Dissertations / Theses on the topic 'Curves, Plane. Curves, Quartic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Curves, Plane. Curves, Quartic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Jones, Andrew. "Modular elliptic curves over quartic CM fields." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/8791/.
Full textSmilovic, Mikhail. "Curves on a plane." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106605.
Full textDans cette thése, nous étudierons l'espace d'immersions d'un cercle au plan Imm(S¹,R²), modulo le groupe de difféomorphisme sur S¹. Nous discuterons de divers métriques riemanniennes et monterons la surprenante impossibilité de séparer des points dans la métrique L². Nous présenterons deux méthodes de renforcer cette métrique, une pour obtenir une métrique non-nulle, et une autre pour stabiliser le flot d'énergie. Nous donnerons les formules pour les géodésiques et l'énergie, et donnerons un exemple de calcul de géodésiques dans le cas des cercles concentriques. Nous étendrons alors nos résultats sur la plus grande espace d'immersion d'une variété M compacte à une variété riemannienne (N,g), modulo le groupe de difféomorphisme sur M.
Nichols, Margaret E. "Intersection Number of Plane Curves." Oberlin College Honors Theses / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1385137385.
Full textDebrecht, Johanna M. "Plane Curves, Convex Curves, and Their Deformation Via the Heat Equation." Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278501/.
Full textMarkwig, Hannah. "The enumeration of plane tropical curves." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980700736.
Full textGranholm, Jonas. "Remarkable curves in the Euclidean plane." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112576.
Full textPeternell, Carolin Susanne [Verfasser]. "Birational models for moduli of quartic rational curves / Carolin Susanne Peternell." Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1164037919/34.
Full textRadzimski, Vanessa Elena. "Points of small height on plane curves." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46341.
Full textHolanda, Felipe D'Angelo. "Introduction to differential geometry of plane curves." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15052.
Full textA intenÃÃo desse trabalho serà de abordar de forma bÃsica e introdutÃria o estudo da Geometria Diferencial, que por sua vez tem seus estudos iniciados com as Curvas Planas. Serà necessÃrio um conhecimento de CÃlculo Diferencial, Integral e Geometria AnalÃtica para melhor compreensÃo desse trabalho, pois como seu prÃprio nome nos transparece Geometria Diferencial vem de uma junÃÃo do estudo da Geometria envolvendo CÃlculo. Assim abordaremos subtemas como curvas suaves, vetor tangente, comprimento de arco passando por fÃrmulas de Frenet, curvas evolutas e involutas e finalizaremos com alguns teoremas importantes, como o teorema fundamental das curvas planas, teorema de Jordan e o teorema dos quatro vÃrtices. O que, basicamente representa, o capÃtulo 1, 4 e 6 do livro IntroduÃÃo Ãs Curvas Planas de HilÃrio Alencar e Walcy Santos.
The intention of this work is to address in basic form and introductory study of Differential Geometry, which in turn has started his studies with Planas curves. It will require a knowledge of Differential Calculus, Integral and Analytic Geometry for better understanding of this work, because as its name says in Differential Geometry comes from the joint study of geometry involving Calculation. So we discuss sub-themes as smooth curves, tangent vector, arc length through formulas of Frenet, evolutas curves and involute and conclude with some important theorems, as the fundamental theorem of plane curves, Jordan 's theorem and the theorem of four vertices. What basically is, Chapter 1, 4 and 6 of the book Introduction to Plane Curves HilÃrio Alencar and Walcy Santos.
Al-Shammari, Fahd M. "Jacobians of plane quintic curves of genus one." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/289840.
Full textHacking, P. "A compactification of the space of plane curves." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599821.
Full textMeco, Benjamin. "Expanding flows of curves in the hyperbolic plane." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446016.
Full textSaloom, Amani Hussain. "Curves in the Minkowski plane and Lorentzian surfaces." Thesis, Durham University, 2012. http://etheses.dur.ac.uk/4451/.
Full textBlanco, Fernández Guillem. "Bernstein-Sato polynomial of plane curves and Yano's conjecture." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669107.
