Academic literature on the topic 'CURVA DE PEANO'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CURVA DE PEANO.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CURVA DE PEANO"
Shchepin, E. V., and K. E. Bauman. "Minimal Peano curve." Proceedings of the Steklov Institute of Mathematics 263, no. 1 (December 2008): 236–56. http://dx.doi.org/10.1134/s0081543808040172.
Full textShao, Yi Chuan, Xing Jia Yao, and Li Wei Tian. "Peano Space Filling Curve Applied in Managing P2P Service Resources." Applied Mechanics and Materials 220-223 (November 2012): 2508–11. http://dx.doi.org/10.4028/www.scientific.net/amm.220-223.2508.
Full textde Freitas, Joaquim E., Ronaldo F. de Lima, and Daniel T. dos Santos. "The n-dimensional Peano Curve." São Paulo Journal of Mathematical Sciences 13, no. 2 (April 29, 2019): 678–88. http://dx.doi.org/10.1007/s40863-019-00132-9.
Full textYang, Guangjun, Xiaoling Yang, and Ping Wang. "Arithmetic-Analytic Representation of Peano Curve." International Journal of Mathematics and Mathematical Sciences 2019 (September 10, 2019): 1–7. http://dx.doi.org/10.1155/2019/6745202.
Full textMOLITOR, DENALI, NADIA OTT, and ROBERT STRICHARTZ. "USING PEANO CURVES TO CONSTRUCT LAPLACIANS ON FRACTALS." Fractals 23, no. 04 (December 2015): 1550048. http://dx.doi.org/10.1142/s0218348x15500486.
Full textCiesielski and Larson. "THE PEANO CURVE AND I-APPROMIMATE DIFFERENTIABILITY." Real Analysis Exchange 17, no. 2 (1991): 608. http://dx.doi.org/10.2307/44153754.
Full textBauman, K. E. "The dilation factor of the Peano-Hilbert curve." Mathematical Notes 80, no. 5-6 (November 2006): 609–20. http://dx.doi.org/10.1007/s11006-006-0182-8.
Full textAgadzhanov, А. N. "Peano-type curves, Liouville numbers, and microscopic sets." Доклады Академии наук 485, no. 1 (May 22, 2019): 7–10. http://dx.doi.org/10.31857/s0869-565248417-10.
Full textMalykhin, Yu V., and E. V. Shchepin. "Minimal Self-Similar Peano Curve of Genus 5 × 5." Doklady Mathematics 101, no. 2 (March 2020): 135–38. http://dx.doi.org/10.1134/s1064562420020155.
Full textTanaka, Ken'Ichi, and Teruo Shimomura. "Computer-generated holograms by error-diffusion method using peano curve." Electronics and Communications in Japan (Part II: Electronics) 78, no. 3 (March 1995): 1–11. http://dx.doi.org/10.1002/ecjb.4420780301.
Full textDissertations / Theses on the topic "CURVA DE PEANO"
Maia, Francisco Everton Pereira. "Curvas planas : clássicas, regulares e de preenchimento." reponame:Repositório Institucional da UFABC, 2016.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016.
Neste trabalho apresentaremos uma visão sobre os princípios das curvas planas. Iniciamos o desenvolvimento dos estudos com as cônicas: parábola, elipse e hipérbole que são aplicadas no Ensino Médio normalmente usando equações cartesianas. Abordaremos o assunto destas e outras curvas usando equações paramétricas, com intuito de mostrar a vantagem de utilizá-las. Abrangeremos em nossos estudos a catenária, a cicloide e a curva de Bézier, curvas as quais não são estudadas no Ensino Básico, mas poderiam ser apresentadas como um desafio motivador ao estudo da Matemática, explorando suas várias aplicações que acontecem de maneira natural em nosso cotidiano. Apresentaremos propriedades gerais das curvas como: continuidade, parametrização, comprimento de arco, curva suave, curvatura e outras, além de realizar a demonstração do teorema fundamental das curvas planas e para finalizar estudaremos uma curva exótica, conhecida como curva de preenchimento de espaço, construída pela primeira vez pelo matemático italiano Giuseppe Peano.
In this work we will present an insight into the principles of flat curves. We start with the conics: parabola, ellipse and hyperbole which are applied in high school usually using Cartesian equations. We will discuss those and other curves using parametric equations, in order to show the advantage of using them. We will cover in our studies the catenary, the cycloid and a Bézier curve, curves which are not studied in basic education, but could be presented as a challenging motivation to the study of Mathematics by exploring their various uses that happen naturally in our everyday lives. We will introduce general properties of curves as: continuity, parameterization, arc length, smooth curve, curvature and others, in addition to the proof of the fundamental theorem of plane curves, and finally we will study an exotic curve, known as space-filling curve, built for the first time by the Italian mathematician Giuseppe Peano.
Redtwitz, Dennis Alexander. "Densificabilidad: caracterizaciones, extensiones y aplicaciones." Doctoral thesis, Universidad de Alicante, 2015. http://hdl.handle.net/10045/50328.
Full textAlbuquerque, Nacib André Gurgel e. "Hardy-Littlewood/Bohnenblust-Hille multilinear inequalities and Peano curves on topological vector spaces." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/7448.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work is divided in two subjects. The first concerns about the Bohnenblust-Hille and Hardy- Littlewood multilinear inequalities. We obtain optimal and definitive generalizations for both inequalities. Moreover, the approach presented provides much simpler and straightforward proofs than the previous one known, and we are able to show that in most cases the exponents involved are optimal. The technique used is a combination of probabilistic tools and of an interpolative approach; this former technique is also employed in this thesis to improve the constants for vector-valued Bohnenblust-Hille type inequalities. The second subject has as starting point the existence of Peano spaces, that is, Haurdor spaces that are continuous image of the unit interval. From the point of view of lineability we analyze the set of continuous surjections from an arbitrary euclidean spaces on topological spaces that are, in some natural sense, covered by Peano spaces, and we conclude that large algebras are found within the families studied. We provide several optimal and definitive result on euclidean spaces, and, moreover, an optimal lineability result on those special topological vector spaces.
