Dissertations / Theses on the topic 'Curves over finite fields'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Curves over finite fields.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Voloch, J. F. "Curves over finite fields." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355283.
Full textRovi, Carmen. "Algebraic Curves over Finite Fields." Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56761.
Full textThis thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions of covering curves: covers by the Hemitian curve, Kummer extensions and Artin-Schreier extensions. With these articles the great difficulty of finding explicit equations for curves with many rational points is overcome. With the method given by Arnaldo García in [6] we have been able to nd examples that can be used to define the lower bounds for the corresponding entries in the tables given in http: //wins.uva.nl/~geer, which to the time of writing this Thesis appear as "no information available". In fact, as the curves found are maximal, these entries no longer need a bound, they can be given by a unique entry, since the exact value of Nq(g) is now known.
At the end of the thesis an outline of the construction of Goppa codes is given and the NXL and XNL codes are presented.
Thuen, Øystein Øvreås. "Constructing elliptic curves over finite fields using complex multiplication." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9434.
Full textWe study and improve the CM-method for the creation of elliptic curves with specified group order over finite fields. We include a thorough review of the mathematical theory needed to understand this method. The ability to construct elliptic curves with very special group order is important in pairing-based cryptography.
Cam, Vural. "Drinfeld Modular Curves With Many Rational Points Over Finite Fields." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613118/index.pdf.
Full textKirlar, Baris Bulent. "Isomorphism Classes Of Elliptic Curves Over Finite Fields Of Characteristic Two." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606489/index.pdf.
Full textDucet, Virgile. "Construction of algebraic curves with many rational points over finite fields." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4043/document.
Full textThe study of the number of rational points of a curve defined over a finite field naturally falls into two cases: when the genus is small (typically g<=50), and when it tends to infinity. We devote one part of this thesis to each of these cases. In the first part of our study, we explain how to compute the equation of any abelian covering of a curve defined over a finite field. For this we use explicit class field theory provided by Kummer and Artin-Schreier-Witt extensions. We also detail an algorithm for the search of good curves, whose implementation provides new records of number of points over the finite fields of order 2 and 3. In the second part, we study a trace formula of Hecke operators on quaternionic modular forms, and we show that the associated Shimura curves of the form naturally form recursive sequences of asymptotically optimal curves over a quadratic extension of the base field. Moreover, we then prove that the essential contribution to the rational points is provided by supersingular points
Riquelme, Faúndez Edgardo. "Algorithms for l-sections on genus two curves over finite fields and applications." Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/393881.
Full textEn esta tesis se estudian algoritmos de \ell-división para Jacobianas de curvas de género 2. Se presentan algoritmos de trisección (división por \ell=3) para Jacobianas de curvas de género 2 definidas sobre cuerpos finitos \F_q de característica par o impar indistintamente. En característica impar se obtiene explícitamente un polinomio de trisección, cuyas raíces se corresponden biyectivamente con el conjunto de trisecciones de un divisor cualquiera de la Jacobiana. Asimismo se proporciona otro polinomio a partir de cuyas raíces se calcula el conjunto de los divisores de orden 3. Se muestra la relación entre el rango del subgrupo de 3-torsión y la factorización del polinomio de la 3- torsión, y se describe la factorización del polinomio de trisección en términos de las órbitas galoisianas de la 3- torsión. Se generalizan estas ideas para otros valores de \ell y se determina el cuerpo de definición de una \ell-sección para \ell=3,5,7. Para curvas no-supersingulares en característica par también se da una caracterización de la 3-torsión y se proporciona un polinomio de trisección para un divisor cualquiera. Se da una generalización, para \ell arbitraria, de los algoritmos conocidos para el cómputo explícito del subgrupo de 2-Sylow, y se detalla explícitamente el algoritmo para el cómputo del subgrupo de 3-Sylow. Finalmente, se dan ejemplos de cómo obtener los valores de la reducción módulo 3 de los coeficientes centrales del polinomio característico del endomorfismo de Frobenius mediante los generadores proporcionados por el algoritmo de cálculo del 3-Sylow.
En aquesta tesi s'estudien algoritmes de \ell-divisió per a grups de punts de Jacobianes de corbes de gènere 2. Es presenten algoritmes de trisecció (divisió per \ell=3) per a Jacobianes de corbes de gènere 2 definides sobre cossos finits \F_q de característica parell o senar indistintament. En característica parell s'obté explícitament un polinomi de trisecció, les arrels del qual estan en bijecció amb el conjunt de triseccions d'un divisor de la Jacobiana qualsevol. De manera semblant, es proporciona un altre polinomi amb les arrels del qual es calcula el conjunt dels divisors d'ordre 3. Es mostra la relació entre el rang del subgrup de 3-torsió i la factorització del polinomi de la 3-torsió, i es descriu la factorització del polinomi de trisecció en termes de les òrbites galoisianes de la 3-torsió. Es generalitzen aquestes idees a altres valors de \ell i es determina el cos de definició d'una \ell-secció per a \ell=3,5,7. Per a corbes nosupersingulars en característica 2 també es proporciona una caracterització de la 3-torsió i un polinomi de trisecció per a un divisor qualsevol. Es dóna una generalització, per a \ell arbitrària, dels algoritmes coneguts per al càlcul explícit del subgrup de 2-Sylow, i es detalla explícitament en el cas del 3-Sylow. Finalment es mostren exemples de com obtenir els valors de la reducció mòdul 3 dels coeficients centrals del polinomi característic de l'endomorfisme de Frobenius fent servir els generadors proporcionats per l'algoritme de càlcul del 3-Sylow.
Cai, Zhi, and 蔡植. "A study on parameters generation of elliptic curve cryptosystem over finite fields." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31225639.
Full textFuselier, Jenny G. "Hypergeometric functions over finite fields and relations to modular forms and elliptic curves." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1547.
Full textHoshi, Yuichiro. "Absolute anabelian cuspidalizations of configuration spaces of proper hyperbolic curves over finite fields." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/126568.
Full text0048
新制・論文博士
博士(理学)
乙第12377号
論理博第1509号
新制||理||1507(附属図書館)
27312
UT51-2009-K686
京都大学大学院理学研究科数学・数理解析専攻
(主査)教授 望月 新一, 教授 玉川 安騎男, 教授 向井 茂
学位規則第4条第2項該当
Sze, Christopher. "Certain diagonal equations over finite fields." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003018.
Full textIdrees, Zunera. "Elliptic Curves Cryptography." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17544.
Full textJiminez, Contreras M. E. "Arcs and curves over a finite field and their points." Thesis, University of Sussex, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400044.
Full textLester, Jeremy W. "The Elliptic Curve Group Over Finite Fields: Applications in Cryptography." Youngstown State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1348847698.
Full textSmith, Benjamin Andrew. "Explicit endomorphisms and correspondences." University of Sydney, 2006. http://hdl.handle.net/2123/1066.
Full textIn this work, we investigate methods for computing explicitly with homomorphisms (and particularly endomorphisms) of Jacobian varieties of algebraic curves. Our principal tool is the theory of correspondences, in which homomorphisms of Jacobians are represented by divisors on products of curves. We give families of hyperelliptic curves of genus three, five, six, seven, ten and fifteen whose Jacobians have explicit isogenies (given in terms of correspondences) to other hyperelliptic Jacobians. We describe several families of hyperelliptic curves whose Jacobians have complex or real multiplication; we use correspondences to make the complex and real multiplication explicit, in the form of efficiently computable maps on ideal class representatives. These explicit endomorphisms may be used for efficient integer multiplication on hyperelliptic Jacobians, extending Gallant--Lambert--Vanstone fast multiplication techniques from elliptic curves to higher dimensional Jacobians. We then describe Richelot isogenies for curves of genus two; in contrast to classical treatments of these isogenies, we consider all the Richelot isogenies from a given Jacobian simultaneously. The inter-relationship of Richelot isogenies may be used to deduce information about the endomorphism ring structure of Jacobian surfaces; we conclude with a brief exploration of these techniques.
Keller, Timo [Verfasser], Uwe [Akademischer Betreuer] Jannsen, and Walter [Akademischer Betreuer] Gubler. "The conjecture of Birch and Swinnerton-Dyer for Jacobians of constant curves over higher dimensional bases over finite fields / Timo Keller. Betreuer: Uwe Jannsen ; Walter Gubler." Regensburg : Universitätsbibliothek Regensburg, 2013. http://d-nb.info/1059569612/34.
Full textAbu-Mahfouz, Adnan Mohammed. "Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices." Diss., University of Pretoria, 2004. http://hdl.handle.net/2263/25330.
Full textDissertation (MEng (Computer Engineering))--University of Pretoria, 2006.
Electrical, Electronic and Computer Engineering
unrestricted
Kultinov, Kirill. "Software Implementations and Applications of Elliptic Curve Cryptography." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559232475298514.
Full textFluder, Anna [Verfasser]. "Elliptic curves over function fields of elliptic curves / Anna Fluder." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1066645183/34.
Full textJones, Andrew. "Modular elliptic curves over quartic CM fields." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/8791/.
Full textGarcia, Armas Mario. "Group actions on curves over arbitrary fields." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52472.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Lockard, Shannon Renee. "Random vectors over finite fields." Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1181251515/.
Full textGiuzzi, Luca. "Hermitian varieties over finite fields." Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326913.
Full textSharkey, Andrew. "Random polynomials over finite fields." Thesis, University of Glasgow, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299963.
Full textPark, Jang-Woo. "Discrete dynamics over finite fields." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1252937730/.
Full textCooley, Jenny. "Cubic surfaces over finite fields." Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/66304/.
Full textLotter, Ernest Christiaan. "On towers of function fields over finite fields." Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/1283.
Full textExplicit towers of algebraic function fields over finite fields are studied by considering their ramification behaviour and complete splitting. While the majority of towers in the literature are recursively defined by a single defining equation in variable separated form at each step, we consider towers which may have different defining equations at each step and with arbitrary defining polynomials. The ramification and completely splitting loci are analysed by directed graphs with irreducible polynomials as vertices. Algorithms are exhibited to construct these graphs in the case of n-step and -finite towers. These techniques are applied to find new tamely ramified n-step towers for 1 n 3. Various new tame towers are found, including a family of towers of cubic extensions for which numerical evidence suggests that it is asymptotically optimal over the finite field with p2 elements for each prime p 5. Families of wildly ramified Artin-Schreier towers over small finite fields which are candidates to be asymptotically good are also considered using our method.
Lötter, Ernest C. "On towers of function fields over finite fields /." Link to the online version, 2007. http://hdl.handle.net/10019.1/1283.
Full textDjabri, Zafer M. "P-descent on elliptic curves over number fields." Thesis, University of Kent, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310161.
Full textRoberts, David. "Explicit decent on elliptic curves over function fields." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518685.
Full textImran, Muhammad. "Reducibility of Polynomials over Finite Fields." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17994.
Full textHua, Jiuzhao Mathematics & Statistics Faculty of Science UNSW. "Representations of quivers over finite fields." Awarded by:University of New South Wales. Mathematics & Statistics, 1998. http://handle.unsw.edu.au/1959.4/40405.
Full textLiu, Xiaoyu Wilson R. M. "On divisible codes over finite fields /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05252006-010331.
Full textGiangreco, Maidana Alejandro José. "Cyclic abelian varieties over finite fields." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0316.
Full textThe set A(k) of rational points of an abelian variety A defined over a finite field k forms a finite abelian group. This group is suitable for multiple applications, and its structure is very important. Knowing the possible group structures of A(k) and some statistics is then fundamental. In this thesis, we focus our interest in "cyclic varieties", i.e. abelian varieties defined over finite fields with cyclic group of rational points. Isogenies give us a coarser classification than that given by the isomorphism classes of abelian varieties, but they provide a powerful tool in algebraic geometry. Every isogeny class is determined by its Weil polynomial. We give a criterion to characterize "cyclic isogeny classes", i.e. isogeny classes of abelian varieties defined over finite fields containing only cyclic varieties. This criterion is based on the Weil polynomial of the isogeny class.From this, we give bounds on the fractions of cyclic isogeny classes among certain families of isogeny classes parameterized by their Weil polynomials.Also we give the proportion of "local"-cyclic isogeny classes among the isogeny classes defined over the finite field mathbb{F}_q with q elements, when q tends to infinity
Colon-Reyes, Omar. "Monomial Dynamical Systems over Finite Fields." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/27415.
Full textPh. D.
Zinevičius, Albertas. "Curves over number fields and their rings of integers." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102540-82929.
Full textDisertaciją sudaro darbai, autoriaus atlikti 2006-2013 metais. Šiuos darbus jungianti tema yra algebrinių kreivių, apibrėžtų virš racionaliųjų skaičių, šeimos, einančios per taškus, kurių koordinatės priklauso duotam skaičių kūnui ar jo sveikųjų skaičių žiedui. Pirmoje disertacijos dalyje yra gaunama vidutinio mažo aukščio racionaliųjų taškų kiekio ant fiksuoto žanro hiperelipsinių kreivių asimptotika. Antroje dalyje šis rezultatas išplečiamas, apibūdinant vidutinį homogeninių daugianarių reikšmių taškuose, kurių koordinatės yra mažo aukščio tarpusavyje pirminiai skaičiai, sutampančių su duoto vieno kintamojo daugianario reikšmėmis sveikuosiuose taškuose, skaičių. Trečioje dalyje sukonstruojamos nedidelės kreivių, apibrėžtų virš racionaliųjų skaičių ir išvengiančių taškų, kurių koordinatės priklauso duotam skaičių kūnui, šeimos. Ketvirtoje dalyje nagrinėjamos kongruenčių skaičių kreivės. Įrodoma, kad bent pusė pirminių skaičių p, kurie lieka inertiški cikliniame skaičių kūne K, atitinka kreives 16p^2 = x^4 - y^2, neturinčias netrivialių taškų su koordinatėmis to kūno sveikųjų skaičių žiede. Paskutinėje dalyje iliustruojamas Gauso sveikųjų skaičių skaidymosi daugikliais vienatinumo taikymas įrodant, kad konkreti hiperelipsinė kreivė neturi taškų su sveikosiomis koordinatėmis.
Lingham, Mark Peter. "Modular forms and elliptic curves over imaginary quadratic fields." Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/10138/.
Full textLe, hung Bao Viet. "Modularity of some elliptic curves over totally real fields." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11464.
Full textMathematics
Fischbacher-Weitz, Helena Beate. "Equivariant Riemann-Roch theorems for curves over perfect fields." Thesis, University of Southampton, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444966.
Full textStrambi, Marco. "Effective estimates for coverings of curves over number fields." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13895/document.
Full textThe purpose of this thesis is to obtain totally explicit versions for two fundamental results about coverings of algebraic curves: the Riemann Existence Theorem and the Chevalley-Weil Theorem. The motivation behind our work about Riemann Existence Theorem lies in the field of effective Diophantine analysis, where the covering technique is widely used: it happens quite often that only the degree of the covering and the ramification points are known, and to work with the covering curve, one needs to have an effective description of it. The Chevalley-Weil theorem is also indispensable in the Diophantine analysis because it reduces a Diophantine problem on the variety V to that on the covering variety W, which can often be simpler to deal. In the thesis we obtain a version of the Chevalley-Weil theorem in dimension 1, explicit in all parameters and considerably sharper than the previous versions
La tesi si propone di ottenere versioni totalmente esplicite di due risultati fondamentali riguardanti rivestimenti di curve algebriche: il teorema di esistenza di Riemann e il teorema di Chevalley-Weil. Le motivazioni del nostro lavoro sul teorema di esistenza di Riemann risiedono nella analisi diofantea effettiva, dove le tecniche di rivestimento sono ampiamente utilizzate: capita spesso di conoscere solo il grado e i punti di ramificazione di un rivestimento, e per lavorare con la curva e' necessario averne una descrizione esplicita. Il teorema di Chevalley-Weil e' altrettanto indispensabile in analisi diofantea poiche' riduce un problema diofanteo su una varieta' V a quello di un rivestimento W, dove spesso e' piu' facile lavorare. Nella tesi otteniamo una versione totalmente esplicita del teorema di Chevalley-Weil in dimensione 1, con stime molto migliori di quelle precedentemente conosciute
Bygott, Jeremy S. "Modular forms and modular symbols over imaginary quadratic fields." Thesis, University of Exeter, 1998. http://hdl.handle.net/10871/8322.
Full textHanif, Sajid, and Muhammad Imran. "Factorization Algorithms for Polynomials over Finite Fields." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-11553.
Full textSpencer, Andrew. "A study of matrices over finite fields." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365392.
Full textHammarhjelm, Gustav. "Construction of Irreducible Polynomials over Finite Fields." Thesis, Uppsala universitet, Algebra och geometri, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-224900.
Full textGrout, Jason Nicholas. "The Minimum Rank Problem Over Finite Fields." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1995.pdf.
Full textStones, Brendan. "Aspects of harmonic analysis over finite fields." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/14492.
Full textWhitley, Elise. "Modular forms and elliptic curves over imaginary quadratic number fields." Thesis, University of Exeter, 1990. http://hdl.handle.net/10871/8427.
Full textMcConnell, Gary. "On the Iwasawa theory of elliptic curves over cyclotomic fields." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307064.
Full textSechi, Gianluigi. "GL₂ Iwasawa theory of elliptic curves over global funtion fields." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613046.
Full textCenk, Murat. "Results On Complexity Of Multiplication Over Finite Fields." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610363/index.pdf.
Full text2n - 1, where q is 2 or 3. We obtain an effective upper bound for the multiplication complexity of n-term polynomials modulo f (x)^l. This upper bound allows a better selection of the moduli when Chinese Remainder Theorem is used for polynomial multiplication over Fq. We give improved formulae to multiply polynomials of small degree over Fq. In particular we improve the best known multiplication complexities over Fq in the literature in some cases. Moreover, we present a method for multiplication in finite fields improving finite field multiplication complexity muq(n) for certain values of q and n. We use local expansions, the lengths of which are further parameters that can be used to optimize the bounds on the bilinear complexity, instead of evaluation into residue class field. We show that we obtain improved bounds for multiplication in Fq^n for certain values of q and n where 2 <
= n <
=18 and q = 2, 3, 4.