Full textEl principal objectiu d'aquesta tesi és l'estudi del polinomi de Bernstein-Sato de singularitats de corbes planes. En aquest context, es demostra una conjectura proposada per Yano el 1982 sobre els \( b \)-exponents genèrics d'una corba plana irreductible. En una part d'aquesta tesi, s'estudia el polinomi de Bernstein-Sato utilitzant la continuació analítica de la funció zeta complexa d'una singularitat. S'obtenen diversos resultat sobre l'anul·lació i no anul·lació del residu de la funció zeta complexa d'una corba plana. Utilitzant aquests resultats, s'obté una demostració de la conjectura de Yano sota la hipòtesi de que els valors propis de la monodromia siguin diferents dos a dos. En un altre part de la tesi, s'estudien els períodes d'integrals en la fibra de Milnor i la seva expansió asimptòtica. Aquesta expansió asimptòtica dels períodes pot ser relacionada amb els b-exponents i pot ser construïda en termes de la resolució de singularitats. Utilitzant aquestes tècniques, es presenta una prova del cas general de la conjectura de Yano. A més a més del polinomi de Bernstein-Sato, també s'estudia el nombre de Tjurina mínim d'una corba plana irreductible i responem positivament a una pregunta formulada per Dimca i Greuel sobre el quocient entre els nombres de Milnor i Tjurina. Concretament, es demostra una fórmula pel nombre de Tjurina mínim en un classe d'equisingularitat de corbes planes irreductibles en termes de la seqüència de multiplicitats de la transformada estricta al llarg de la resolució minimal. A partir d'aquesta fórmula, s'obté la resposta positiva a la pregunta de Dimca i Greuel. Aquesta tesi també conté resultats computacionals per la teoria de singularitats en superfícies complexes llises. Primer, es descriu un algorisme que calcula la log-resolució d'ideals en un superfície complexa llisa. En segon lloc, es dona un algorisme per calcular generadors per ideals complets en una superfície complexa llisa. Aquests algorismes tenen diverses aplicacions, com per exemple, en el càlcul d'ideals multiplicadors associats a un ideal en una superfície complexa llisa.
Jaramillo, Puentes Andrés. "Rigid isotopy classification of real quintic rational plane curves." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066116/document.
Full textIn order to study the rigid isotopy classes of nodal rational curves of degree $5$ in $\RPP$, we associate to every real rational quintic curve with a marked real nodal point a trigonal curve in the Hirzebruch surface $\Sigma_3$ and the corresponding nodal real dessin on~$\CP/(z\mapsto\bar{z})$. The dessins are real versions, proposed by S. Orevkov~\cite{Orevkov}, of Grothendieck's {\it dessins d'enfants}. The {\it dessins} are graphs embedded in a topological surface and endowed with a certain additional structure. We study the combinatorial properties and decompositions of dessins corresponding to real nodal trigonal curves~$C\subset \Sigma$ in real ruled surfaces~$\Sigma$. Uninodal dessins in any surface with non-empty boundary and nodal dessins in the disk can be decomposed in blocks corresponding to cubic dessins in the disk~$\mathbf{D}^2$, which produces a classification of these dessins. The classification of dessins under consideration leads to a rigid isotopy classification of real rational quintics in~$\RPP$
Eriksson, Östman Albin. "The Total Curvature of Disks Extending Regular Closed Plane Curves." Thesis, Uppsala University, Department of Mathematics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-120507.
Full textFarag, Eslam Essam Ebrahim. "On the stratification of smooth plane curves by automorphism groups." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457868.