Este trabalho édividido em dois temas. O primeiro diz respeito às desigualdades multilineares de Bohnenblust-Hille e Hardy-Littlewood. Obtemos generalizações ótimas e definitivas para ambas desigualdades. Mais ainda, a abordagem apresentada fornece demonstrações mais simples e diretas do que as conhecidas anteriormente, além de sermos capazes de mostrar que os expoentes envolvidos são ótimos em varias situações. A técnica utilizada combina ferramentas probabilísticas e interpolativas; esta ultima e ainda usada para melhorar as estimativas das versões vetoriais da desigualdade de Bohnenblust-Hille. O segundo tema possui como ponto de partida a existência de espaços de Peano, ou seja, os espaços de Hausdor que são imagem contínua do intervalo unitário. Sob o ponto de vista da lineabilidade, analisamos o conjunto das sobrejecoes contínuas de um espaço euclidiano arbitrário em um espaço topológico que, de certa forma, e coberto por espaços de Peano, e concluímos que grandes álgebras são encontradas nas famílias estudadas. Fornecemos vários resultados ótimos e definitivos em espaços euclidianos, e, mais ainda, um resultado de lineabilidade ótimo naqueles espaços vetoriais topológicos especiais.
Granholm, Jonas. "Remarkable curves in the Euclidean plane." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112576.
Full textÚbeda, García José Ignacio. "Aspectos geométricos y topológicos de la curvas α-densas." Doctoral thesis, 2006. http://hdl.handle.net/10045/13270.
Full textBooks on the topic "CURVA DE PEANO"
Mancino, Leonardo. La curva di Peano: Poesie (1995-1997). Grottammare (Ascoli Piceno): Stamperia dell'Arancio, 1999.
Find full textMancino, Leonardo. La curva di Peano: Poesie, 1995-1997. Grottammare (AP): Stamperia dell'Arancio, 1999.
Find full textBook chapters on the topic "CURVA DE PEANO"
Shekhar, Shashi, and Hui Xiong. "Peano Curve." In Encyclopedia of GIS, 854. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_967.
Full textSchoenberg, I. J. "On the Peano Curve of Lebesgue." In I.J. Schoenberg Selected Papers, 197. Boston, MA: Birkhäuser Boston, 1988. http://dx.doi.org/10.1007/978-1-4612-3946-8_13.
Full textSchoenberg, I. J. "On the Peano Curve of Lebesgue." In I.J. Schoenberg Selected Papers, 197. Boston, MA: Birkhäuser Boston, 1988. http://dx.doi.org/10.1007/978-1-4612-3948-2_17.
Full textCeterchi, Rodica, Atulya K. Nagar, and K. G. Subramanian. "Chain Code P System Generating a Variant of the Peano Space-Filling Curve." In Membrane Computing, 73–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12797-8_6.
Full text"Peano Curve." In Encyclopedia of GIS, 1568. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-17885-1_100943.
Full text"The Peano Curve." In Conjecture and Proof, 93–96. Providence, Rhode Island: American Mathematical Society, 2001. http://dx.doi.org/10.1090/clrm/015/17.
Full textMusgrave, Ken. "A PEANO CURVE GENERATION ALGORITHM." In Graphics Gems II, 25. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-08-050754-5.50017-7.
Full textMusgrave, Ken. "A PEANO CURVE GENERATION ALGORITHM." In Graphics Gems II, 477–84. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-08-050754-5.50102-x.
Full textD'Agostino, Susan. "Follow your curiosity, along a space-filling curve." In How to Free Your Inner Mathematician, 265–72. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198843597.003.0045.
Full textConference papers on the topic "CURVA DE PEANO"
Schamschula, Marius P., H. John Caulfield, and Avery Brown. "Peano curve modular optics." In OE/LASE '94, edited by Ivan Cindrich and Sing H. Lee. SPIE, 1994. http://dx.doi.org/10.1117/12.178067.
Full textYan Wang, Shoushun Chen, and Amine Bermak. "Novel VLSI implementation of Peano-Hilbert curve address generator." In 2008 IEEE International Symposium on Circuits and Systems - ISCAS 2008. IEEE, 2008. http://dx.doi.org/10.1109/iscas.2008.4541458.
Full textPeng, Zheng Wen, and Xin Lu. "Amplification Matrix Iteration Algorithm to Generate: The Hilbert-Peano Curve." In 2014 IEEE Symposium on Computer Applications and Communications (SCAC). IEEE, 2014. http://dx.doi.org/10.1109/scac.2014.34.
Full textMcVay, John, Ahmad Hoorfar, and Nader Engheta. "Theory and experiments on Peano and Hilbert curve RFID tags." In Defense and Security Symposium, edited by Raghuveer M. Rao, Sohail A. Dianat, and Michael D. Zoltowski. SPIE, 2006. http://dx.doi.org/10.1117/12.666911.
Full textLambert, Robin A., and Bruce G. Batchelor. "Method of preprocessing color images using a Peano curve on a Transputer array." In Boston - DL tentative, edited by David P. Casasent. SPIE, 1991. http://dx.doi.org/10.1117/12.25189.
Full textSarang Sukumar, A., Jayakumar Loganathan, and T. Geetha. "Clustering web services based on multi-criteria service dominance relationship using Peano Space filling curve." In 2012 International Conference on Data Science & Engineering (ICDSE). IEEE, 2012. http://dx.doi.org/10.1109/icdse.2012.6282302.
Full text