To see the other types of publications on this topic, follow the link: Curves over finite fields.

Dissertations / Theses on the topic 'Curves over finite fields'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Curves over finite fields.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Voloch, J. F. "Curves over finite fields." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rovi, Carmen. "Algebraic Curves over Finite Fields." Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56761.

Full text
Abstract:

This thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions of covering curves: covers by the Hemitian curve, Kummer extensions and Artin-Schreier extensions. With these articles the great difficulty of finding explicit equations for curves with many rational points is overcome. With the method given by Arnaldo García in [6] we have been able to nd examples that can be used to define the lower bounds for the corresponding entries in the tables given in http: //wins.uva.nl/~geer, which to the time of writing this Thesis appear as "no information available". In fact, as the curves found are maximal, these entries no longer need a bound, they can be given by a unique entry, since the exact value of Nq(g) is now known.

At the end of the thesis an outline of the construction of Goppa codes is given and the NXL and XNL codes are presented.

 

APA, Harvard, Vancouver, ISO, and other styles
3

Thuen, Øystein Øvreås. "Constructing elliptic curves over finite fields using complex multiplication." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9434.

Full text
Abstract:

We study and improve the CM-method for the creation of elliptic curves with specified group order over finite fields. We include a thorough review of the mathematical theory needed to understand this method. The ability to construct elliptic curves with very special group order is important in pairing-based cryptography.

APA, Harvard, Vancouver, ISO, and other styles
4

Cam, Vural. "Drinfeld Modular Curves With Many Rational Points Over Finite Fields." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613118/index.pdf.

Full text
Abstract:
In our study Fq denotes the finite field with q elements. It is interesting to construct curves of given genus over Fq with many Fq -rational points. Drinfeld modular curves can be used to construct that kind of curves over Fq . In this study we will use reductions of the Drinfeld modular curves X_{0} (n) to obtain curves over finite fields with many rational points. The main idea is to divide the Drinfeld modular curves by an Atkin-Lehner involution which has many fixed points to obtain a quotient with a better #{rational points} /genus ratio. If we divide the Drinfeld modular curve X_{0} (n) by an involution W, then the number of rational points of the quotient curve WX_{0} (n) is not less than half of the original number. On the other hand, if this involution has many fixed points, then by the Hurwitz-Genus formula the genus of the curve WX_{0} (n) is much less than half of the g (X_{0}(n)).
APA, Harvard, Vancouver, ISO, and other styles
5

Kirlar, Baris Bulent. "Isomorphism Classes Of Elliptic Curves Over Finite Fields Of Characteristic Two." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606489/index.pdf.

Full text
Abstract:
In this thesis, the work of Menezes on the isomorphism classes of elliptic curves over finite fields of characteristic two is studied. Basic definitions and some facts of the elliptic curves required in this context are reviewed and group structure of elliptic curves are constructed. A fairly detailed investigation is made for the isomorphism classes of elliptic curves due to Menezes and Schoof. This work plays an important role in Elliptic Curve Digital Signature Algorithm. In this context, those isomorphism classes of elliptic curves recommended by National Institute of Standards and Technology are listed and their properties are discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Ducet, Virgile. "Construction of algebraic curves with many rational points over finite fields." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4043/document.

Full text
Abstract:
L'étude du nombre de points rationnels d'une courbe définie sur un corps fini se divise naturellement en deux cas : lorsque le genre est petit (typiquement g<=50), et lorsqu'il tend vers l'infini. Nous consacrons une partie de cette thèse à chacun de ces cas. Dans la première partie de notre étude nous expliquons comment calculer l'équation de n'importe quel revêtement abélien d'une courbe définie sur un corps fini. Nous utilisons pour cela la théorie explicite du corps de classe fournie par les extensions de Kummer et d'Artin-Schreier-Witt. Nous détaillons également un algorithme pour la recherche de bonnes courbes, dont l'implémentation fournit de nouveaux records de nombre de points sur les corps finis d'ordres 2 et 3. Nous étudions dans la seconde partie une formule de trace d'opérateurs de Hecke sur des formes modulaires quaternioniques, et montrons que les courbes de Shimura associées forment naturellement des suites récursives de courbes asymptotiquement optimales sur une extension quadratique du corps de base. Nous prouvons également qu'alors la contribution essentielle en points rationnels est fournie par les points supersinguliers
The study of the number of rational points of a curve defined over a finite field naturally falls into two cases: when the genus is small (typically g<=50), and when it tends to infinity. We devote one part of this thesis to each of these cases. In the first part of our study, we explain how to compute the equation of any abelian covering of a curve defined over a finite field. For this we use explicit class field theory provided by Kummer and Artin-Schreier-Witt extensions. We also detail an algorithm for the search of good curves, whose implementation provides new records of number of points over the finite fields of order 2 and 3. In the second part, we study a trace formula of Hecke operators on quaternionic modular forms, and we show that the associated Shimura curves of the form naturally form recursive sequences of asymptotically optimal curves over a quadratic extension of the base field. Moreover, we then prove that the essential contribution to the rational points is provided by supersingular points
APA, Harvard, Vancouver, ISO, and other styles
7

Riquelme, Faúndez Edgardo. "Algorithms for l-sections on genus two curves over finite fields and applications." Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/393881.