Full textSmooth projective curves over a field with non-trivial automorphism group are always of deep interest in the literature. Following the philosophy of Diophantine equations theory, the simplest case is to consider smooth plane curves over of geometric genus In the thesis, we study the stratification of smooth plane curves by their automorphism groups and we deal with both algebraic and arithmetic geometry aspects. We first give a general study of the stratum, consisting of -isomorphism classes of smooth plane curves of fix genus with a fixed automorphism subgroup , where is a fixed algebraic closure of . In particular, a detailed study of the structure of their automorphism group and the associated defining equations is investigated. Second, let be a smooth projective curve defined over , which is also plane viewed as a smooth curve over . We aim to study fields of definition for non-singular plane models of and also of its twists over k by considering the embedding into instead of the one given by the canonical model into More concretely, we ask whether is a smooth plane curve over or not; and if the answer is yes, is every twist of over also a smooth plane curve over For both questions the answer is no in general, it is not. We obtain results for the curves for which the above questions always have an affirmative answer, and we show different examples concerning the negative general answer. Interestingly, in the way to get these examples, we need to handle with non-trivial Brauer-Severi surfaces, and we are able to compute explicit equations of a non-trivial one. As far as we know, this is the first time that such equations are exhibited. Third, we obtain a so-called representative classification for the strata by automorphism group of smooth -plane curves of genus , where is perfect of characteristic or . Interestingly, in the way to get these families, we find two remarkable phenomena that did not appear before. One is the existence of a non -dimensional final stratum of plane curves. At a first sight it may sound odd, but we will see that this is a normal situation for higher degrees and we will give an explanation for it. We explicitly describe representative families for all strata, except for the stratum with cyclic automorphism group of order (fortunately, we are still able to prove the existence of such family by applying a version of Lüroth’s theorem in dimension 2). Here we find the second difference with the lower genus cases where the known techniques do not fully work. Finally, let be a perfect field of characteristic different from , and be a smooth plane curve over whose automorphism group of is -conjugate to a diagonal group. It is known from the work of B. Huggins in her PhD thesis (2010, Berkeley) that the field of moduli for , relative to the Galois extension does not need to be a field of definition. Motivated by these results, we wonder about characterizations of such curves not definable over their field of moduli. We distinguish between the two cases depending on whether the number of points of the projective plane fixed by the automorphism group is finite or infinite. Our results can be usede as a constructive source of so many examples of smooth plane curves with cyclic automorphism where the field of moduli is not a field of definition.
Cohen, Camron Alexander Robey. "CURVING TOWARDS BÉZOUT: AN EXAMINATION OF PLANE CURVES AND THEIR INTERSECTION." Oberlin College Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin159345184740689.
Full textChen, Qun. "Hilbert-Kunz multiplicity of plane curves and a conjecture of K. Pardue." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq41416.pdf.
Full textHilmar, Jan. "Intersection of algebraic plane curves : some results on the (monic) integer transfinite diameter." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/3843.
Full textMokhtarian, Farzin. "A theory of multi-scale, curvature and torsion based shape representation for planar and space curves." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/30740.
Full textScience, Faculty of
Computer Science, Department of
Graduate
Roos, Joris [Verfasser]. "Singular integrals and maximal operators related to Carleson's theorem and curves in the plane / Joris Roos." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1139049038/34.
Full textKillian, Kenneth. "Maxwell’s Problem on Point Charges in the Plane." Scholar Commons, 2008. https://scholarcommons.usf.edu/etd/333.
Full textGrudsky, Serguey, and Nikolai Tarkhanov. "Conformal reduction of boundary problems for harmonic functions in a plane domain with strong singularities on the boundary." Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5774/.
Full textRimmasch, Gretchen. "Complete Tropical Bezout's Theorem and Intersection Theory in the Tropical Projective Plane." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2507.pdf.
Full textFantin, Silas. "Monodromia de curvas algébricas planas." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10122007-165559/.
Full textIn 1968, J. Milnor introduced the Picard-Lefschetz monodromy of a complex hypersurface with an isolated singularity. Subsequently, E. Brieskorn asked if this monodromy is always finite. In 1972, Lê Dúng Trâng proved that the answer is positive in the case of irreducible analytic germs of plane curves. At this time, examples of plane curves with two branches and finite monodromy were known. In 1973, N. A?Campo produced the first example of a germ of plane curve with two branches and infinite monodromy. Therefore, the simplest and still open problem in this context is to determine whether the monodromy of a plane curve with two branches is finite or infinite. The present work consists in determining, in several situations, the minimal polynomial of the monodromy for germs of plane analytic curves with two branches, whose genera are less or equal than two, wich allows us to decide its finiteness
Tewari, Ayush Kumar [Verfasser], Michael [Akademischer Betreuer] Joswig, Michael [Gutachter] Joswig, Hannah [Gutachter] Markwig, and Dhruv [Gutachter] Ranganathan. "Realizability of tropical plane curves and tropical incidence geometry / Ayush Kumar Tewari ; Gutachter: Michael Joswig, Hannah Markwig, Dhruv Ranganathan ; Betreuer: Michael Joswig." Berlin : Technische Universität Berlin, 2021. http://d-nb.info/1226217400/34.
Full textBartz, Jeremiah. "Multinets in P^2 and P^3." Thesis, University of Oregon, 2013. http://hdl.handle.net/1794/13252.
Full textAlhussain, Mohammed. "Spherical wave AVO response of isotropic and anisotropic media: Laboratory experiment versus numerical simulations." Curtin University of Technology, Department of Exploration Geophysics, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17537.
Full textSalarinoghabi, Mostafa. "Flat and Round Singularity theory." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-09122016-101116/.
Full textPropomos nesta tese um método para estudar deformações de curvas planas que leva em consideração a geometria delas, bem como as suas singularidades. Consideramos em detalhes os fenômenos locais que ocorrem genericamente em famílias de curvas com dois parâmetros. Obtemos informações sobre as inflexões e vértices que aparecem nas curvas deformadas. Obtemos também as configurações das evolutas das curvas e das suas deformações e aplicamos os nossos resultados nas projeções ortogonais de curvas espaciais. Finalmente, consideramos o perfil de uma superfície regular no espaço Euclidiano R3. O perfil é a imagem do conjunto singular de uma projeção ortogonal da superfície, esta é uma curva plana e pode ter singularidades. Estudamos as alterações na geometria do perfil quando a direção de projeção muda localmente na esfera unitária.
Sanchez, Luis Florial Espinoza. "Singularidades de curvas na geometria afim." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-07102010-145223/.
Full textIn this work we study the geometry of the affine evolute and the affine normal curve associated with a plane curve without inflections from the type of singularity of affine support functions. The main result is setting if \'\\gamma\' is a flat curve without inflections, satisfying certain conditions generic then, if p is a point of the affine evolute of \'\\gamma\' at \'s IND. 0\' then two cases: if \'\\gamma\' (\'s IND. 0\') is a sextactic point then locally in p the affine evolute is diffeomorphic to a cusp at \'R POT. 2\', otherwise locally in p the affine evolute is diffeomorphic to a straight in \'R POT. 2\', and second if p = \'\\gamma\' (\'s IND. 0\') is a point of the affine normal curve then two cases: if \'\\gamma\'(\'s IND. 0\') is a parabolic point of \'\\gamma\' then locally in p the affine normal curve is diffeomorphic to a cusp at \'R POT. 2\' , in otherwise locally in p the affine normal curve is diffeomorphic to a line in \'R POT. 2\'
Costa, Felix Silva 1982. "Áreas e contornos." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306611.
Full textDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-11T17:00:37Z (GMT). No. of bitstreams: 1 Costa_FelixSilva_M.pdf: 655518 bytes, checksum: d511c33452fb4b2c113deef060ff88eb (MD5) Previous issue date: 2008
Resumo: Neste trabalho são descritos métodos para o cálculo da área de regiões planas delimitadas por curvas simples e algumas propriedades de transformações do plano no plano que preservam áreas. No Capítulo 1, a área de polígonos é introduzida como uma soma de determinantes e utilizada para discutir o cálculo da área de regiões planas contornadas por curvas simples quando estas são aproximadas por polígonos com vértices ajustados por parâmetros geométricos. A fundamentação, baseada no Teorema de Green, de processos mecânicos (planímetros) para o cálculo destas áreas é descrita no Capítulo 2. Propriedades e famílias especiais de aplicações do plano no plano que preservam áreas são apresentadas no Capítulo 3.
Abstract: We describe here methods for the area estimation of plane regions bounded by simple curves and also some properties of plane transformations which preserve area. In Chapter 1 the area of polygons, described as a sum of determinants, is used to discuss the calculus of the area of plane regions bounded by simple curves approached by polygons adjusted through geometric parameters. Mechanical processes ( planimeters) based on the Green's Theorem are described in Chapter 2. Properties and special families of area preserving mappings are presented in Chapter 3.
Mestrado
Geometria
Mestre em Matemática
Beegle, David J. "Three-dimensional modeling of rigid pavement." Ohio : Ohio University, 1998. http://www.ohiolink.edu/etd/view.cgi?ohiou1176842076.
Full textDias, Fabio Scalco. ""Geometria das singularidades de projeções"." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18122005-190356/.
Full textIn this work singularities of projections to the plane of curves are studied. We introduce a new equivalence relation for germs of plane curves, called A_h-equivalence.
Moreno, Ávila Carlos Jesús. "Global geometry of surfaces defined by non-positive and negative at infinity valuations." Doctoral thesis, Universitat Jaume I, 2021. http://hdl.handle.net/10803/672247.
Full textIntroducimos los conceptos de no positividad y negatividad en el infinito para valoraciones planas divisoriales de una superficie de Hirzebruch. Probamos que las superficies dadas por valoraciones con las características anteriores poseen interesantes propiedades globales y locales. Además, las valoraciones divisoriales no positivas en el infinito son aquellas valoraciones divisoriales de superficies de Hirzebruch que dan lugar a superficies racionales tales que su cono de curvas está generado por un número mínimo de generadores. Los conceptos de no positividad y negatividad en el infinito también se extienden a valoraciones reales del plano proyectivo y de superficies de Hirzebruch. Por último, calculamos explícitamente las constantes de tipo Seshadri para pares formados por divisores big y valoraciones divisoriales de superficies de Hirzebruch y obtenemos los vértices de los cuerpos de Newton-Okounkov para pares como los anteriores bajo la condición de no positividad en el infinito.
Programa de Doctorat en Ciències
Maia, Francisco Everton Pereira. "Curvas planas : clássicas, regulares e de preenchimento." reponame:Repositório Institucional da UFABC, 2016.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016.
Neste trabalho apresentaremos uma visão sobre os princípios das curvas planas. Iniciamos o desenvolvimento dos estudos com as cônicas: parábola, elipse e hipérbole que são aplicadas no Ensino Médio normalmente usando equações cartesianas. Abordaremos o assunto destas e outras curvas usando equações paramétricas, com intuito de mostrar a vantagem de utilizá-las. Abrangeremos em nossos estudos a catenária, a cicloide e a curva de Bézier, curvas as quais não são estudadas no Ensino Básico, mas poderiam ser apresentadas como um desafio motivador ao estudo da Matemática, explorando suas várias aplicações que acontecem de maneira natural em nosso cotidiano. Apresentaremos propriedades gerais das curvas como: continuidade, parametrização, comprimento de arco, curva suave, curvatura e outras, além de realizar a demonstração do teorema fundamental das curvas planas e para finalizar estudaremos uma curva exótica, conhecida como curva de preenchimento de espaço, construída pela primeira vez pelo matemático italiano Giuseppe Peano.
In this work we will present an insight into the principles of flat curves. We start with the conics: parabola, ellipse and hyperbole which are applied in high school usually using Cartesian equations. We will discuss those and other curves using parametric equations, in order to show the advantage of using them. We will cover in our studies the catenary, the cycloid and a Bézier curve, curves which are not studied in basic education, but could be presented as a challenging motivation to the study of Mathematics by exploring their various uses that happen naturally in our everyday lives. We will introduce general properties of curves as: continuity, parameterization, arc length, smooth curve, curvature and others, in addition to the proof of the fundamental theorem of plane curves, and finally we will study an exotic curve, known as space-filling curve, built for the first time by the Italian mathematician Giuseppe Peano.
Rosa, Lílian Neves Santa. "Invariantes de Arnold de curvas planas." Universidade Federal de Viçosa, 2010. http://locus.ufv.br/handle/123456789/4903.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This dissertation is devoted to the study of Arnold's invariants of smooth immersed closed curves in the plane. The invariants J± and St were axiomatically defined by Arnold in [Ar1] as numerical characteristic of generic closed curves (immersion of the circle) on IR2: These three Arnold's invariants are associated to the transitions through direct and inverse self-tangencies and triple crossings. In this work, we study and present the Arnold's generic curve invariants and theirs properties. We also introduce and demonstrate the explicit formulas for calculating invariants given by Viro, Shumakovich and Polyak.
Esta dissertação é dedicada ao estudo dos invariantes de Arnold de curvas diferenciáveis fechadas imersas no plano. Os invariantes J± e St foram definidos axiomaticamente por Arnold em [Ar1] como característica numérica de curvas genéricas fechadas (imersões de círculos) no plano. Estes três invariantes estão associados às transições através de auto-tangências diretas e inversas e cruzamentos triplos. Neste trabalho estudamos e introduzimos os invariantes de Arnold de curvas genéricas e suas propriedades. Também introduzimos e demonstramos as fórmulas explícitas para cálculo destes invariantes dadas por Viro, Shumakovich e Polyak.
Cardim, Breno da Silveira. "Curvas planas: uma visão para o ensino médio." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/7515.
Full textApproved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2015-06-03T22:27:07Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 4771282 bytes, checksum: 54ad9700566c303ef32a4f565e89ee2c (MD5)
Made available in DSpace on 2015-06-03T22:27:07Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 4771282 bytes, checksum: 54ad9700566c303ef32a4f565e89ee2c (MD5) Previous issue date: 2014-07-04
In this work, we study the principles of the theory of plane curves, within the context of high school
Neste trabalho estudamos os princípios da teoria das curvas planas, tendo em mente, estudantes do ensino médio. Aqui, é proposta uma introdução ao Cálculo Diferencial e Integral àqueles estudantes, e em seguida um estudo sobre a teoria das curvas, onde alguns exemplos clássicos são apresentados, bem como, conceitos como vetor tangente, área e comprimento de curvas são discutidos.
Tomasini, Arnaud. "Intersections maximales de quadriques réelles." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAD035/document.
Full textReal algebraic geometry is in its simplest definition, the study of sets of solutions of a system of polynomial equations with real coefficients. In this theme, we focus on the intersections of quadrics where already the case of three quadrics remains wide open. Our subject can be summarized as the topological study of real algebraic varieties and interaction between their topology on the one hand and their deformations and degenerations on the other hand, a problem coming from the 16th Hilbert problem and enriched by recent developments. In this thesis, we will focus on maximum intersections of real quadrics and particularly prove the existence of such intersections using research developments made since the late 80. In the case of intersections of three quadrics, we will point the very close link between the intersections on the one hand and on the other plane curves, and show that the study of M-curves (one of the problems of the 16th Hilbert problem) may be done through the study of maximum intersections. Next, we will use the study on nodal plane curves to determine in some cases deformation classes of intersections of three real quadrics
Barros, Marcelo Miranda. "Identification of Fractal Dimensions from a Dynamical Analogy." Laboratório Nacional de Computação Científica, 2007. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=145.
Full textDiversas áreas do conhecimento têm utilizado a geometria fractal para melhor entender muitos objetos e fenômenos naturais. Objetos irregulares com padrão auto-similar onde as partes se assemelham ao todo podem ser melhor compreendidos através de dimensões fractais que fornecem como o valor de uma propriedade varia dependendo da resolução, ou escala, em que o objeto é observado ou medido. Apresentamos uma nova abordagem para calcular dimensões fractais através de características físicas. Neste trabalho busca-se uma caracterização da dinâmica de estruturas lineares com geometria fractal. Trata-se os elementos de uma sequência geradora de um fractal como estruturas. Osciladores harmônicos simples são construídos com tais estruturas. A variação do período de vibração desses osciladores com uma determinada medida de comprimento nos fornece uma dimensão fractal. A técnica foi testada para a família de curvas contínuas e auto-similares no plano, onde está incluída a clássica triádica de Koch. Mostramos que essa dimensão dinâmica pode ser relacionada à dimensão de Hausdorff-Besicovitch. Com geometria aleatória, a técnica além de fornecer a dimensão fractal, identifica a aleatoriedade. Um novo tipo de fractal é apresentado. A idéia é usar mais de um gerador no processo de geração de um fractal para obter os fractais mistos.
Saleur, Benoît. "Trois problèmes géométriques d'hyperbolicité complexe et presque complexe." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112256/document.
Full textThis thesis is dedicated to the study of three problems of complex and almost complex hyperbolicity. Its first part is dedicated to the research of a quantitative consequence to Kobayashi hyperbolicity, which is a qualitative property. The result we obtain has the form of an isoperimetric inequality that suggests Ahlfors' inequality, the central result of the theory of covering surfaces. Its proof uses only riemannian tools.The second part of the thesis is dedicated to the proof of an almost complex version of Borel's theorem, which says that an entire curve in the compex preojective plane missing four lines in general position is degenerate. In an almost compex context, we can obtain a similar result for entire J-curves just by replacing projective lines by J-lines. The proof of this result uses central projections and Ahlfors' theory of covering surfaces.The last part is dedicated to the proof of an almost complex version of Bloch's theorem, which says that given a sequence of holomorphic discs in the projective plane, either it is normal, either it converges in some sens to a reunion of three lines. Our result will show in particular that the complementary set of four J-lines in general position is hyperbolic modulo three J-lines
Oliveira, Marina Mariano de. "Curvas pedais e Teorema dos Quatro Vértices : uma introdução à geometria diferencial." reponame:Repositório Institucional da UFABC, 2018.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional - PROFMAT, Santo André, 2018.
Neste trabalho, apresentamos a geometria diferencial das curvas planas de um modo mais acessível para um leitor não especialista no assunto, mas de forma a despertar seu interesse. A Teoria Local das Curvas Planas é desenvolvida por meio de exemplos e, em particular, exibimos a família das curvas pedais. Ilustramos a Teoria Global por meio do Teorema dos Quatro Vértices e apresentamos, também, formas de explorar os conceitos de geometria diferencial na Educação Básica, com resultados geométricos interessantes e visualmente atraentes. Para isso, contamos com o auxílio do GeoGebra, um software de matemática dinâmica, e da string art, um estilo de arte caracterizado por um arranjo de cordas que formam padrões geométricos. Com isso, buscamos proporcionar ao leitor uma forma diferente de experimentar a geometria diferencial das curvas planas, bem como proporcionar aos alunos do Ensino Médio um aprendizado interessante de geometria analítica.
In this work, we present the differential geometry of the plane curves in an accessible way for not specialized readers in the subject, but in order to arouse their interest. The Local Theory of Plane Curves is developed by means of several examples and, in particular, we bring out the class of pedal curves. In order to ilustrate the Global Theory we present the Four-Vertex Theorem and we also present a way to introduce differential geometry concepts to secondary school students with interesting and visually attractive geometric results. To do this, we use the software GeoGebra, a interactive geometry and algebra application, and string art, a sort of art characterized by an arrangement of strings that form geometric patterns. We hope to provide to the readers a pratical experience of differential geometry of plane curves, as well as providing them the students of High School with an interesting learning of analytical geometry.
Abdallah, Nancy. "Cohomologie des courbes planes algébriques." Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01064511.
Full textBarros, Marcelo Miranda. "Identificação de dimensões fractais a partir de uma analogia dinâmica." Laboratório Nacional de Computação Científica, 2007. https://tede.lncc.br/handle/tede/74.
Full textSeveral areas of knowledge use fractal geometry to help to understand natural objects and phenomena. Irregular self-similar - in which parts resemble the whole - objects may be better understood through fractal dimensions which provide how a property varies with resolution or scale. We present a new approach to calculate fractal dimensions that, instead of the frequently used methods based on covering, seeks geometry information from physical characteristics. Here, we treat the element of a fractal sequence as structures. Imposing constraints on the structures, we build simple harmonic oscillators. The variation of the period of these oscillators with respect to a determined measure of length provides a fractal dimension. This techinique was tested for a family of continuous self-similar plane curves, including the classical Koch triadic. We show that this dynamical dimension may be related to Hausdorff-Besicovitch dimension. With random geometry, the techinique besides providing a fractal dimension, identifies randomness. A new kind of fractal is also presented. The ideia is to use more than one generator in the generation process of a fractal to obtain mixed fractals.
Diversas áreas do conhecimento têm utilizado a geometria fractal para melhor entender muitos objetos e fenômenos naturais. Objetos irregulares com padrão auto-similar onde as partes se assemelham ao todo podem ser melhor compreendidos através de dimensões fractais que fornecem como o valor de uma propriedade varia dependendo da resolução, ou escala, em que o objeto é observado ou medido. Apresentamos uma nova abordagem para calcular dimensões fractais através de características físicas. Neste trabalho busca-se uma caracterização da dinâmica de estruturas lineares com geometria fractal. Trata-se os elementos de uma sequência geradora de um fractal como estruturas. Osciladores harmônicos simples são construídos com tais estruturas. A variação do período de vibração desses osciladores com uma determinada medida de comprimento nos fornece uma dimensão fractal. A técnica foi testada para a família de curvas contínuas e auto-similares no plano, onde está incluída a clássica triádica de Koch. Mostramos que essa dimensão dinâmica pode ser relacionada à dimensão de Hausdorff-Besicovitch. Com geometria aleatória, a técnica além de fornecer a dimensão fractal, identifica a aleatoriedade. Um novo tipo de fractal é apresentado. A idéia é usar mais de um gerador no processo de geração de um fractal para obter os fractais mistos.
Morán, Cañón Mario. "Étude schématique du schéma des arcs." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S079.
Full textThe arc scheme associated with an algebraic variety defined over a field parameterizes the formal germs of curves lying on the considered variety. We study some local schematic properties of the arc scheme of a variety. Given an affine plane curve singularity defined by a reduced homogeneous or weighted homogeneous polynomial, we compute, mainly using arguments from differential algebra, presentations of the ideal defining the Zariski closure of the smooth locus of the tangent space, which is always an irreducible component of this space. In particular, we obtain a Groebner basis of such ideal, which gives a complete description of the functions of the tangent space of the variety which are nilpotent in the arc scheme. On the other hand, we study the formal neighbourhood in the arc scheme of a normal toric variety of certain arcs belonging to the Nash set associated with a divisorial toric valuation. We establish a comparison theorem, in the arc scheme, between the formal neighbourhood of the generic point of the Nash set and that of a rational arc sufficiently generic in the same Nash set
Chen, Shin-Ling, and 陳時霖. "Geometry of Convex Closed Plane Curves." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/skmzds.
Full text國立清華大學
數學系
102
In the first five sections we introduce some important geometric quantities of a curve, such as curvature, torsion, the support function and the width. In the rest part of this thesis we derive some famous geometric inequalities such as the isoperimetric inequality, Gage’s isoperimetric inequality and Wirtinger inequality. Also we introduce an important idea for a curve – the parallel curve. Using the idea of the parallel curve we can obtain our final goal of this thesis – the entropy estimate.
Markwig, Hannah [Verfasser]. "The enumeration of plane tropical curves / Hannah Markwig." 2006. http://d-nb.info/980700736/34.
Full textLin, Yu-Chu, and 林育竹. "Evolving Convex Closed Plane Curves and Related Topics." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/84131208125293366252.
Full textBorges, Filho Herivelto Martins. "Characterization of multi-Frobenius non-classical plane curves and construction of complete plane (N, d)-arcs." 2009. http://hdl.handle.net/2152/6522.
Full texttext
Wright, James Robert. "Lp estimates for operators associated to oscillating plane curves." 1990. http://catalog.hathitrust.org/api/volumes/oclc/23438635.html.
Full text