Academic literature on the topic 'Curves over finite fields'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Curves over finite fields.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Curves over finite fields"
van der Geer, Gerard. "Counting curves over finite fields." Finite Fields and Their Applications 32 (March 2015): 207–32. http://dx.doi.org/10.1016/j.ffa.2014.09.008.
Full textGarcia, A., and J. F. Voloch. "Fermat curves over finite fields." Journal of Number Theory 30, no. 3 (November 1988): 345–56. http://dx.doi.org/10.1016/0022-314x(88)90007-8.
Full textAuer, R. "Legendre Elliptic Curves over Finite Fields." Journal of Number Theory 95, no. 2 (August 2002): 303–12. http://dx.doi.org/10.1016/s0022-314x(01)92760-x.
Full textVoloch, José Felipe. "Jacobians of Curves over Finite Fields." Rocky Mountain Journal of Mathematics 30, no. 2 (June 2000): 755–59. http://dx.doi.org/10.1216/rmjm/1022009294.
Full textKatz, Nicholas M. "Space filling curves over finite fields." Mathematical Research Letters 6, no. 6 (1999): 613–24. http://dx.doi.org/10.4310/mrl.1999.v6.n6.a2.
Full textAuer, Roland, and Jaap Top. "Legendre Elliptic Curves over Finite Fields." Journal of Number Theory 95, no. 2 (August 2002): 303–12. http://dx.doi.org/10.1006/jnth.2001.2760.
Full textMorain, François, Charlotte Scribot, and Benjamin Smith. "Computing cardinalities of -curve reductions over finite fields." LMS Journal of Computation and Mathematics 19, A (2016): 115–29. http://dx.doi.org/10.1112/s1461157016000267.
Full textSkałba, M. "Points on elliptic curves over finite fields." Acta Arithmetica 117, no. 3 (2005): 293–301. http://dx.doi.org/10.4064/aa117-3-7.
Full textShparlinski, Igor E., and José Felipe Voloch. "Visible Points on Curves over Finite Fields." Bulletin of the Polish Academy of Sciences Mathematics 55, no. 3 (2007): 193–99. http://dx.doi.org/10.4064/ba55-3-1.
Full textBridy, Andrew. "Automatic sequences and curves over finite fields." Algebra & Number Theory 11, no. 3 (May 6, 2017): 685–712. http://dx.doi.org/10.2140/ant.2017.11.685.
Full textDissertations / Theses on the topic "Curves over finite fields"
Voloch, J. F. "Curves over finite fields." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355283.
Full textRovi, Carmen. "Algebraic Curves over Finite Fields." Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56761.
Full textThis thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions of covering curves: covers by the Hemitian curve, Kummer extensions and Artin-Schreier extensions. With these articles the great difficulty of finding explicit equations for curves with many rational points is overcome. With the method given by Arnaldo García in [6] we have been able to nd examples that can be used to define the lower bounds for the corresponding entries in the tables given in http: //wins.uva.nl/~geer, which to the time of writing this Thesis appear as "no information available". In fact, as the curves found are maximal, these entries no longer need a bound, they can be given by a unique entry, since the exact value of Nq(g) is now known.
At the end of the thesis an outline of the construction of Goppa codes is given and the NXL and XNL codes are presented.
Thuen, Øystein Øvreås. "Constructing elliptic curves over finite fields using complex multiplication." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9434.
Full textWe study and improve the CM-method for the creation of elliptic curves with specified group order over finite fields. We include a thorough review of the mathematical theory needed to understand this method. The ability to construct elliptic curves with very special group order is important in pairing-based cryptography.
Cam, Vural. "Drinfeld Modular Curves With Many Rational Points Over Finite Fields." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613118/index.pdf.
Full textKirlar, Baris Bulent. "Isomorphism Classes Of Elliptic Curves Over Finite Fields Of Characteristic Two." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606489/index.pdf.
Full textDucet, Virgile. "Construction of algebraic curves with many rational points over finite fields." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4043/document.
Full textThe study of the number of rational points of a curve defined over a finite field naturally falls into two cases: when the genus is small (typically g<=50), and when it tends to infinity. We devote one part of this thesis to each of these cases. In the first part of our study, we explain how to compute the equation of any abelian covering of a curve defined over a finite field. For this we use explicit class field theory provided by Kummer and Artin-Schreier-Witt extensions. We also detail an algorithm for the search of good curves, whose implementation provides new records of number of points over the finite fields of order 2 and 3. In the second part, we study a trace formula of Hecke operators on quaternionic modular forms, and we show that the associated Shimura curves of the form naturally form recursive sequences of asymptotically optimal curves over a quadratic extension of the base field. Moreover, we then prove that the essential contribution to the rational points is provided by supersingular points
Riquelme, Faúndez Edgardo. "Algorithms for l-sections on genus two curves over finite fields and applications." Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/393881.
Full textEn esta tesis se estudian algoritmos de \ell-división para Jacobianas de curvas de género 2. Se presentan algoritmos de trisección (división por \ell=3) para Jacobianas de curvas de género 2 definidas sobre cuerpos finitos \F_q de característica par o impar indistintamente. En característica impar se obtiene explícitamente un polinomio de trisección, cuyas raíces se corresponden biyectivamente con el conjunto de trisecciones de un divisor cualquiera de la Jacobiana. Asimismo se proporciona otro polinomio a partir de cuyas raíces se calcula el conjunto de los divisores de orden 3. Se muestra la relación entre el rango del subgrupo de 3-torsión y la factorización del polinomio de la 3- torsión, y se describe la factorización del polinomio de trisección en términos de las órbitas galoisianas de la 3- torsión. Se generalizan estas ideas para otros valores de \ell y se determina el cuerpo de definición de una \ell-sección para \ell=3,5,7. Para curvas no-supersingulares en característica par también se da una caracterización de la 3-torsión y se proporciona un polinomio de trisección para un divisor cualquiera. Se da una generalización, para \ell arbitraria, de los algoritmos conocidos para el cómputo explícito del subgrupo de 2-Sylow, y se detalla explícitamente el algoritmo para el cómputo del subgrupo de 3-Sylow. Finalmente, se dan ejemplos de cómo obtener los valores de la reducción módulo 3 de los coeficientes centrales del polinomio característico del endomorfismo de Frobenius mediante los generadores proporcionados por el algoritmo de cálculo del 3-Sylow.
En aquesta tesi s'estudien algoritmes de \ell-divisió per a grups de punts de Jacobianes de corbes de gènere 2. Es presenten algoritmes de trisecció (divisió per \ell=3) per a Jacobianes de corbes de gènere 2 definides sobre cossos finits \F_q de característica parell o senar indistintament. En característica parell s'obté explícitament un polinomi de trisecció, les arrels del qual estan en bijecció amb el conjunt de triseccions d'un divisor de la Jacobiana qualsevol. De manera semblant, es proporciona un altre polinomi amb les arrels del qual es calcula el conjunt dels divisors d'ordre 3. Es mostra la relació entre el rang del subgrup de 3-torsió i la factorització del polinomi de la 3-torsió, i es descriu la factorització del polinomi de trisecció en termes de les òrbites galoisianes de la 3-torsió. Es generalitzen aquestes idees a altres valors de \ell i es determina el cos de definició d'una \ell-secció per a \ell=3,5,7. Per a corbes nosupersingulars en característica 2 també es proporciona una caracterització de la 3-torsió i un polinomi de trisecció per a un divisor qualsevol. Es dóna una generalització, per a \ell arbitrària, dels algoritmes coneguts per al càlcul explícit del subgrup de 2-Sylow, i es detalla explícitament en el cas del 3-Sylow. Finalment es mostren exemples de com obtenir els valors de la reducció mòdul 3 dels coeficients centrals del polinomi característic de l'endomorfisme de Frobenius fent servir els generadors proporcionats per l'algoritme de càlcul del 3-Sylow.
Cai, Zhi, and 蔡植. "A study on parameters generation of elliptic curve cryptosystem over finite fields." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31225639.
Full textFuselier, Jenny G. "Hypergeometric functions over finite fields and relations to modular forms and elliptic curves." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1547.
Full textHoshi, Yuichiro. "Absolute anabelian cuspidalizations of configuration spaces of proper hyperbolic curves over finite fields." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/126568.
Full text0048
新制・論文博士
博士(理学)
乙第12377号
論理博第1509号
新制||理||1507(附属図書館)
27312
UT51-2009-K686
京都大学大学院理学研究科数学・数理解析専攻
(主査)教授 望月 新一, 教授 玉川 安騎男, 教授 向井 茂
学位規則第4条第2項該当
Books on the topic "Curves over finite fields"
Moreno, Carlos J. Algebraic curves over finite fields. Cambridge [England]: Cambridge University Press, 1991.
Find full textFried, Michael D., ed. Applications of Curves over Finite Fields. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/conm/245.
Full textHansen, Søren Have. Rational points on curves over finite fields. [Aarhus, Denmark: Aarhus Universitet, Matematisk Institut, 1995.
Find full textAlam, Shajahan. Zeta-functions of curves over finite fields. Manchester: UMIST, 1996.
Find full textAMS-IMS-SIAM Joint Summer Research Conference on Applications of Curves over Finite Fields (1997 University of Washington). Applications of curves over finite fields: 1997 AMS-IMS-SIAM Joint Summer Research Conference on Applications of Curves over Finite Fields, July 27-31, 1997, University of Washington, Seattle. Edited by Fried Michael D. 1942-. Providence, R.I: American Mathematical Society, 1999.
Find full textAlgebraic curves and cryptography. Providence, R.I: American Mathematical Society, 2010.
Find full textShparlinski, Igor E., and David R. Kohel. Frobenius distributions: Lang-Trotter and Sato-Tate conjectures : Winter School on Frobenius Distributions on Curves, February 17-21, 2014 [and] Workshop on Frobenius Distributions on Curves, February 24-28, 2014, Centre International de Rencontres Mathematiques, Marseille, France. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textMoreno, Carlos. Algebraic curvesover finite fields. Cambridge: Cambridge University Press, 1991.
Find full textWinterhof, Arne, Harald Niederreiter, Alina Ostafe, and Daniel Panario. Algebraic curves and finite fields: Cryptography and other applications. Berlin: De Gruyter, 2014.
Find full textBook chapters on the topic "Curves over finite fields"
Husemöller, Dale. "Elliptic Curves over Finite Fields." In Elliptic Curves, 242–61. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-5119-2_14.
Full textTsfasman, Michael, Serge Vlǎduţ, and Dmitry Nogin. "Curves over finite fields." In Mathematical Surveys and Monographs, 133–89. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/139/03.
Full textBlake, Ian F., XuHong Gao, Ronald C. Mullin, Scott A. Vanstone, and Tomik Yaghoobian. "Elliptic Curves over Finite Fields." In Applications of Finite Fields, 139–50. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-2226-0_7.
Full textSilverman, Joseph H. "Elliptic Curves over Finite Fields." In The Arithmetic of Elliptic Curves, 137–56. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-09494-6_5.
Full textSilverman, Joseph H., and John T. Tate. "Cubic Curves over Finite Fields." In Rational Points on Elliptic Curves, 117–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18588-0_4.
Full textSilverman, Joseph H. "Elliptic Curves over Finite Fields." In The Arithmetic of Elliptic Curves, 130–45. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4757-1920-8_6.
Full textSilverman, Joseph H., and John Tate. "Cubic Curves over Finite Fields." In Rational Points on Elliptic Curves, 107–44. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4252-7_5.
Full textEnge, Andreas. "Elliptic Curves Over Finite Fields." In Elliptic Curves and Their Applications to Cryptography, 45–107. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5207-9_3.
Full textSury, B. "Elliptic Curves over Finite Fields." In Elliptic Curves, Modular Forms and Cryptography, 33–47. Gurgaon: Hindustan Book Agency, 2003. http://dx.doi.org/10.1007/978-93-86279-15-6_3.
Full textStepanov, Serguei A. "Counting Points on Curves over Finite Fields." In Codes on Algebraic Curves, 143–72. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4785-3_6.
Full textConference papers on the topic "Curves over finite fields"
Voight, John. "Curves over finite fields with many points: an introduction." In Computational Aspects of Algebraic Curves. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701640_0010.
Full textShparlinski, Igor E. "Pseudorandom Points on Elliptic Curves over Finite Fields." In Proceedings of the First SAGA Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793430_0006.
Full textShankar, B. R., and Kamath K. Karuna. "(2,1)-Lagged Fibonacci Generators Using Elliptic Curves over Finite Fields." In 2009 International Conference on Computer Engineering and Technology (ICCET). IEEE, 2009. http://dx.doi.org/10.1109/iccet.2009.103.
Full textBuchmann, Johannes, and Volker Müller. "Computing the number of points of elliptic curves over finite fields." In the 1991 international symposium. New York, New York, USA: ACM Press, 1991. http://dx.doi.org/10.1145/120694.120718.
Full textCohen, Ran. "Group Law Algorithms for Jacobian Varieties of Curves over Finite Fields." In Proceedings of the First SAGA Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793430_0011.
Full textDaikpor, Michael Naseimo, and Oluwole Adegbenro. "Arithmetic Operations on Elliptic Curves Defined over Un-conventional Element Finite Fields." In 2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). IEEE, 2012. http://dx.doi.org/10.1109/cyberc.2012.29.
Full textZhang, Yuhong, Meng Zhang, and Maozhi Xu. "Finding vulnerable curves over finite fields of characteristic 2 by pairing reduction." In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). IEEE, 2017. http://dx.doi.org/10.1109/icis.2017.7960080.
Full textFreeman, David, and Kristin Lauter. "Computing endomorphism rings of Jacobians of genus 2 curves over finite fields." In Proceedings of the First SAGA Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793430_0002.
Full textMcEliece, Robert J., and M. C. Rodriguez-palanquex. "AG Goppa Codes from Maximal Curves over determined Finite Fields of characteristic 2." In 2006 IEEE International Symposium on Information Theory. IEEE, 2006. http://dx.doi.org/10.1109/isit.2006.261891.
Full textIzu, Tetsuya, Masahiko Takenaka, and Masaya Yasuda. "Time Estimation of Cheon's Algorithm over Elliptic Curves on Finite Fields with Characteristic 3." In 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). IEEE, 2011. http://dx.doi.org/10.1109/imis.2011.113.
Full textReports on the topic "Curves over finite fields"
Wei, Fulu, Ce Wang, Xiangxi Tian, Shuo Li, and Jie Shan. Investigation of Durability and Performance of High Friction Surface Treatment. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317281.
Full text