Full text
Abstract:
We study \ell-section algorithms for Jacobian of genus two over finite fields. We provide trisection (division by \ell=3) algorithms for Jacobians of genus 2 curves over finite fields \F_q of odd and even characteristic. In odd characteristic we obtain a symbolic trisection polynomial whose roots correspond (bijectively) to the set of trisections of the given divisor. We also construct a polynomial whose roots allow us to calculate the 3-torsion divisors. We show the relation between the rank of the 3-torsion subgroup and the factorization of this 3-torsion polynomial, and describe the factorization of the trisection polynomials in terms of the galois structure of the 3- torsion subgroup. We generalize these ideas and we determine the field of definition of an \ell-section with \ell \in {3, 5, 7}. In characteristic two for non-supersingular hyperelliptic curves we characterize the 3-torsion divisors and provide a polynomial whose roots correspond to the set of trisections of the given divisor. We also present a generalization of the known algorithms for the computation of the 2-Sylow subgroup to the case of the \ell-Sylow subgroup in general and we present explicit algorithms for the computation of the 3-Sylow subgroup. Finally we show some examples where we can obtain the central coefficients of the characteristic polynomial of the Frobenius endomorphism reduced modulo 3 using the generators obtained with the 3-Sylow algorithm.
En esta tesis se estudian algoritmos de \ell-división para Jacobianas de curvas de género 2. Se presentan algoritmos de trisección (división por \ell=3) para Jacobianas de curvas de género 2 definidas sobre cuerpos finitos \F_q de característica par o impar indistintamente. En característica impar se obtiene explícitamente un polinomio de trisección, cuyas raíces se corresponden biyectivamente con el conjunto de trisecciones de un divisor cualquiera de la Jacobiana. Asimismo se proporciona otro polinomio a partir de cuyas raíces se calcula el conjunto de los divisores de orden 3. Se muestra la relación entre el rango del subgrupo de 3-torsión y la factorización del polinomio de la 3- torsión, y se describe la factorización del polinomio de trisección en términos de las órbitas galoisianas de la 3- torsión. Se generalizan estas ideas para otros valores de \ell y se determina el cuerpo de definición de una \ell-sección para \ell=3,5,7. Para curvas no-supersingulares en característica par también se da una caracterización de la 3-torsión y se proporciona un polinomio de trisección para un divisor cualquiera. Se da una generalización, para \ell arbitraria, de los algoritmos conocidos para el cómputo explícito del subgrupo de 2-Sylow, y se detalla explícitamente el algoritmo para el cómputo del subgrupo de 3-Sylow. Finalmente, se dan ejemplos de cómo obtener los valores de la reducción módulo 3 de los coeficientes centrales del polinomio característico del endomorfismo de Frobenius mediante los generadores proporcionados por el algoritmo de cálculo del 3-Sylow.
En aquesta tesi s'estudien algoritmes de \ell-divisió per a grups de punts de Jacobianes de corbes de gènere 2. Es presenten algoritmes de trisecció (divisió per \ell=3) per a Jacobianes de corbes de gènere 2 definides sobre cossos finits \F_q de característica parell o senar indistintament. En característica parell s'obté explícitament un polinomi de trisecció, les arrels del qual estan en bijecció amb el conjunt de triseccions d'un divisor de la Jacobiana qualsevol. De manera semblant, es proporciona un altre polinomi amb les arrels del qual es calcula el conjunt dels divisors d'ordre 3. Es mostra la relació entre el rang del subgrup de 3-torsió i la factorització del polinomi de la 3-torsió, i es descriu la factorització del polinomi de trisecció en termes de les òrbites galoisianes de la 3-torsió. Es generalitzen aquestes idees a altres valors de \ell i es determina el cos de definició d'una \ell-secció per a \ell=3,5,7. Per a corbes nosupersingulars en característica 2 també es proporciona una caracterització de la 3-torsió i un polinomi de trisecció per a un divisor qualsevol. Es dóna una generalització, per a \ell arbitrària, dels algoritmes coneguts per al càlcul explícit del subgrup de 2-Sylow, i es detalla explícitament en el cas del 3-Sylow. Finalment es mostren exemples de com obtenir els valors de la reducció mòdul 3 dels coeficients centrals del polinomi característic de l'endomorfisme de Frobenius fent servir els generadors proporcionats per l'algoritme de càlcul del 3-Sylow.
APA, Harvard, Vancouver, ISO, and other styles
8

Cai, Zhi, and 蔡植. "A study on parameters generation of elliptic curve cryptosystem over finite fields." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31225639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fuselier, Jenny G. "Hypergeometric functions over finite fields and relations to modular forms and elliptic curves." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hoshi, Yuichiro. "Absolute anabelian cuspidalizations of configuration spaces of proper hyperbolic curves over finite fields." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/126568.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・論文博士
博士(理学)
乙第12377号
論理博第1509号
新制||理||1507(附属図書館)
27312
UT51-2009-K686
京都大学大学院理学研究科数学・数理解析専攻
(主査)教授 望月 新一, 教授 玉川 安騎男, 教授 向井 茂
学位規則第4条第2項該当
APA, Harvard, Vancouver, ISO, and other styles
11

Sze, Christopher. "Certain diagonal equations over finite fields." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Idrees, Zunera. "Elliptic Curves Cryptography." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17544.

Full text
Abstract:
In the thesis we study the elliptic curves and its use in cryptography. Elliptic curvesencompasses a vast area of mathematics. Elliptic curves have basics in group theory andnumber theory. The points on elliptic curve forms a group under the operation of addition.We study the structure of this group. We describe Hasse’s theorem to estimate the numberof points on the curve. We also discuss that the elliptic curve group may or may not becyclic over finite fields. Elliptic curves have applications in cryptography, we describe theapplication of elliptic curves for discrete logarithm problem and ElGamal cryptosystem.
APA, Harvard, Vancouver, ISO, and other styles
13

Jiminez, Contreras M. E. "Arcs and curves over a finite field and their points." Thesis, University of Sussex, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lester, Jeremy W. "The Elliptic Curve Group Over Finite Fields: Applications in Cryptography." Youngstown State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1348847698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Smith, Benjamin Andrew. "Explicit endomorphisms and correspondences." University of Sydney, 2006. http://hdl.handle.net/2123/1066.

Full text
Abstract:
Doctor of Philosophy (PhD)
In this work, we investigate methods for computing explicitly with homomorphisms (and particularly endomorphisms) of Jacobian varieties of algebraic curves. Our principal tool is the theory of correspondences, in which homomorphisms of Jacobians are represented by divisors on products of curves. We give families of hyperelliptic curves of genus three, five, six, seven, ten and fifteen whose Jacobians have explicit isogenies (given in terms of correspondences) to other hyperelliptic Jacobians. We describe several families of hyperelliptic curves whose Jacobians have complex or real multiplication; we use correspondences to make the complex and real multiplication explicit, in the form of efficiently computable maps on ideal class representatives. These explicit endomorphisms may be used for efficient integer multiplication on hyperelliptic Jacobians, extending Gallant--Lambert--Vanstone fast multiplication techniques from elliptic curves to higher dimensional Jacobians. We then describe Richelot isogenies for curves of genus two; in contrast to classical treatments of these isogenies, we consider all the Richelot isogenies from a given Jacobian simultaneously. The inter-relationship of Richelot isogenies may be used to deduce information about the endomorphism ring structure of Jacobian surfaces; we conclude with a brief exploration of these techniques.
APA, Harvard, Vancouver, ISO, and other styles
16

Keller, Timo [Verfasser], Uwe [Akademischer Betreuer] Jannsen, and Walter [Akademischer Betreuer] Gubler. "The conjecture of Birch and Swinnerton-Dyer for Jacobians of constant curves over higher dimensional bases over finite fields / Timo Keller. Betreuer: Uwe Jannsen ; Walter Gubler." Regensburg : Universitätsbibliothek Regensburg, 2013. http://d-nb.info/1059569612/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Abu-Mahfouz, Adnan Mohammed. "Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices." Diss., University of Pretoria, 2004. http://hdl.handle.net/2263/25330.

Full text
Abstract:
Data security will play a central role in the design of future IT systems. The PC has been a major driver of the digital economy. Recently, there has been a shift towards IT applications realized as embedded systems, because they have proved to be good solutions for many applications, especially those which require data processing in real time. Examples include security for wireless phones, wireless computing, pay-TV, and copy protection schemes for audio/video consumer products and digital cinemas. Most of these embedded applications will be wireless, which makes the communication channel vulnerable. The implementation of cryptographic systems presents several requirements and challenges. For example, the performance of algorithms is often crucial, and guaranteeing security is a formidable challenge. One needs encryption algorithms to run at the transmission rates of the communication links at speeds that are achieved through custom hardware devices. Public-key cryptosystems such as RSA, DSA and DSS have traditionally been used to accomplish secure communication via insecure channels. Elliptic curves are the basis for a relatively new class of public-key schemes. It is predicted that elliptic curve cryptosystems (ECCs) will replace many existing schemes in the near future. The main reason for the attractiveness of ECC is the fact that significantly smaller parameters can be used in ECC than in other competitive system, but with equivalent levels of security. The benefits of having smaller key size include faster computations, and reduction in processing power, storage space and bandwidth. This makes ECC ideal for constrained environments where resources such as power, processing time and memory are limited. The implementation of ECC requires several choices, such as the type of the underlying finite field, algorithms for implementing the finite field arithmetic, the type of the elliptic curve, algorithms for implementing the elliptic curve group operation, and elliptic curve protocols. Many of these selections may have a major impact on overall performance. In this dissertation a finite field from a special class called the Optimal Extension Field (OEF) is chosen as the underlying finite field of implementing ECC. OEFs utilize the fast integer arithmetic available on modern microcontrollers to produce very efficient results without resorting to multiprecision operations or arithmetic using polynomials of large degree. This dissertation discusses the theoretical and implementation issues associated with the development of this finite field in a low end embedded system. It also presents various improvement techniques for OEF arithmetic. The main objectives of this dissertation are to --Implement the functions required to perform the finite field arithmetic operations. -- Implement the functions required to generate an elliptic curve and to embed data on that elliptic curve. -- Implement the functions required to perform the elliptic curve group operation. All of these functions constitute a library that could be used to implement any elliptic curve cryptosystem. In this dissertation this library is implemented in an 8-bit AVR Atmel microcontroller.
Dissertation (MEng (Computer Engineering))--University of Pretoria, 2006.
Electrical, Electronic and Computer Engineering
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
18

Kultinov, Kirill. "Software Implementations and Applications of Elliptic Curve Cryptography." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559232475298514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fluder, Anna [Verfasser]. "Elliptic curves over function fields of elliptic curves / Anna Fluder." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1066645183/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jones, Andrew. "Modular elliptic curves over quartic CM fields." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/8791/.

Full text
Abstract:
In this thesis I establish the modularity of a number of elliptic curves defined over quartic CM fields, by showing that the Galois representation attached to such curves (arising from the natural Galois action on the l-adic Tate module) is isomorphic to a representation attached to a cuspidal automorphic form for GL(2) over the CM field in question. This is achieved through the study of the Hecke action on the cohomology of certain symmetric spaces, which are known to be isomorphic to spaces of cuspidal automorphic forms by a generalization of the Eichler-Shimura isomorphism.
APA, Harvard, Vancouver, ISO, and other styles
21

Garcia, Armas Mario. "Group actions on curves over arbitrary fields." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52472.

Full text
Abstract:
This thesis consists of three parts. The common theme is finite group actions on algebraic curves defined over an arbitrary field k. In Part I we classify finite group actions on irreducible conic curves defined over k. Equivalently, we classify finite (constant) subgroups of SO(q) up to conjugacy, where q is a nondegenerate quadratic form of rank 3 defined over k. In the case where k is the field of complex numbers, these groups were classified by F. Klein at the end of the 19th century. In recent papers of A. Beauville and X. Faber, this classification is extended to the case where k is arbitrary, but q is split. We further extend their results by classifying finite subgroups of SO(q) for any base field k of characteristic ≠ 2 and any nondegenerate ternary quadratic form q. In Part II we address the Hyperelliptic Lifting Problem (or HLP): Given a faithful G-action on ℙ¹ defined over k and an exact sequence 1 → μ₂ → Gʹ→ G → 1, determine the conditions for the existence of a hyperelliptic curve C/k endowed with a faithful Gʹ-action that lifts the prescribed G-action on the projective line. Alternatively, this problem may be regarded as the Galois embedding problem given by the surjection Gʹ ↠ G and the G-Galois extension k(ℙ¹)/k(ℙ¹)G. In this thesis, we find a complete solution to the HLP in characteristic 0 for every faithful group action on ℙ¹ and every exact sequence as above. In Part III we determine whether, given a finite group G and a base field k of characteristic 0, there exists a strongly incompressible G-curve defined over k. Recall that a G-curve is an algebraic curve endowed with the action of a finite group G. A faithful G-curve C is called strongly incompressible if every dominant G-equivariant rational map of C onto a faithful G-variety is birational. We prove that strongly incompressible G-curves exist if G cannot act faithfully on the projective line over k. On the other hand, if G does embed into PGL₂ over k, we show that the existence of strongly incompressible G-curves depends on finer arithmetic properties of k.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
22

Lockard, Shannon Renee. "Random vectors over finite fields." Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1181251515/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Giuzzi, Luca. "Hermitian varieties over finite fields." Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sharkey, Andrew. "Random polynomials over finite fields." Thesis, University of Glasgow, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Park, Jang-Woo. "Discrete dynamics over finite fields." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1252937730/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Cooley, Jenny. "Cubic surfaces over finite fields." Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/66304/.

Full text
Abstract:
It is well-known that the set of rational points on an elliptic curve forms an abelian group. When the curve is given as a plane cubic in Weierstrass form the group operation is defined via tangent and secant operations. Let S be a smooth cubic surface over a field K. Again one can define tangent and secant operations on S. These do not give S(K) a group structure, but one can still ask for the size of a minimal generating set. In Chapter 2 of the thesis I show that if S is a smooth cubic surface over a field K with at least 4 elements, and if S contains a skew pair of lines defined over K, then any non-Eckardt K-point on either line generates S(K). This strengthens a result of Siksek [20]. In Chapter 3, I show that if S is a smooth cubic surface over a finite field K = Fq with at least 8 elements, and if S contains at least one K-line, then there is some point P > S(K) that generates S(K). In Chapter 4, I consider cubic surfaces S over finite fields K = Fq that contain no K-lines. I find a lower bound for the proportion of points generated when starting with a non-Eckardt point P > S(K) and show that this lower bound tends to 1/6 as q tends to infinity. In Chapter 5, I define c-invariants of cubic surfaces over a finite field K = Fq with respect to a given K-line contained in S, give several results regarding these c-invariants and relate them to the number of points SS(K)S. In Chapter 6, I consider the problem of enumerating cubic surfaces over a finite field, K = Fq, with a given point, P > S(K), up to an explicit equivalence relation.
APA, Harvard, Vancouver, ISO, and other styles
27

Lotter, Ernest Christiaan. "On towers of function fields over finite fields." Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/1283.

Full text
Abstract:
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007.
Explicit towers of algebraic function fields over finite fields are studied by considering their ramification behaviour and complete splitting. While the majority of towers in the literature are recursively defined by a single defining equation in variable separated form at each step, we consider towers which may have different defining equations at each step and with arbitrary defining polynomials. The ramification and completely splitting loci are analysed by directed graphs with irreducible polynomials as vertices. Algorithms are exhibited to construct these graphs in the case of n-step and -finite towers. These techniques are applied to find new tamely ramified n-step towers for 1 n 3. Various new tame towers are found, including a family of towers of cubic extensions for which numerical evidence suggests that it is asymptotically optimal over the finite field with p2 elements for each prime p 5. Families of wildly ramified Artin-Schreier towers over small finite fields which are candidates to be asymptotically good are also considered using our method.
APA, Harvard, Vancouver, ISO, and other styles
28

Lötter, Ernest C. "On towers of function fields over finite fields /." Link to the online version, 2007. http://hdl.handle.net/10019.1/1283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Djabri, Zafer M. "P-descent on elliptic curves over number fields." Thesis, University of Kent, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Roberts, David. "Explicit decent on elliptic curves over function fields." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Imran, Muhammad. "Reducibility of Polynomials over Finite Fields." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17994.

Full text
Abstract:
Reducibility of certain class of polynomials over Fp, whose degree depends on p, can be deduced by checking the reducibility of a quadratic and cubic polynomial. This thesis explains how can we speeds up the reducibility procedure.
APA, Harvard, Vancouver, ISO, and other styles
32

Hua, Jiuzhao Mathematics &amp Statistics Faculty of Science UNSW. "Representations of quivers over finite fields." Awarded by:University of New South Wales. Mathematics & Statistics, 1998. http://handle.unsw.edu.au/1959.4/40405.

Full text
Abstract:
The main purpose of this thesis is to obtain surprising identities by counting the representations of quivers over finite fields. A classical result states that the dimension vectors of the absolutely indecomposable representations of a quiver ?? are in one-to-one correspondence with the positive roots of a root system ??, which is infinite in general. For a given dimension vector ?? ??? ??+, the number A??(??, q), which counts the isomorphism classes of the absolutely indecomposable representations of ?? of dimension ?? over the finite field Fq, turns out to be a polynomial in q with integer coefficients, which have been conjectured to be nonnegative by Kac. The main result of this thesis is a multi-variable formal identity which expresses an infinite series as a formal product indexed by ??+ which has the coefficients of various polynomials A??(??, q) as exponents. This identity turns out to be a qanalogue of the remarkable Weyl-Macdonald-Kac denominator identity modulus a conjecture of Kac, which asserts that the multiplicity of ?? is equal to the constant term of A??(??, q). An equivalent form of this conjecture is established and a partial solution is obtained. A new proof of the integrality of A??(??, q) is given. Three Maple programs have been included which enable one to calculate the polynomials A??(??, q) for quivers with at most three nodes. All sample out-prints are consistence with Kac???s conjectures. Another result of this thesis is as follows. Let A be a finite dimensional algebra over a perfect field K, M be a finitely generated indecomposable module over A ???K ??K. Then there exists a unique indecomposable module M??? over A such that M is a direct summand of M??? ???K ??K, and there exists a positive integer s such that Ms = M ??? ?? ?? ?? ??? M (s copies) has a unique minimal field of definition which is isomorphic to the centre of End ??(M???) rad (End ??(M???)). If K is a finite field, then s can be taken to be 1.
APA, Harvard, Vancouver, ISO, and other styles
33

Liu, Xiaoyu Wilson R. M. "On divisible codes over finite fields /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05252006-010331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Giangreco, Maidana Alejandro José. "Cyclic abelian varieties over finite fields." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0316.

Full text
Abstract:
L'ensemble A(k) des points rationnels d'une variété abélienne A définie sur un corps fini k forme un groupe abélien fini. Ce groupe convient pour des multiples applications, et sa structure est très importante. Connaître les possibles structures de groupe des A(k) et quelques statistiques est donc fondamental. Dans cette thèse, on s'intéresse aux "variétés cycliques", i.e. variétés abéliennes définies sur des corps finis avec groupe des points rationnels cyclique.Les isogénies nous donnent une classification plus grossière que celle donnée par les classes d'isomorphisme des variétés abéliennes, mais elles offrent un outil très puissant en géométrie algébrique. Chaque classe d'isogénie est déterminée par son polynôme de Weil. On donne un critère pour caractériser les "classes d'isogénies cycliques", i.e. classes d'isogénies de variétés abéliennes définies sur des corps finis qui contiennent seulement des variétés cycliques. Ce critère est basé sur le polynôme de Weil de la classe d'isogénie.À partir de cela, on donne des bornes de la proportion de classes d'isogénies cycliques parmi certaines familles de classes d'isogénies paramétrées par ses polynômes de Weil.On donne aussi la proportion de classes d'isogénies cycliques "locaux" parmi les classes d'isogénie définies sur des corps finis mathbb{F}_q avec q éléments, quand q tend à l'infini
The set A(k) of rational points of an abelian variety A defined over a finite field k forms a finite abelian group. This group is suitable for multiple applications, and its structure is very important. Knowing the possible group structures of A(k) and some statistics is then fundamental. In this thesis, we focus our interest in "cyclic varieties", i.e. abelian varieties defined over finite fields with cyclic group of rational points. Isogenies give us a coarser classification than that given by the isomorphism classes of abelian varieties, but they provide a powerful tool in algebraic geometry. Every isogeny class is determined by its Weil polynomial. We give a criterion to characterize "cyclic isogeny classes", i.e. isogeny classes of abelian varieties defined over finite fields containing only cyclic varieties. This criterion is based on the Weil polynomial of the isogeny class.From this, we give bounds on the fractions of cyclic isogeny classes among certain families of isogeny classes parameterized by their Weil polynomials.Also we give the proportion of "local"-cyclic isogeny classes among the isogeny classes defined over the finite field mathbb{F}_q with q elements, when q tends to infinity
APA, Harvard, Vancouver, ISO, and other styles
35

Colon-Reyes, Omar. "Monomial Dynamical Systems over Finite Fields." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/27415.

Full text
Abstract:
Linking the structure of a system with its dynamics is an important problem in the theory of finite dynamical systems. For monomial dynamical systems, that is, a system that can be described by monomials, information about the limit cycles can be obtained from the monomials themselves. In particular, this work contains sufficient and necessary conditions for a monomial dynamical system to have only fixed points as limit cycles.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
36

Zinevičius, Albertas. "Curves over number fields and their rings of integers." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102540-82929.

Full text
Abstract:
In this document, the author collected his work that ranges through the years 2006 - 2013. The common theme that occurs in its five parts is that of families of algebraic curves defined over the rational numbers with points over a number field or over its ring of integers. In the first part, average number of rational points of small height on hyperelliptic curves of fixed genus is described. In the second part, this result is extended to describing how often, on average, values of homogeneous polynomials at pairs of small coprime integers are values of a given univariate polynomial with integer coefficients. Further, small families of curves that are defined over the rational numbers and do not have points over a given number field are constructed. In the subsequent part, congruent number curves are investigated. It is shown that, given a cyclic number field K, at least half of the prime numbers p that remain inert in K correspond to curves 16p^2 = x^4 - y^2 that do not have nontrivial points over the ring of integers of K. In the last part, a short exposition to a classical technique of showing that a particular curve does not have integral points is given.
Disertaciją sudaro darbai, autoriaus atlikti 2006-2013 metais. Šiuos darbus jungianti tema yra algebrinių kreivių, apibrėžtų virš racionaliųjų skaičių, šeimos, einančios per taškus, kurių koordinatės priklauso duotam skaičių kūnui ar jo sveikųjų skaičių žiedui. Pirmoje disertacijos dalyje yra gaunama vidutinio mažo aukščio racionaliųjų taškų kiekio ant fiksuoto žanro hiperelipsinių kreivių asimptotika. Antroje dalyje šis rezultatas išplečiamas, apibūdinant vidutinį homogeninių daugianarių reikšmių taškuose, kurių koordinatės yra mažo aukščio tarpusavyje pirminiai skaičiai, sutampančių su duoto vieno kintamojo daugianario reikšmėmis sveikuosiuose taškuose, skaičių. Trečioje dalyje sukonstruojamos nedidelės kreivių, apibrėžtų virš racionaliųjų skaičių ir išvengiančių taškų, kurių koordinatės priklauso duotam skaičių kūnui, šeimos. Ketvirtoje dalyje nagrinėjamos kongruenčių skaičių kreivės. Įrodoma, kad bent pusė pirminių skaičių p, kurie lieka inertiški cikliniame skaičių kūne K, atitinka kreives 16p^2 = x^4 - y^2, neturinčias netrivialių taškų su koordinatėmis to kūno sveikųjų skaičių žiede. Paskutinėje dalyje iliustruojamas Gauso sveikųjų skaičių skaidymosi daugikliais vienatinumo taikymas įrodant, kad konkreti hiperelipsinė kreivė neturi taškų su sveikosiomis koordinatėmis.
APA, Harvard, Vancouver, ISO, and other styles
37

Lingham, Mark Peter. "Modular forms and elliptic curves over imaginary quadratic fields." Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/10138/.

Full text
Abstract:
The aim of this thesis is to contribute to an ongoing project to understand the correspondence between cusp forms, for imaginary quadratic fields, and elliptic curves. This contribution mainly takes the form of developing explicit constructions and computing particular examples. It is hoped that as well as being of interest in themselves, they will be helpful in guiding future theoretical developments. Cremona [7] began the programme of extending the classical techniques using modular symbols to the case of imaginary quadratic fields. He was followed by two of his students Whitley [25] and Bygott [5]. Together they have covered the cases where the class number of the field is equal to 1 or 2. This thesis extends their work to treat all fields of odd class number. It describes an algorithm, which holds for any such field, for determining the space of cusp forms, and for computing the eigenforms and eigenvalues for the action of the Hecke algebra on this space. The approach, using modular symbols, closely follows the work of the previous authors, but new techniques and theoretical simplifcations are obtained which hold in the case considered. All of the algorithms presented in this thesis have been implemented in a computer algebra package, Magma [3], and the results obtained for the fields Q(sqrt(-23)) and Q(sqrt(-31)) are included.
APA, Harvard, Vancouver, ISO, and other styles
38

Le, hung Bao Viet. "Modularity of some elliptic curves over totally real fields." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11464.

Full text
Abstract:
In this thesis, we investigate modularity of elliptic curves over a general totally real number field, establishing a finiteness result for the set non-modular j-invariants. By analyzing quadratic points on some modular curves, we show that all elliptic curves over certain real quadratic fields are modular.
Mathematics
APA, Harvard, Vancouver, ISO, and other styles
39

Fischbacher-Weitz, Helena Beate. "Equivariant Riemann-Roch theorems for curves over perfect fields." Thesis, University of Southampton, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Strambi, Marco. "Effective estimates for coverings of curves over number fields." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13895/document.

Full text
Abstract:
Le but de cette thèse est d'obtenir des versions totalement explicite de deux résultats fondamentales sur les revêtements de courbes algébriques: le Théorème d'existence de Riemann et le théorème de Chevalley-Weil. La motivation de notre travail sur le Théorème d'existence de Riemann réside dans le domaine de l'analyse diophantienne effective, lorsque la technique des revêtements est largement utilisé: trés souvent il arrive qu'on ne connait que le degré du revêtement et les points de ramification, et pour travailler avec le revêtement il faut en avoir une description efficace. Le théorème de Chevalley-Weil est également indispensable dans l'analyse diophantienne, car il permet de réduire un problème diophantien sur la variété V à celui sur le revêtement W, ce qui peut être plus simple à étudier. Dans la thèse on obtient une version du théorème de Chevalley-Weil en dimension 1, explicite en tous les paramètres et nettement meilleur que les versions précédentes
The purpose of this thesis is to obtain totally explicit versions for two fundamental results about coverings of algebraic curves: the Riemann Existence Theorem and the Chevalley-Weil Theorem. The motivation behind our work about Riemann Existence Theorem lies in the field of effective Diophantine analysis, where the covering technique is widely used: it happens quite often that only the degree of the covering and the ramification points are known, and to work with the covering curve, one needs to have an effective description of it. The Chevalley-Weil theorem is also indispensable in the Diophantine analysis because it reduces a Diophantine problem on the variety V to that on the covering variety W, which can often be simpler to deal. In the thesis we obtain a version of the Chevalley-Weil theorem in dimension 1, explicit in all parameters and considerably sharper than the previous versions
La tesi si propone di ottenere versioni totalmente esplicite di due risultati fondamentali riguardanti rivestimenti di curve algebriche: il teorema di esistenza di Riemann e il teorema di Chevalley-Weil. Le motivazioni del nostro lavoro sul teorema di esistenza di Riemann risiedono nella analisi diofantea effettiva, dove le tecniche di rivestimento sono ampiamente utilizzate: capita spesso di conoscere solo il grado e i punti di ramificazione di un rivestimento, e per lavorare con la curva e' necessario averne una descrizione esplicita. Il teorema di Chevalley-Weil e' altrettanto indispensabile in analisi diofantea poiche' riduce un problema diofanteo su una varieta' V a quello di un rivestimento W, dove spesso e' piu' facile lavorare. Nella tesi otteniamo una versione totalmente esplicita del teorema di Chevalley-Weil in dimensione 1, con stime molto migliori di quelle precedentemente conosciute
APA, Harvard, Vancouver, ISO, and other styles
41

Bygott, Jeremy S. "Modular forms and modular symbols over imaginary quadratic fields." Thesis, University of Exeter, 1998. http://hdl.handle.net/10871/8322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hanif, Sajid, and Muhammad Imran. "Factorization Algorithms for Polynomials over Finite Fields." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-11553.

Full text
Abstract:
Integer factorization is a dicult task. Some cryptosystem such asRSA (which stands for Rivest, Shamir and Adleman ) are in fact designedaround the diculty of integer factorization.For factorization of polynomials in a given nite eld Fp we can useBerlekamp's and Zassenhaus algorithms. In this project we will see howBerlekamp's and Zassenhaus algorithms work for factorization of polyno-mials in a nite eld Fp. This project is aimed toward those with interestsin computational algebra, nite elds, and linear algebra.
APA, Harvard, Vancouver, ISO, and other styles
43

Spencer, Andrew. "A study of matrices over finite fields." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hammarhjelm, Gustav. "Construction of Irreducible Polynomials over Finite Fields." Thesis, Uppsala universitet, Algebra och geometri, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-224900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Grout, Jason Nicholas. "The Minimum Rank Problem Over Finite Fields." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1995.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stones, Brendan. "Aspects of harmonic analysis over finite fields." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/14492.

Full text
Abstract:
In this thesis we study three topics in Harmonic Analysis in the finite field setting. The methods used are purely combinatorial in nature. We prove a sharp result for the maximal operator associated to dilations of quadric surfaces. We use Christ’s method ([Christ, Convolution, Curvature and Combinatorics. A case study, International Math. Research Notices 19 (1998)]), for Lp→ Lq estimates for convolution with the twisted n-bic curve in the European setting, to give Lp → Lq estimates for convolution with k-dimensional surfaces in the finite field setting. We give solution to the k-plane Radon transform problem and embark on a study of a generalisation of this problem.
APA, Harvard, Vancouver, ISO, and other styles
47

Whitley, Elise. "Modular forms and elliptic curves over imaginary quadratic number fields." Thesis, University of Exeter, 1990. http://hdl.handle.net/10871/8427.

Full text
Abstract:
The motivation for this thesis is two-fold. First we investigate the correspondence between elliptic curves with conductor a and newforms of weight 2 for I'0 (a), where a is an ideal of 'l?K and K is one of the 4 non-Euclidean imaginary quadratic number fields with class number 1. In Part I we develop an algorithm for finding rational newforms by calculating the action of the Hecke algebra on the first rational homology group of the hyperbolic upper half-space modulo I'o(a). This work is an extension of Cremona's work (4) on modular forms over the 5 Euclidean fields. We give tables of the results of implementing this algorithm on a computer. We list the dimensions of the +1eigenspaces for the action of J on H1( r0 (a)\H;, Q) along with the first few Hecke eigenvalues for each of the rational newforms. In addition we give tables of elliptic curves with small conductor, found via a sys- tematic computer search using Tate's algorithm, and the trace of Frobenius at the first few primes. In all cases agreement was found in the Hecke eigenvalues and trace of Frobenius at the first 15 primes. Secondly we provide extensive numerical evidence to support the Birch, Swin­ nerton-Dyer Conjecture. Part II is a description of joint work carried out with Cremona to calculate the quantities involved. We give tables of the results of these calculations over the 9 imaginary quadratic number fields with class number 1. We provide isogeny classes of curves of given conductor along with the order of the group of torsion points defined over K; the Cp numbers; and the complex period of each curve. For each of the newforms corresponding to a class of elliptic curves without complex multiplication, we calculate the ratio L( F, 1)/ 7r( F) where L( F, 1) is the value of the L-series of the newform, F, at s = 1 and 7r( F) is the period. In the cases where L(F, 1)/7r(F) =f 0 we list the values of L(F, 1) and 7r( F). In the majority of cases we find agreement in the quantities predicted in the conjecture.
APA, Harvard, Vancouver, ISO, and other styles
48

McConnell, Gary. "On the Iwasawa theory of elliptic curves over cyclotomic fields." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sechi, Gianluigi. "GL₂ Iwasawa theory of elliptic curves over global funtion fields." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cenk, Murat. "Results On Complexity Of Multiplication Over Finite Fields." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610363/index.pdf.

Full text
Abstract:
Let n and l be positive integers and f (x) be an irreducible polynomial over Fq such that ldeg( f (x)) <
2n - 1, where q is 2 or 3. We obtain an effective upper bound for the multiplication complexity of n-term polynomials modulo f (x)^l. This upper bound allows a better selection of the moduli when Chinese Remainder Theorem is used for polynomial multiplication over Fq. We give improved formulae to multiply polynomials of small degree over Fq. In particular we improve the best known multiplication complexities over Fq in the literature in some cases. Moreover, we present a method for multiplication in finite fields improving finite field multiplication complexity muq(n) for certain values of q and n. We use local expansions, the lengths of which are further parameters that can be used to optimize the bounds on the bilinear complexity, instead of evaluation into residue class field. We show that we obtain improved bounds for multiplication in Fq^n for certain values of q and n where 2 <
= n <
=18 and q = 2, 3, 4.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography