal with the sawtooth wave to generate the control pulse. This paper shows how six PWM signals phase-shifted by 60 degrees can be generated from calculated values. To ensure that the measured values do not contain disturbances and in order to improve the system stability the digital signal is filtered. The analog to digital converter's (ADC) sampling time must not coincide with the power transistor's switching time, therefore the sampling time must be calculated correctly as well. Digital control of the DC-DC converter makes it easy and quickly to configure. It is possible for this device to communicate with other devices in a simple way, to realize data input by using buttons and keyboard, and to display information on LED, LCD displays, etc.
APA, Harvard, Vancouver, ISO, and other styles
25

Kroics, K., U. Sirmelis, and L. Grigans. "Digitally Controlled 4-Phase Bi-Directional Interleaved Dc-Dc Converter with Coupled Inductors / Digitāli Vadāms 4 Fāžu Divvirziena Līdzstrāvas Pārveidotājs Ar Saistītajām Droselēm." Latvian Journal of Physics and Technical Sciences 52, no. 4 (August 1, 2015): 18–31. http://dx.doi.org/10.1515/lpts-2015-0020.

Full text
Abstract:
Abstract The main advantages of multiphase interleaved DC-DC converters over single-phase converters are reduced current stress and reduced output current ripple. Nevertheless, inductor current ripple cannot be reduced only by an interleaving method. The integrated magnetic structure can be used to solve this problem. In this paper, the application of 2-phase coupled inductor designed in a convenient way by using commercially manufactured coil formers and ferrite cores is analysed to develop a 4-phase interleaved DC-DC converter. The steady state phase and output current ripple in a boost mode of the interleaved bidirectional DC-DC converter with integrated magnetics are analysed. The prototype of the converter has been built. The experimental results of the current ripple are presented in the paper.
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Hailong, Yafei Chen, Sung-Jun Park, and Dong-Hee Kim. "A Family of Bidirectional DC–DC Converters for Battery Storage System with High Voltage Gain." Energies 12, no. 7 (April 3, 2019): 1289. http://dx.doi.org/10.3390/en12071289.

Full text
Abstract:
In low power energy storage systems, to match the voltage levels of the low-voltage battery side and high-voltage direct current (DC) bus, a high voltage gain converter with bidirectional operation is required. In this system, the cost effectiveness of the design is a critical factor; therefore, the system should be designed using a small number of components. This paper proposes a set of bidirectional converters with high voltage gain range based on the integration of the boost converter with a Ćuk converter, single ended primary inductor converter (Sepic), and buck-boost converter. The proposed converters consist of a small number of components with a high voltage gain ratio. Detailed comparisons are made with respect to the operating mode, number of components, voltage, and current ripple and efficiency. The efficiency of proposed converters are higher than the conventional converters in entire power range, and 6% higher efficiency can be achieved in large duty cycle by calculating loss analysis. To verify performances of the proposed converters, three 200-W prototypes of the converters are developed under the same experimental conditions. The results revealed that converter I exhibits the highest efficiency in the boost mode (92%) and buck mode (92.2%). The experimental results are shown to verify the feasibility and performances of the set of converters.
APA, Harvard, Vancouver, ISO, and other styles
27

FABRE, A., P. SIARRY, and M. LAMECHE. "Current-controlled translinear impedance converter." International Journal of Electronics 70, no. 4 (April 1991): 795–801. http://dx.doi.org/10.1080/00207219108921328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Loude, J. F. "Current-to-frequency isolation converter." Journal of Physics E: Scientific Instruments 18, no. 10 (October 1985): 824–26. http://dx.doi.org/10.1088/0022-3735/18/10/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ravezzi, L., D. Stoppa, and G. F. Dalla Betta. "Current-mode A/D converter." Electronics Letters 34, no. 7 (1998): 615. http://dx.doi.org/10.1049/el:19980422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sinitsyn, V. K., and A. V. Kravchenko. "Precision direct-current instrumental converter." Measurement Techniques 31, no. 3 (March 1988): 265–66. http://dx.doi.org/10.1007/bf00865097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Leung, Chim Pui, and Ka Wai Eric Cheng. "Design, Analysis and Implementation of the Tapped-Inductor Boost Current Converter on Current Based System." Energies 14, no. 4 (February 8, 2021): 888. http://dx.doi.org/10.3390/en14040888.

Full text
Abstract:
Power converters play a crucial role in renewable energy systems. Most well-known power conversion topologies are voltage mode, not current mode. Current mode converters are more appropriate for renewable energy systems such as photovoltaic systems since solar panels are typical current sources. The vast usage of battery as energy storage is also a current sink for constant current mode charging. Utilizing current mode converters should be more straightforward and judicious. In this study, a new topology for the tapped-inductor power conversion circuit family is introduced. The proposed topology has been investigated thoroughly based on theories, simulations and experiments. The boost version is examined as an example to downstate the performance. A detailed comparison with the conventional boost current converter is conducted in this paper.
APA, Harvard, Vancouver, ISO, and other styles
32

Fernández, Efrén, Alejandro Paredes, Vicent Sala, and Luis Romeral. "A Simple Method for Reducing THD and Improving the Efficiency in CSI Topology Based on SiC Power Devices." Energies 11, no. 10 (October 17, 2018): 2798. http://dx.doi.org/10.3390/en11102798.

Full text
Abstract:
Silicon carbide (SiC)-based switching devices provide significant performance improvements in many aspects, including lower power dissipation, higher operating temperatures, and faster switching; compared with conventional Si devices, all these features contribute to these devices generating interest in applications for electric traction systems. The topology that is frequently used in these systems is the voltage source inverter (VSI), but the use of SiC devices in the current source inverter topology (CSI), which is considered as an emerging topology, generates interest. This paper presents a method for improving total harmonic distortion (THD) in the currents of output and efficiency in SiC current source inverter for future application in an electric traction system. The method that is proposed consists of improving the coupling of a bidirectional converter topology, voltage current (V-I) and CSI. The V-I converter serves as a current regulator for the CSI, and allows for the recovery of energy. The method involves an effective selection of the switching frequencies and phase angles for the carrier signals that are present in each converter topology. With this method, it is expected to have a reduction of the total harmonic distortion, THD in the output currents. In addition, a comparative analysis between converters with all-SiC technology and converters with hybrid technology is realized, to verify the impact of the SiC devices in the power converters efficiency.
APA, Harvard, Vancouver, ISO, and other styles
33

Gwóźdź, Michał. "A power electronics controlled current source based on a double-converter topology." Archives of Electrical Engineering 63, no. 3 (September 1, 2014): 335–44. http://dx.doi.org/10.2478/aee-2014-0025.

Full text
Abstract:
Abstract The paper presents a conception of power electronics voltage controlled current source (VCCS) which is able much more precise mapping of its an output current in a reference signal, compared to a typical converter solution. It can be achieved by means of such interconnection of two separate converters that one of them corrects a total output current towards a reference signal. An output power of auxiliary converter is much smaller than an output power of main one. Thanks to continuous work of this converter also pulse modulation components in this current are minimized. These benefits are paid for by a relatively small increase in the complexity and the cost of the system. This conception of a converter has been called the double-converter topology (DCT). In the author opinion presented solution of the system can find application in many power electronics equipment and, therefore, will be developed. In the paper DCT basics, simulation experiments, and possible practical arrangement of the DCT are presented
APA, Harvard, Vancouver, ISO, and other styles
34

Putra, Tri Yogi, and Muldi Yuhendri. "Implementasi Hysterisis Current Control Pulse Witdh Modulation (HCCPWM) Untuk Inverter 3 Fasa." JTEIN: Jurnal Teknik Elektro Indonesia 2, no. 1 (March 23, 2021): 91–97. http://dx.doi.org/10.24036/jtein.v2i1.127.

Full text
Abstract:
Based on the source used, there are several types of converters, one of which is a voltage source converter (VSC). In this study, using a converter that can work as an inverter. In industry, an inverter is useful for supplying the AC voltage source from industrial plants with DC sources, by varying the voltage and output frequency of the inverter. The method used is the HCCPWM generation method or Hysterisis Current Control Pulse Witdh Modulation. This method was chosen because it has several advantages which are good stability, very fast transient response and good accuracy. To activate HCCPWM, a 3 phase reference current signal is first made in the Matlab Simulink, this reference current is then compared with the actual current from the current sensor, then the error is controlled with the hysteresis band. In Arduino mega2560, the pulses generated by HCCPWM in the Matlab Simulink are converted into a duty cycle. The modulated pulse generated by the Arduino PWM pin will be increased using a gate drive circuit, so that the voltage is obtained according to the voltage required by the Mosfet to activate the switch. The results of the tests that have been done show that the voltage source converter (VSC) designed in this study has worked well as intended. This can be seen from the actual current from the current sensor which has been compared with the reference voltage using the HCCPWM method which is included in the Simulink Matlab program.
APA, Harvard, Vancouver, ISO, and other styles
35

El Shatshat, R., M. Kazerani, and M. M. A. Salama. "Multi converter approach to active power filtering using current source converters." IEEE Transactions on Power Delivery 16, no. 1 (2001): 38–45. http://dx.doi.org/10.1109/61.905582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rajaei, Amirhossein, Mahdi Shahparasti, Ali Nabinejad, and Mehdi Savaghebi. "A High Step-Up Partial Power Processing DC/DC T-Source Converter for UPS Application." Sustainability 12, no. 24 (December 14, 2020): 10464. http://dx.doi.org/10.3390/su122410464.

Full text
Abstract:
In this paper, a new modified structure of a DC/DC T-source converter is proposed. Since the proposed converter provides high voltage gain, it is suitable for photovoltaic integration into uninterruptible power supply (UPS) systems. The proposed structure employs partial power processing technique to increase the output voltage as well as efficiency without requiring new hardware. Partial power converters (PPCs) process only a fraction of flowing power while the remaining power directly flows through output. This generally causes an improvement in efficiency and output voltage. A total of two structures are presented: conventional partial power T-source converters and improved partial power T-source converters. The key advantage of the improved partial power converter is a higher voltage gain. Furthermore, it reduces the voltage and the current stresses on switches and diodes. The steady-state operation principles are described for both converters and the governed rules and equations are derived. The PPCs and full power converter are compared in terms of efficiency, voltage gain, voltage stress, and current stress of converter elements. The converter performance is evaluated through experimental and simulation studies. The presented results show good consistency with the theoretical analysis.
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Zhaohan, Yongcheng Ji, Shu Yang, and Yuchun Chang. "A Dual-Mode High-Voltage High-Efficiency Peak-Current-Mode Asynchronous Buck Converter." Journal of Circuits, Systems and Computers 25, no. 11 (August 14, 2016): 1650136. http://dx.doi.org/10.1142/s021812661650136x.

Full text
Abstract:
This paper proposes a high-voltage high-efficiency peak-current-mode asynchronous DC–DC step-down converter operating with dual operation modes. The asynchronous buck converter achieves higher efficiency in light load condition compared to synchronous buck converters. Furthermore, the proposed buck converter switches operation mode automatically from pulse-width modulation (PWM) mode to pulse-skipping mode (PSM). By reducing power MOS on-state resistance and optimizing rise/fall time of switches, the proposed buck converter also obtains high efficiency under heavy load condition. The maximum efficiency of the proposed buck converter is 92.9%, implemented with 0.35[Formula: see text][Formula: see text]m BCDMOS 2P3M process, and the total size is 1.1[Formula: see text] 1.2[Formula: see text]mm2. The input range and output range of the converter are 6–30 V, and ([Formula: see text]–3) V, respectively, with the maximum output current of 3 A. Moreover, its built-in current loop leads to good transient response characteristics. Therefore, it can be used widely in communication system and 12 V/24 V distributed power system.
APA, Harvard, Vancouver, ISO, and other styles
38

Lili, Qu, Zhang Bo, and Wallace K. S. Tang. "Sneaking Operation Modes in Zero-Current-Switching Converter." Open Electrical & Electronic Engineering Journal 9, no. 1 (April 17, 2015): 127–34. http://dx.doi.org/10.2174/1874129001509010127.

Full text
Abstract:
This paper reports the occurrence of some abnormal operational modes in soft-switching converters. By constructing a Boolean matrix based on the states of the switching components, some unexpected topological states are identified. Consequently, these states excite the abnormal or sneaking operational modes as referred. A three-stage step-up zero- current switching converter is used as an illustrative example and detailed analysis has been carried out. The phenomenon has also been confirmed in experiences, where performance degradation is noticed.
APA, Harvard, Vancouver, ISO, and other styles
39

Hassan, Raaed Faleh, and Suha Sabah Shyaa. "Design and Analysis of the STATCOM Based on Diode Clamped Multilevel Converter Using Model Predictive Current Control Strategy." European Journal of Electrical Engineering 23, no. 3 (June 21, 2021): 221–28. http://dx.doi.org/10.18280/ejee.230306.

Full text
Abstract:
In recent decades, multi-level converters have become popular and used in many power systems applications. Compared with conventional converters, multi-level converters contribute to reducing the voltage stress on the switching devices and enhancing the power quality delivered to the load. In this paper, the study of the five-level diode clamped multilevel converter based static synchronous compensator has been accomplished. Model Predictive current control strategy which a type of modern control algorithms was employed for driving the proposed compensator. The suggested five level converter controlled by model predictive current control is firstly examined to verify that this control algorithm is appropriate for achieving the desired performance. Then the proposed converter and control combination is employed and simulated as a static synchronous compensator in distributed power system. Moreover, in order to examine the robustness of this compensator, the load status is suggested to be heavy inductive. Simulation process has been performed using MATLAB – SIMULINK software package. The results show that the implemented configuration (converter and control algorithm) provides high power quality improvement with adequate reactive power compensation.
APA, Harvard, Vancouver, ISO, and other styles
40

Mohammed Dobi, Abdulhakeem, and Mohd Rodhi Sahid. "Non-isolated LLC resonant DC-DC converter with balanced rectifying current and stress." Indonesian Journal of Electrical Engineering and Computer Science 18, no. 2 (May 1, 2020): 698. http://dx.doi.org/10.11591/ijeecs.v18.i2.pp698-706.

Full text
Abstract:
<p><span>In isolated type LLC resonant converters, transformer leakage inductances can be merged with the resonant inductor to extend the ZVS capability of the switches apart from isolation and voltage scaling. However, the transformer presents a resonant imbalance in the secondary side leading to secondary current unbalance, an increase in RMS value of the secondary current and increase thermal stress. This paper proposed a half-bridge non-isolated LLC resonant converter with a balanced rectifying current and stress in the rectifier diodes. The proposed converter can achieve the most advantages of isolated LLC converters, such as ZVS and low MOSFET turn-off loss. By the non-isolation method, secondary current and, transformer loss is significantly reduced. In addition, rectifier diodes operate with zero current switching and balanced rectifying current and stress over the entire operating range. The proposed non-isolated structure is verified by the experimental result with a 60W LLC resonant converter. </span></p>
APA, Harvard, Vancouver, ISO, and other styles
41

Onah, Aniagboso John. "Analysis of Controlled Single-phase Full-Wave Rectifier with RL Load." European Journal of Engineering Research and Science 3, no. 12 (December 7, 2018): 25–31. http://dx.doi.org/10.24018/ejers.2018.3.12.981.

Full text
Abstract:
Diodes are popularly used in rectifiers, which convert an ac signal into a unidirectional signal. They produce a fixed output voltage only. However, controlled switches such as thyristors are used to vary the output voltage of a converter by adjusting the delay or firing angle α of the thyristors. Phase-controlled converters are simple, efficient and less expensive. There are both single-phase and three-phase converters depending on the input supply. We also have half-wave and full-wave converters. The half-wave converter has only one polarity of output voltage and current, while for the full converter, the polarity of the output voltage can be either positive or negative. The purpose of this paper is to investigate the operation of the Single-phase full-wave rectifier. Load current for the controlled full-wave rectifier with R-L load can be either discontinuous or continuous. The paper shows how the rectifier transits from discontinuous current operation to continuous current operation.
APA, Harvard, Vancouver, ISO, and other styles
42

Uno, Masatoshi, Masahiko Inoue, Yusuke Sato, and Hikaru Nagata. "Bidirectional Interleaved PWM Converter with High Voltage-Conversion Ratio and Automatic Current Balancing Capability for Single-Cell Battery Power System in Small Scientific Satellites." Energies 11, no. 10 (October 11, 2018): 2702. http://dx.doi.org/10.3390/en11102702.

Full text
Abstract:
Single-cell battery power systems are a promising bus architecture for small scientific satellites. However, to bridge the huge voltage gap between a single-cell battery and power bus, bidirectional converters with a high voltage conversion ratio and a large current capability for the low-voltage side are necessary. This article proposes a bidirectional interleaved pulse width modulation (PWM) converter with a high voltage conversion ratio and an automatic current balancing capability. By adding capacitors to conventional interleaved PWM converters, not only are inductor currents automatically balanced without feedback control or current sensors, but also voltage conversion ratios at a given duty cycle can be enhanced. Furthermore, the added capacitors can reduce voltage stresses of switches and charged-discharged energies of inductors, realizing more efficient power conversion and reduced circuit volume in comparison with conventional converters. A 100-W prototype was built for experimental verification, and results demonstrated the fundamental characteristics and efficacy of the proposed converter.
APA, Harvard, Vancouver, ISO, and other styles
43

YEUNG, Y. P. BENNY, and H. H. C. IU. "A ZERO-CURRENT SWITCHING PWM FLYBACK CONVERTER WITH LOW CURRENT STRESS." Journal of Circuits, Systems and Computers 17, no. 06 (December 2008): 1129–38. http://dx.doi.org/10.1142/s0218126608004873.

Full text
Abstract:
An actively current clamped zero-current switching (ZCS) flyback converter is proposed in this paper. ZCS condition is obtained for all transistors for reducing switching loss and electromagnetic interference. With the current clamping technique, current stress of the converter is low. Output voltage of this converter can be controlled with fixed frequency. Electrical isolation is provided. Operation principles are discussed in the paper. Mathematical descriptions and computer simulation verification are provided.
APA, Harvard, Vancouver, ISO, and other styles
44

Titova, T. S., M. V. Evstaf’yeva, and M. Yu Izvarin. "Application of bidirectional isolated converters in a traction drive." Bulletin of scientific research results, no. 4 (December 2020): 67–77. http://dx.doi.org/10.20295/2223-9987-2020-4-67-77.

Full text
Abstract:
Objective: Analysis of the operation of a bidirectional isolated converter for a direct-current traction drive of electric rolling stock under various load conditions. Methods: Mathematical modeling was applied for the research. The results are presented in the form of mathematical relationships and graphs of currents and voltages. Results: The relationship between the output voltage and the duty factor of a bidirectional isolated converter has been revealed. The converters operation is considered at six characteristic intervals of a full cycle with the following initial conditions: i(t0) < 0, i(t0) = 0, i(t0) > 0. The main dependences of the current in the inductance, the input and output voltage, the shape of the voltage and current curves for different operation modes of a bidirectional converter are given. The duty factor is determined to obtain the maximum output power of the bidirectional converter. Practical importance: The proposed bidirectional isolated converter scheme makes it possible to implement traction and regenerative braking modes for a traction drive of a DC electric rolling stock. The simulation results show that with significant changes in load the system retains the specified characteristics, provides speed
APA, Harvard, Vancouver, ISO, and other styles
45

Desai, Hardik P., Ranjan Maheshwari, and Shambhu N. Sharma. "MATLAB-Based Investigation of Multiphase Interleaved Buck-Boost Converter for PV System." ISRN Renewable Energy 2012 (March 1, 2012): 1–9. http://dx.doi.org/10.5402/2012/317982.

Full text
Abstract:
A photovoltaic (PV) generator exhibits nonlinear voltage-current characteristics and its maximum power point varies with solar radiation. Analytical investigations of the new family of switching converters based on a parallel connection of (=4) identical buck-boost converters employed in PV system are presented. The interleaving strategy ensures that all the converters operate at the same switching frequency. Mathematical models developed using the state-space average technique are presented in this paper. Various steady-state performance expressions are also derived. The present converter system has the advantages of reduced size of the converter, and ripple in the total inductor current. The effectiveness of the four-phase interleaved dc-dc converter combined with PV system is demonstrated through simulations carried out in MATLAB environment.
APA, Harvard, Vancouver, ISO, and other styles
46

Zhao and Yang. "Parallel Control of Converters with Energy Storage Equipment in a Microgrid." Electronics 8, no. 10 (October 2, 2019): 1110. http://dx.doi.org/10.3390/electronics8101110.

Full text
Abstract:
The converter in a microgrid uses the active power and reactive power (PQ) control strategy when connected to the grid. In the case of failure of large power grid, the converters are required to be connected in parallel under the condition of island to provide power to the load. In this paper, a new control method for the parallel operation of converters based on V/F control is proposed. The V/F control is used to ensure the output voltages have the same amplitude and frequency, then the converters will only produce circulating current caused by phase angle inconsistency. The phase angle self-synchronization strategy is proposed to make sure the phase angle of output voltage of all converters in the system are consistent. First, a large inductor is added to the end of the converter to ignore the line reactance, through this, the measured voltage at the terminal of the converter roughly equals to the voltage of the load, thus, every converter has the same reference of phase angle. Using the proposed phase angle self-synchronization strategy allows the output voltage of every converter to have the same phase angle, so that there is no circulating current between converters, and the power is evenly distributed among the converters. The simulation verification was carried out on the Power Simulation (PSIM) simulation platform, and the experimental verification was implemented on the hardware experimental platform. Both results demonstrate the effectiveness of the proposed strategy. This method is highly reliable and easy to implement, and the circulating current can be reduced effectively.
APA, Harvard, Vancouver, ISO, and other styles
47

Karthikeyan, M., R. Elavarasu, P. Ramesh, C. Bharatiraja, P. Sanjeevikumar, Lucian Mihet-Popa, and Massimo Mitolo. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility." Energies 13, no. 9 (May 6, 2020): 2312. http://dx.doi.org/10.3390/en13092312.

Full text
Abstract:
In the current era, the desire for high boost DC-to-DC converter development has increased. Notably, there has been voltage gain improvement without adding extra power switches, and a large number of passive components have advanced. Magnetically coupled isolated converters are suggested for the higher voltage gain. These converters use large size inductors, and thus the non-isolated traditional boost, Cuk and Sepic converters are modified to increase their gain by adding an extra switch, inductors and capacitors. These converters increase circuit complexity and become bulky. In this paper, we present a hybrid high voltage gain non-isolated single switch converter for photovoltaic applications. The proposed converter connects the standard conventional Cuk and boost converter in parallel for providing continuous current mode operation with the help of a single power switch, which gives less voltage stress on controlled switch and diodes. The proposed hybrid topology uses a single switch with a lower component-count and provides a higher voltage gain than non-isolated traditional converters. The converter circuit mode of operation, operating performance, mathematical derivations and steady-state exploration and circuit parameters design procedures are deliberated in detail. The proposed hybrid converter circuit components, voltage gain and performance, were compared with other topologies in the literature. The MATLAB/Simulink simulation study and microcontroller-based experimental laboratory prototype of 150 W were implemented. The simulation study and experimentation results were confirmed to be a satisfactory agreement with the theoretical analysis. This topology produced non-inverting output in continuous input current mode using a single switch with high voltage gain (≈5.116 gain) with a maximum efficiency of 92.2% under full load.
APA, Harvard, Vancouver, ISO, and other styles
48

Cao, Wen Si, and Lu Hong Gong. "Simulation Analyses and Modeling Method of Time Averaging Principle-Based for Zero-Current-Switch Quasi Resonant Converters Boost Circuit." Applied Mechanics and Materials 65 (June 2011): 224–27. http://dx.doi.org/10.4028/www.scientific.net/amm.65.224.

Full text
Abstract:
DC-DC switching converter is a time-variant and non-linear dynamic system, and it is difficult to analyze and design. The operating principles and four operating modes of Boost Zero-current-switch Quasi Resonant Converters (ZCS-QRCs) are analyzed. Its nonlinear model is built up based on time averaging Principle, illative process and the model built step are presented. The converter model is readily obtained by MATLAB, the waveforms of simulations of ZCS-QRCs Boost circuit models, mathematic models based on time averaging Principle of Quasi Resonant Converters are compared . At last, simulation results are verified and correspond to theory by comparing waveforms of simulations. Modeling Approach can be applicable other dc-dc Converter.
APA, Harvard, Vancouver, ISO, and other styles
49

Vijay, Samridhi. "Study of Power Quality Phenomenon Based on Design and Simulation of Boost Type PFC Converters." Journal of Advanced Research in Power Electronics and Power Systems 07, no. 03 (October 3, 2020): 6–10. http://dx.doi.org/10.24321/2456.1401.202005.

Full text
Abstract:
This paper present design and simulation of boost type Power Factor Correction (PFC) converter which improved the power quality. With the enormous development in the usage of power converters circuits like rectifiers which is non linear loads, the current drawn by these non- linear loads will not follow the supply voltage (i.e. non simulation). This results in high Total Harmonic Distortion (THD) and poor Power Factor (PF). Hence there is a need of converter topology to improve the PF and reduce line current harmonic. Boost type PFC converters is most popular topology for improving the PF in supply AC side. Average Current Mode (ACM) control technique is employed to control the boost converter in Continuous Conduction Mode (CCM). Simulation of proposed system is carried out using MATLAB/ Simulink platform.
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Dian Long, Zhi Yang Zhang, and Yan Gang Li. "High Power Soft Switching Current Buck DC-DC Converter for Fuel Cell Electrical Vehicles." Applied Mechanics and Materials 365-366 (August 2013): 494–97. http://dx.doi.org/10.4028/www.scientific.net/amm.365-366.494.

Full text
Abstract:
Fuel cell electric vehicles (FCEV) are emerging clean energy vehicles. A new soft switching current buck DC/DC circuit topology for FCEV was proposed. The characteristics and working process of the circuit topology were analyzed. By appending inductor, capacitor, diode in basic buck circuit, the converters main power switch and diode current were working in soft switching status, and the converters EMC and reliability were improved greatly. The circuit was simulated with Orcad software and its switch waveform, efficiency curve of 90kW DC/DC converter developed based on the topology was given. The converter has been used in the domestic fuel cell city buses successfully and proved to operate with reliability.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography